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CONCENTRATION OF THE STRESSES IN SHELLS
WITH DISCONTINUITIES OF THE SURFACES

R.GARNCAREK and 5. Y UKASIEWICZ (WARSZAWA)

1. INTRODUCTION

The subject of this paper is the concentration of the stresses produced in shells
by the angle discontinuities of their middle surfaces. Usually, the construction of
large shell structures consists in building the whole structure from smaller elements.
Most frequently, the elements are welded together. The inaccuracies of the element

shapes give rise to certain ad-
ditional stress fields which com-
monly are not taken into account
in the calculations.

The deviations of the middle
surfaces of the shell from the
theoretical surface can be descri-
bed by continuous and discon-

tinuous functions. In - the present -

paper we shall consider only the
cases in which the deviation of
the middle surface of the shell
made of elements from the ideal
elerment can be described by the

Fig. 1

function with the discontinuous first derivative in the direction normal to the edge
of the element of the shells. Figure 1 presents such a shell with angle discontinuities
of the middle surface at the boundary of the rectangular shallow elements. § denotes
the angle between the straight lines tangential to the middle surface and perpendicular

to the line of the junction.

2. SPHERICAL SHELL WITH SYMMETRICAL ANGLE DISCONTINUITIES

Let ws consider first the case of a spherical shell constructed of symmetrical
toroidal segments. The radii of curvature of the sphere &, defines the angle discon-
tinuity of the middie surface of the shell considered. The shell is under internal
pressure p. The problem of determination of the stresses in the structure can be solved
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by considering the conditions of compatibility of displacements at the junctions
and equilibrium equations of the segmetits.

Iet us start with the equations of the membrane theory. If we introduce
simplifications consisting in disregarding the terms of order 52«1, the membrane
_forces in two neighbouring segments are given by the equations:
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where R is the average radius of the spherical shell. The membrane state of stress
. in the shell is possible only, if we add the equilibrating load P; (Fig. 3), which can

be defined as
o DR d;

i

2 sinoy;

However, this load does not act on the shell; hence the bending stresses appear i
the shell.

Fig. 2 Fig. 3

Let us further consider the deformations of the shell. On the basis of the formulae
(2.1) and taking into account Hooke’s law, we find the difference in the radial
displacements of the neighbouring segments in the following form:

pR*8;v
2.2 A= -—ﬁ;—cos Pz -
The differences of the angles created by the straight lines pormal to the middle
surface at the junctions of the segments before and after deformation are:
PR* &,

— 2
.3 Ao 2Fh ctg oy .

The above formula is valid when the widths of the segments are approximately
equal. These quantities are necessary to build the conditions of compatibility of
the segments. As already indicated, the equilibrium in the membrane state can be
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ensured by introducing the load P; acting, non existent in the circumferential plane.
This means that a state of bending stress appears in the shell. These two cases are
presented in Fig. 4.
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Fig. 4

Considering the bending state of stress, we can replace the real surface of the
shell by an ideal spherical surface with average radius R. This is justified by the local
character of the disturbances produced by the load P;. The solution for this case
can be obtained on the basis of the equation of the spherical shell loaded symmetri-
cally, which for not very small values of o,; takes the following form [1]:

2.4 LL(RQ,)+ p* RQ,=0,
where
i Eh
B ="p R
and

L l { i + i t 2 ]
=% do? d@cgqa+ctggo.
The solution of this equation gives the following formulae for the internal forces
and moments in two neighbouring segments. The indices g and d correspond to the

upper and lower segments, respectively:
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D, ,=e*= (C, cos Aoy + Cp 80 Aoryy),
D, ="t (Cy sin Aoy, — C, 08 Aeyg)
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The radial displacements of two neighbouring segments are:
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The angles y; for two neighbouring segments are:
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Since the segments are joined together, we have to satisfy the following boundary
conditions: for «,=0 and «;=0,

Qgi'Jeri:Pi sina;, ngi:M(Ddis
(2.8) Argaim+Aroai,= Ao g+ Aroyr, s
AV Yt rah=9.

