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In this work we examine significant theoretical issues related to the constitutive modelling
of a two-phase shape memory alloy which undergoes large deformations. For this purpose, we
propose a new generalized plasticity based model. The model is based on a standard fractions
approach and considers a local multiplicative decomposition of the deformation gradient into
elastic and inelastic (transformation induced) parts, as its basic kinematic assumption. We also
assess the ability of the model in simulating several patterns of the complex behavior of the
material in question, by three representative numerical examples. These examples comprise
a standard uniaxial tension problem, a torsion problem and an additional problem dealing
with non-conventional pseudoelastic response.
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1. Introduction

Shape Memory Alloys (SMAs) are a unique class of metal alloys which can
be deformed severely and afterwards recover their original shape after a ther-
momechanical cycle (shape memory effect) or a stress cycle within some appro-
priate temperature regimes (pseudoelasticity). The mechanisms of this recovery
are either a diffusionless transformation between the austenite phase (which is
a highly ordered phase and is also called the parent phase) and the martensite
phase (which is a less ordered one) or the reorientation (detwinning) of marten-
site variants. These transformations in general are termed as martensitic and
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may also be met in other metallic materials such as carbon steels and invar
alloys.
The experimentally observed behavior of shape memory alloys in the course

of martensitic transformations is extremely complex, a fact which in conjunc-
tion with the continuously increasing use of SMAs in innovating applications in
many engineering fields results in a greater need for a better understanding of
these materials. Due to recent rapid advances in computer technology complex
constitutive representations can be considered, since their numerical implemen-
tation is no longer intractable, no matter how complex they may be. Neverthe-
less, the development of a material model for SMAs still is a non-trivial task;
characteristic is the following comment stated by Abeyaratne et al. [1]: “This
subject requires an intimate mix of continuum and lattice theories, and in order

to describe it satisfactorily one has to draw on tools from crystallography, lat-

tice dynamics, thermodynamics, continuum mechanics and functional analysis.

This provides for a remarkably rich subject which in turn has prompted analyses

from various distinct points of view. The free energy function has multiple local

minima, each minimum being identified with a distinct phase, and each phase

being characterized by its own lattice. Crystallography plays a key role in charac-

terizing the lattice structure and material symmetry, and restricts deformations

through geometric compatibility. The thermodynamics of irreversible processes

provides the framework for describing evolutionary processes. Lattice dynamics

describes the mechanism by which the material transforms from one phase to

the other. And eventually all this needs to be described in the continuum scale”.
As a result, for the past three decades there has been substantial activity

to model martensitic transformations in shape memory alloys, and several con-
stitutive models have been developed on the basis of non-isothermal elasticity
(e.g., see [1, 2]), solid state physics (e.g., see [3–8]), non-equilibrium thermody-
namics (e.g., see [9–18]), and plastic flow theories in both the microscopic (e.g.,
see [19–21]) and the macroscopic (e.g., see [22–27, 54–56]) regimes.
In [22] Lubliner and Auricchio presented an approach to the constitutive

modelling of SMAs based on the employment of generalized plasticity [28, 29].
In particular, in [22] the authors reviewed the non-isothermal formulation of the
theory [29] and proposed a rather simple three dimensional thermomechanical
model which was able to simulate the basic features of the response of SMAs,
such as pseudoelastic phenomena under both monotonic and cyclic loadings and
the shape memory effect. Later on, the approach of Lubliner and Auricchio was
revisited by Panoskaltsis and co-workers [23, 26, 27, 54–56] and was extended to
a general thermomechanical framework that could accommodate almost all pat-
terns of the complex behavior of SMAs at finite strains, such as the existence of
multiple and possibly interacting loading mechanisms during phase transforma-
tions, rate of loading effects and transformation induced plasticity. In this paper,
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being motivated by some developments given in [17, 30, 31], we will provide fur-
ther insights on the application of the generalized plasticity within the large
deformation analysis of SMAs by means of a new material model. The model
is based on a straight forward extension to the finite regime of an infinitesimal
model proposed by Panoskaltsis et al. [23] and considers a local multiplicative
decomposition of the deformation gradient into elastic and inelastic (transforma-
tion induced) parts as its basic kinematic assumption. The ability of the model
in simulating the basic patterns of the SMAs response is assessed by represen-
tative numerical examples. As a point of departure for the present analysis, we
consider our previous work in Panoskaltsis et al. [26] in conjunction with some
developments underlying an invariant structure of generalized plasticity within
a stress-space formulation given in Panoskaltsis et al. [32]. In regard to many
aspects of the phenomenology of plasticity and damage mechanics, the first of
the authors has benefited a lot from a long friendship with George Voyiadjis.