The indices m and b denote the membrane and bending states of stress. The solution
of the above equations gives values of the constants D; and, further, the internal
forces and moments in the shell. The results of the above calculations are as follows:

The forces and moments resulting from the angle discontinuity of the middle
surface are practically independent of the angle «,, if this angle is not very small.
If we take into account the membrane forces and bending moments resulting from
the solution of the membrane and bending cases, we find the following approximate
formula for the maximum stresses at the junction (exact for a,;=n/2):
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The sign -} corresponds to the external surface and — to the internal surfaces of
the shell. The factor of concentration of stress can be defined as
fy =t
1" g, ideal sphere ’
where

ol=0l~06436,+0%, o, ideal sphere= T
At the external surface we have

2.10) k 1+5((0 2513 (=) +0.75 e )]/—mR
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for y=0.3 we have

R
k1=l+l.085l/—h—, 5>0.

The factor &, of concentration of stress at the internal surface of the shell for v=0.3 is:

R R
ko= §/1+0.884|5i }/; +1.807—.

The further conclusion resulting from the solution is as follows: The membrane
forces in the shell can be calculated as for the ideal spherical shell, if the widths
of the segments are not too small.

The case of a spherical shell with angle discontinuity near the pole — i.e., when
the angle «; is small — should be solved separately using, for example, the shallow
shells equations. However, such calculations give somewhat smaller stresses in the
junction than those for large o

We notice that the conceniration of stress produced by the symmetrical
discontinuity of the surface of the spherical shell is relatively large. Already for
¢=2.5°and h/R=0.01 the increment of the reduced stress is 50 per cent by comparison
with the reduced stress produced by the membrane state in the ideal shell.

3, EFFECT OF THE ANGLE DISCONTINUITY IN AN AREBITRARY SHELL

The calculations performed for the previous case of the spherical shelf demonstrat-
ed that the discontinuity of the middle surface of the shell produces a local and
~ relatively narrow area of bending stresses appearing along the line of the discontinuity..
-~ The width of this area is of order of several

=Y/ RV 12(1—v%),

. where 7 is the characteristic length of the shell,
" We may expect that the arbitrary shell of positive Gauss curvature behaves in a.
similar way, since in such a shell all bending effects are very quickly stifled [2].
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Let us consider an arbitrary thin shell built of segments. The middle surface
.of the shell is discontinuous and § denotes the angle of discontinuity. Let us introduce
the system of non-dimensional coordinates x, y on the middle surface of the shell
with the y-axis following the line of discontinuity.
The curvature of the shell in the area close to
this line can be characterised by the principal
radii of curvature R, and R, We assume that
the direction of the line of discontinuity follows
the direction of the larger of . the principal
curvatures R,<R;, Fig, 5.

The angle d=0(») describes the discontinuity
of the middle surface and is positive when the
shell is bent inwards. We assume that the function
5(y) vanishes with increasing distance from the
origin of the system of coordinates. This means
that this geometrical disturbance is of local
character. On the basis of the results of the case
Fig. 5 considered previously, we can introduce the fol-

lowing assumptions and simplifications:

B> Ry

a) we disregard the effect of the discontinuity of the middle surface on the
membrane stresses in the shell — i.e., we calculate these stresses as for an ideal shell;

b) we assume that the effect of angle discontinuity consists in the action of an
additional fictitious load P (y) resulting from the action of the membrane forces
in the junction of the segmenis;

¢) we assume that the real state of stress in the shell can be presented by super-
position of the membrane and bending states of the stresses;

d) the shell in the area close to the discontinuity can be considered as shallow,
which enables us to assume that the first quadratic form of the surface considered
differs slightly from the first quadratic form of the plane or of the cylindrical surface.

Considering the conditions of equilibrivm of the region close to the line of the
discontinuity, we find that the load P(y) can be defined as:

P(y)=N.xxu 5(»),

where N, is the membrane force in the ideal shell acting in the direction
perpendicular to the line y. The function &(y) depends on the geometry of the
discontinuity of the surface and can be assumed arbitrarily. The fictitious load P (y),
symmetric in respect to the x-axis, can be presented by the following surface, Fourier
infegral

{3.1) P(y)= fﬁQ(ﬁ)cosmxcosﬁydoedﬂ,

‘where Q () is a certain function of the parameter B defining the distribution of the
load P (3). On the basis of the equations of shallow shells, we find similar integral
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expressions for the normal deflection and the stress function:

(32) ”“_E f f 2@ (o + 7Y% cos oox cos By o dB,

(3.3) Q5=l2R2fo(ﬁ

) (&2 + A cosax cos Pydedf,

where ! is the characteristic leng't.h‘ of the shell and M denotes the denominator

of the integral which is
& M=(x? +ﬁ2)4+(0£2+_lﬁ2)2 .

The internal forces and moments in the shell can be calculated on the basis of the above

solutions. For example, for the bending moment M,,, we find the following integral:

(3.4) M =1 f f Qg) (ou2'+vﬁ2)(:x2+ﬁ2)2cosocxcosﬁydocdﬁ.

The above expressrons can easﬂy be once Integrated by meéans of the calculus of
residues. For example ‘
z il G +vﬁ2)
My f 0@ Y T cos Ay dg,
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where «, are the roots of the characteristic equation M =0 with positive imaginary parts,
The above integral is complex, slowly convergent and cannot be evaluated analytic-
ally. However, it can be calculated numerically. In order to speed up computation,
we can apply the method. proposed in [2]. This method consists in calculating the
integral in two stages numenpaHy from 0 to a certain value B and, analytically
from B to oc. w

I similarly we dissolve the bending moment

Moo= [ m@dp= [ m@dp+ [ m@ap=sd s arm,,

we find for M2, the simplified formula presenting the expressions for the roots and
the integrand m (f) by means of power series in respect to -1 /ﬁ
Taking into account two terms only, we find

o Sk
xx 4 f[(1+v)01 (klx;)_(l-_v) 2(klx) ﬁ] Q;ﬂ)

e P cos Bydp,

where
Cy (ky x)=cosk(k; x)cos (k, x),
Sy (ky x)=sin ik, x)cos (k; x)+cos bk, x)sin{k, x),

1
k, =}/—8— (1-24).
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The above integral is much more simple than (4.4) and can usually be calculated
analytically if Q (8) is not too complex a function. The results of the computations
of the stresses in the shell produced by the.angle discontinuity are presented in
Figs. 6 - 8. In Fig. 6 and 7, the distribution of the additional stresses appearing on
the external surface for the vanishing discontinuity defined by the function

1.
6:(y)= +0.02 W frad]

is given for the different values of the parameter A=Ry/R,, 2=1, 0.5, 0.25, 0, —0.25,
—0.5; g is here a certain arbitrary parameter which is taken now as 1. We observe
that the additional stresses resulting from the eﬁ'ect of discontinuity of the middle
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. surface increase as the parameter ¢ decreases. They reach the maximum value for
~ the cylindrical shell — i.e., for A=0. The damping of the local stress also decreases
with decrease of A, Flgure 8 presents maximum increment of the stress o,, at the
external surface as a function of the parameter 4. We observe that with increase of
this parameter the increment of the stress reaches the value which was previously
obtamed for the axially symmetrical case. For the cylindrical shell, the maximum
value is for g=3 - 5, Figure 9 presents the concentration factor for the case of the
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éonstant. angle ‘discontinuity along a certain segment of the circumference of: the
cylindrical surface. The solution presented can be applied to cases in which' the
discontinuity of the shell surface follows the direction of the larger of the principal
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Fig. 10

curvatures of the shell, The cases in which the discontinuities follow the directions
of smaller curvature can be solved in the similar way_ by rotation of the system of
coordinates. We obtain similar integral expressions for the internal forces and
moments. The results presented in Fig. 10 are derived for the discontinuity along
the generator for various values of the parameter A. The largest values of the
increment of the stress o,, are obtained for A=0. The behaviour of the increment
Ag,, is similar. But the numerical values are about Ado,~0.440,,.