2. A general material model for a two phase shape memory alloy

2.1. Large deformation generalized plasticity for a two-phase

shape memory alloy material

Generalized plasticity is a local internal variable theory of rate-independent
behavior which is motivated by loading-unloading irreversibility [28, 29] and
is mathematically funded on set theory and topology [29, 32]. This general
mathematical foundation provides to the theory the ability to deal with “non-
standard” cases, such as non-connected elastic domains (e.g., see [22, 23, 26,
54–56]), which is exactly the challenge in modelling SMAs.
As in all internal variable theories, it is assumed that the local thermome-

chanical state in a body is determined uniquely by the couple (Λ, Q), where
Λ stands for the controllable state variables and Q stands for the internal vari-
ables. Several identifications of Λ within the context of SMAs can be found in
[22, 26, 27, 54, 55]. In this work, we start by considering a stress-space formu-
lation of the model within a referential (material) setting; in this case Λ may
be identified by the couple (S, T ), where S is the second Piola-Kirchhoff stress
tensor and T is the (absolute) temperature.
The identification ofQ relies crucially on two basic assumptions. The first one

is that the material in question is a two-phase alloy, so that we can confine our
attention to phase transformations between the austenite and a single (favorably
oriented) martensite variant, with volume fraction ξ, (0 ≤ ξ ≤ 1). Accordingly,
we only deal with two phase transformations, namely the forward austenite to

martensite (A → M) transformation in which dξ

dt
= ξ̇ > 0, and the reverse
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martensite to austenite (M → A) transformation where ξ̇ < 0. Models of this
type have been proposed among others in [11–13, 15, 16, 18, 22, 23, 27, 54–56].
The second basic assumption consists of a local multiplicative decomposition
of the deformation gradient into elastic and inelastic (transformation induced)
parts

F = FeFtr,

where F−1
e is considered as a tensor which releases elastically the stress on

the current configuration. Multiplicative decompositions of this type within the
context of SMAs have been considered in [18, 30, 31] and elsewhere. A similar
decomposition has been also considered in the crystal models discussed in [20,
21]. By following the pioneering work of Simo [33] – see also [34, pp. 301–305]
– we consider the inelastic right Cauchy-Green tensor

Ctr= FT

trFtr,

which, since symmetric and positive definite, can be considered as a primary
measure (metric) of inelastic deformation. As a result of these basic assumptions,
the internal variables Q may be identified by the couple (Ctr, ξ).

Remark 1. By following [33] we can define the (spatial) elastic left Cauchy-
Green tensor as

be= FeF
T

e ,

which is also symmetric and positive definite. Note that be is related to Ctr by

be= FC−1
tr

FT,

which means that be is the push-forward of C
−1
tr
(e.g., see [35, pp. 82–84]) into

the spatial configuration. Accordingly, be can be used as a primary measure
of inelastic deformation as well. In this case, an equivalent description of the
material model may be pursued in the spatial configuration in terms of the
Kirchhoff stress tensor τ defined as the push-forward of S, that is τ = FSFT,
the tensor be and the (scalar invariant) quantities T and ξ.

The central concept of generalized plasticity is that of the elastic range (e.g.,
see [29, 32]) which is defined at any material state as the region in the stress-
temperature space comprising the values of (S, T ) that can be attained elas-
tically (i.e., with no change in the internal variables(Ctr, ξ)) from the current
material state. It is assumed that the elastic range is a regular set in the sense
that it is the closure of an open set. The boundary of this set may be defined
as a loading surface (e.g., see [29, 32]). In turn a material state may be defined
as elastic if it is an interior point of its elastic range and inelastic if it is a
boundary point of its elastic range; in the latter case the material state lies on
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a loading surface and upon loading either the forward (A → M) or the reverse
(M → A) can be activated. It should be added that the notion of process is
introduced implicitly here. Lubliner and Auricchio [22] on the basis of the
well known critical stress-temperature phase diagram for SMA’s transformations
(e.g., see [17, 22]), realized that for a two-phase alloy undergoing phase trans-
formations the loading surfaces may be defined by a two parameter family of
disjoint surfaces, which are given by expressions of the form

(2.1)
ΦM(S, T ) = FM(S)− CMT +RM = const,

ΦA(S, T ) = FA(S)− CAT +RA = const,

where CM, CA are two material constants, RM, RA are the family parameters,
while the ΦM surfaces are associated with the forward (A→ M) transformation
and the ΦA surfaces with the reverse (M → A), one. Note that in the present
setting the loading surfaces are identified by the isofractal surfaces, that is the
surfaces on the state space, on which ξ remains constant (see [13, 23]). Then, on
the basis of the defining property of an inelastic state, and the irreversibility of an
inelastic process from such a state Lubliner andAuricchio [22] further proved
that the evolution of ξ in the course of martensitic transformations may be
described in terms of the loading surfaces and their time derivatives by a general
rate equation of the form

(2.2) ξ̇ = HM(ΦM)LM(S, T,CTr, ξ)
〈
Φ̇M

〉
+HA(ΦA)LA(S, T,CTr, ξ)

〈
−Φ̇A

〉
,

where < · > stands for the Macauley bracket which is defined as

〈x〉 =
{

x if x > 0,
0 if x ≤ 0,

andHM, HA stand for scalar functions which enforce the defining property of an
inelastic state. Accordingly, their values must be positive at any inelastic state
and zero at any elastic one. Finally, LM, LA represent non-vanishing functions,
which are associated with the properties of the forward (A→ M) and the reverse
(M→ A) transformations, respectively.
Furthermore, on the basis of experimental evidence underlying the deforma-

tional properties of SMAs, (e.g., see [36]) it can be assumed that the evolution of
the transformation induced deformation is directly proportional to the evolution
of ξ. Accordingly, the corresponding expression for the evolution of Ctr may be
stated in the form

(2.3) Ċtr = M(S, T,Ctr, ξ)ξ̇,

whereM stands for a symmetric rank-2 tensorial function of the state variables.
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The general material model described by Eqs. (2.2) and (2.3) constitutes
the simplest constitutive representation of a two-phase shape memory alloy. In
order to develop a particular model, it remains to specify the expressions for the
loading surfaces (see Eq. (2.1)), which in turn will yield the functions HM and
HA, and the functions LM, LA, and M.
As an application we first assume that the loading surfaces are given by a

von-Mises type expression (e.g. see [32, 33]), that is:

(2.4)
ΦM(S, T ) = ‖DEV S‖ − CMT +RM = const,

ΦA(S, T ) = ‖DEV S‖ − CAT +RA = const,

where DEV (·) stands for the deviatoric part in the material description and is
defined as DEV (·) = (·)− 1

3
[C : (·)]C−1, in which C is the right Cauchy-Green

deformation tensor (C = FTF), which plays the role of a metric tensor for the
reference configuration and ‖·‖ stands for the Euclidean norm.
In component form Eqs. (2.4) read

ΦM(S, T ) =

√
SIJSKLCIKCJL − 1

3
(SIJCIJ)2 − CMT +RM = const,

ΦA(S, T ) =

√
SIJSKLCIKCJL − 1

3
(SIJCIJ)2 − CAT +RA = const.