Infinife long cylindrical shell
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However, the case of Iarge ¢ and =0 should be here excluded, because in this
case the problem considered becomes not local and the shell under . the: fictitious
load:is not in equilibrium. Thus, the solution applied becomes singular. This means
that the: case of a cylindrical shell with the discontinuity along the generator must
be solved separately, on the basis of a more exact assumption. Resolving the forces
obtained from the membrane and bending states, the complete state of loads should
be taken into account (together with the boundary forces). Also, for A==0, the solution
should satisfy the condition of periodicity in the circumferential direction. This can
be achieved if we use the Fourier series as the presentation of the displacement w
and the stress function @. The results given in Fig, 11 are so obtained. We observe
that the stress concentration factor defined as

Oz

ke, = o, ideal cylmder

increases with increase of the parameter ¢ tending to a value which corresponds

to the mﬁmtely tong shell with constant angle discontinuity:
2

k2=1i2.5757+2.252~,;~;(1—v+y2).

E—
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d=002 rad

g R, 108y BRy X
Fig. 12

The sign -+ corresponds to the external surface of the shell, — the internal surface.
The dotted line in Fig. 11 presents the values obtained by means of shallow shell
equations. The full line — by means of what is called “equations of the improved
technical theory of shells”. Figure 12 presents the factor k for the case J (¥)=const
along a certam segment of the gencrator

HE)

4. CONCLUSIONS

The inaccuracy of the shell structure consisting 1n the angle dlscontmuity of the
middle surface produces lécal bending in the shell and is the reasén for the significant
stress concentration in the area close fo. the line of discontinuity. The maximum
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value of the concentration factor for the spherical shell is given by the
formulae (2.10).

It should be emphasized that most containers for gas or liquid are built of
rectangular elements. In this case, it may happen that three elements meet each
other at one point of the shell surface. On the basis of the theorem of superposition
" of the solutions, we find that at this point the stress concentration is about.1.5:times
greater than that for the single discontinuity. .. .. . w0

The approximate formula for the concentration factor for the cylindrical shell
with discontinuity along the circumference takes the form:

: R .
fop=1+ 11605 ]/k_' ‘

Very large concentrations of stresses in the cylindrical shell produce angle discon-
tinuity in the generator direction. In this case, the factor k, is proportional to the
ratio Rfh but in all cases considered previously it was proportional ]/R—/h_ only.

The solutions presented above are based on the linear theory of shells of small
deflections. Note that the effect of the change in the geometry of the shell with the
load leads to partial elimination of inaccuracies. In redlity, the increment of the
stress will be smaller than that resulting from the linear theory.
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STRESZCZENIE

KONCENTRACTA NAPREZENIA W POWEOKACH
7 NIECIAGLOSCIAMI POWIERZCHNI - "

Tematem pracy jest okreslenie koncentracji naprezefi wywolanej w deiéEe przez nieciaglodci
katowe (zalomy) na powierzchni srodkowej. Postawione zadanie rozwiazano najpierw dla powlok
kulistych zbudowanych z segmentéw toroidalnych. Nastepnie zbadano wplyw nieciagtosci w powlo-

‘kach dowolnych dla réznych funkeji opisujgcych rozklad niecigglodei, . . - '

PeszmomMme

KOHIEHTPAITAS HATIPSDKEHHIL B OBOJIOYKAX C PASPRIBAMU ' TIOBEPXHOCTI
" Tewmoit paGorsl sBrAeTCA ONpeREAeHYe KONHEHTPATHE Hmbmqaﬁi 'léymnaﬁiwﬁ B ofiomoyxe
JOHOBBIMHE PA3phiBaME (A3TOMAME)} HA CPemuHECH TOBEPXHOCTH, Hpeﬁpngqemﬂ'upoﬁqxema

pemesia cHavANa I chepmyeckux 0GoI0%eK MOCTPOSHHBIX M3 TOPOBMATEHEIX COTMERTOB. 3arteM
HCCNET0BAH0 BIMAHAS PA3PEBA B NPOHIBONLHEEIX oGoNCUKAR ' ENs PABHKIX THROB ‘YAKINH ONE-
chIBAKIEH pacTpeaencHue paspLma. ' : : B T INTIEE LT
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