As in [22], we introduce the following members of the family:

ΦMs(S, T ) = ‖DEV S‖ − CMsT +RMs = 0,

ΦMf (S, T ) = ‖DEV S‖ − CMfT +RMf = 0,

ΦAs(S, T ) = ‖DEV S‖ − CAsT +RAs = 0,

ΦAf (S, T ) = ‖DEV S‖ − CAfT +RAf = 0,

where
RMs = −CM(T −Ms), RMf = −CM(T −Mf ),

RAs = −CA(T −As), RAf = −CA(T −Af ),

in which the parameters Ms, Mf , As, and Af correspond to the standard charac-
teristic temperatures (martensite start, martensite finish, austenite start, austen-
ite finish, respectively) for the alloy in question and can be determined by means
of the critical stress-temperature phase diagram as well. Since ΦMf is related to
the finish values and ΦMs to the starting values of the A→ M transformation,
the loading surfaces ΦMf = 0 and ΦMs = 0 may be considered as the boundaries
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of the set of all states for which the A→ M transformation can be active. Then
the scalar HM may be defined as

HM =
〈−ΦMfΦMs〉
|ΦMfΦMs|

.

By applying similar arguments for the reverse (M → A) transformation, HA

can be found to be

HA =
〈−ΦAfΦAs〉
|ΦAfΦAs|

.

For the functions LA and LM several choices are possible. In this work, as in our
previous ones (see [23, 27]), we use a linear type of expression which has been
proposed by Likchachev and Koval [37] for the description of the hysteretic
response of SMAs, that is

LM = − 1− ξ

ΦMf (S, T )
, LA = − ξ

ΦAf (S, T )
,

so that the final form of Eq. (2.2) reads

(2.5) ξ̇ = −〈−ΦMfΦMs〉
|ΦMfΦMs|

1− ξ

ΦMf

〈
Φ̇M

〉
− 〈−ΦAfΦAs〉

|ΦAfΦAs|
ξ

ΦAf

〈
−Φ̇A

〉
.

For the rate equation for the evolution of Ctr, motivated by several models
which are based on the infinitesimal theory (e.g., see [12, 22]; see also the rele-
vant discussion given in Panoskaltsis [23]), we assume a normality flow rule
in stress-space which within the present context is expressed in a somewhat
surprising format in terms of the (reciprocal) metric C−1

tr
as

(2.6) Ċ−1
tr

= − 1

β
(C−1 ⊗C−1) : Nξ̇,

where β is additional model parameter, (·) ⊗ (·) stands for the tensor product,
and N is the projection of the outward normal vector to the loading surfaces in

the stress space, that is N =
∂ΦM

∂S
=

∂ΦA

∂S
. The component form of Eq. (2.6)

reads

Ċ−1
trIJ = − 1

β
C−1
IKC−1

JL

(
∂Φ

∂SKL

)
ξ̇.

Remark 2. A further observation in the model governing equations reveals
that the right Cauchy-Green tensorC is used as a basic state variable in addition
to the second Piola-Kirchhoff stress tensor S, since it is included among the
arguments of the functions HM, HA, LM, LA, and M. Such a formulation of
a finite theory in terms of S and C is called the convected representation of
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the theory (e.g. see [34, p. 261]). Convected representations have been also used
within the context of finite plasticity in [33, 38] and more recently in [32]. Note
that the state variables S and C are not independent since they are always
related by means of the thermomechanical state equation.

The equivalent setting of the model in the spatial configuration can be de-
termined by performing a push-forward operation to the basic Eqs. (2.4), (2.5),
and (2.6) by the deformation gradient as

φM(τ, T ) = ‖devτ‖ − CMT +RM

=

√
τijτklδikδjl −

1

3
(τijδij)2 − CMT +RM = const,

φA(τ, T ) = ‖devτ‖ − CAT +RA

=

√
τijτklδikδjl −

1

3
(τijδij)2 − CAT +RA = const,

ξ̇ = −〈−φMfφMs〉
|φMfφMs|

1− ξ

φMf

〈
φ̇M

〉
− 〈−φAfφAs〉

|φAfφAs|
ξ

ϕAf

〈
−φ̇A

〉
,

LVbe = − 1

β

∂φ

∂τ
ξ̇,

where φMf , φMs, φAf , φAs are the spatial counterparts of ΦMf , ΦMs, ΦAf ,
and ΦAs, respectively, and LV (·) stands for the Lie derivative which is defined
as the convected derivative with respect to the spatial configuration (e.g. see
[34, pp. 254–255]; [35, pp. 106–108]). Note that the push-forward of the right
Cauchy-Green tensor C into the spatial configuration is the unit tensor i (with
components δij) and accordingly does not appear explicitly in the arguments of
the state functions in the spatial description.

Remark 3. Experimental evidence (e.g., see [39, 40]) reveals an asymmetric
tension-compression stress-strain curve, a response which cannot be simulated
by the von-Mises loading surface family used herein. Nevertheless, such a re-
sponse can be modelled within the proposed framework by using an alternative
expression for the loading surfaces. A possible choice may be based on an ex-
pression discussed in [24], which within the present setting may be stated in the
following (general) form:

(2.7) φ(τ , T ) = g(yτ ) ‖devτ‖ − CT +R = const,

where yτ is the third invariant of the Kirchhoff stress tensor defined as yτ =
det(τ ), and g is a function of yτ , which may be stated in the form

g(yτ ) = cos

{
cos−1[1− α(1 − yτ )]

3

}
,
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in which α is an additional material parameter accounting for the tension-com-
pression asymmetry. It is noted that for α = 0 the loading surface family (2.7)
is degenerated to the von-Mises family, while the case α = 1 corresponds to a
loading surface family which predicts the maximum asymmetry in the tension-
compression stressstrain curves. The equivalent expression for the loading sur-
faces in the material description reads:

Φ(S, T ) = g(YS) ‖DEV S‖ − CT +R = const,

where YS is the third invariant of the second Piola-Kirchhoff stress tensor S

defined as YS =
det(S)

det(C)
. More sophisticated expressions for the loading surfaces

and related discussions may be found in [41].

Remark 4. Another interesting feature of the proposed model is that it can
be combined with a viscoplastic model which is based on the overstress concept
(e.g., see [42]) in order to account for the rate-effects which are met in the course
of martensitic transformations in SMAs (e.g., see [43, 44]). If this is the case it
may be assumed that the same mechanisms within the material substructure
which are responsible for the martensitic transformations are also responsible

for rate effects. Accordingly, it may be considered that both mechanisms may
be described by the evolution of the (referential) metric Ctr, which in turn may
be given by a rate equation of the form:

(2.8) Ċ−1
tr

= − 1

β
(C−1 ⊗C−1) : Nξ̇

− γ(ξ, T, Ṫ )

(〈−ΦMfΦMs〉
|ΦMfΦMs|

ΦMs −
〈−ΦAfΦAs〉
|ΦAfΦAs|

ΦAs

)
(C−1 ⊗C−1) : N,

where γ = γ(ξ, T, Ṫ ) is the material fluidity. It is noted that the dependence of
γ on Ṫ cannot be arbitrary, since it must be consistent with the experimentally
observed fact – see further [44] – that a rate dependent behavior appears only in
non-isothermal loadings. Accordingly, the dependence of γ on Ṫ must be such
that at the limit Ṫ → 0, γ vanishes. It is further noted that within the present
proposal, the loading surfaces ΦMs and ΦAs, besides being the initial loading
surfaces for the A → M and the M → A transformations, respectively, serve
as yields surfaces and loading potentials for the viscoplastic part of the model.
Finally, the equivalent expression of Eq. (2.8) in the spatial configuration may
be written in the following (remarkably simple) form:

LVbe = − 1

β

∂ϕ

∂τ
ξ̇ − γ(ξ, T, Ṫ )

( 〈−φMfφMs〉
|φMfφMs|

φMs +
〈−φAfφAs〉
|φAfφAs|

φAs

)
∂ϕ

∂τ
.
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A general framework for combining mechanisms with different characteristic
times within a large deformation formulation can be found in our recent work
in Panoskaltsis et al. [45].

2.2. Further considerations on the structure of the evolution equation

for the material martensite fraction ξ

To this end it is instructive to state some alternative forms for the rate
equation for the evolution of the material martensite fraction ξ, which, as it
has been noted in Lagoudas et al. [46], plays an essential role in the correct
prediction of the material response. For this purpose we assume that Equation
(2.2) may be restated in the following rather general form:

(2.9) ξ̇ =
〈−ΦMfΦMs〉
|ΦMfΦMs|

QM(ξ, ΦM)

PM(ξ, ΦM)

〈
Φ̇M

〉
+

〈−ΦAfΦAs〉
|ΦAfΦAs|

QA(ξ, ΦA)

PA(ξ, ΦA)

〈
−Φ̇A

〉
,

where the state functions PM, QM, PA, and QA must reflect the fact that the
complete A→ M transformation leads ξ from 0 (on the loading surface ΦMs = 0)
to 1 (on the loading surface ΦMf = 0), while the reverse (M→ A) transformation
leads ξ from 1 (on ΦAs = 0) to 0 (on ΦAf = 0). Such an equation can be always
reduced to an exact differential equation and subsequently integrated in a closed
form if there exist scalar functions (integrating factors) µM and µA such as the
following integrability conditions:

µM(ξ, ΦM)
∂PM(ξ, ΦM)

∂ΦM

+ PM(ξ, ΦM)
∂µM(ξ, ΦM)

∂ΦM

= −
[
µM(ξ, ΦM)

∂QM(ξ, ΦM)

∂ξ
+QM(ξ, ΦM)

∂µM(ξ, ΦM)

∂ξ

]

and

µA(ξ, ΦA)
∂PA(ξ, ΦA)

∂ΦA

+ PA(ξ, ΦA)
∂µA(ξ, ΦA)

∂ΦM

= −
[
µA(ξ, ΦA)

∂QA(ξ, ΦA)

∂ξ
+QA(ξ, ΦA)

∂µA(ξ, ΦA)

∂ξ

]
,

hold.
A particular case of interest which encompasses Eq. (2.5) appears when

Eq. (2.9) takes the following specific form:

ξ̇ =
〈−ΦMfΦMs〉
|ΦMfΦMs|

(1− ξ)AM(ΦM)
〈
Φ̇M

〉
+

〈−ΦAfΦAs〉
|ΦAfΦAs|

ξAA(ΦA)
〈
−Φ̇A

〉
,
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where (1− ξ) and ξ are termed as “first order reactions” (e.g., see [22, 47]). An
equation of this form, which has been also discussed in [22], is the following:

ξ̇ = βM
〈−ΦMfΦMs〉
|ΦMfΦMs|

(1− ξ)

Φ2
Mf

〈
Φ̇M

〉
− βA

〈−ΦAfΦAs〉
|ΦAfΦAs|

ξ

Φ2
Af

〈
−Φ̇A

〉
,

where βM and βA are material constants. This equation can be integrated by
separation of variables to yield for the complete A → M transformation an
exponential type law for the evolution of ξ, that is

ξ = 1− exp

[
−βM

(
1

CM(T −Mf )− ‖DEV S‖ − 1

CM(Ms −Mf )

)]
,

which is identical with an empirical expression proposed by Koistinen and Mar-
burger [48], which has been extensively used for the description of phase trans-
formations in austenitic steels (e.g., see [47, 49]).
Another particular case arises when the right hand side of Eq. (2.9) is in-

dependent of ξ. If this is the case, the rate of the material martensite fraction
produced/dissolute during the phase transformations depends only on the ex-
ternal agents S and T (and their rates Ṡ and Ṫ ). The simplest rate equation
accounting for this case arises when the functions AM(ΦM) and AA(ΦA) are
constants, that is,

(2.10) ξ̇ = γM
〈−ΦMfΦMs〉
|ΦMfΦMs|

〈
Φ̇M

〉
+ γA

〈−ΦAfΦAs〉
|ΦAfΦAs|

〈
−Φ̇A

〉
,

in which the constants γM and γA are given as

γM =
1

CM(Ms −Mf )
and γA =

1

CA(As −Af )
.

Then, Eq. (2.10) can be integrated in a closed form to yield a linear law for the
evolution of ξ, which for the complete A→ M transformation reads

ξ = γMΦM +
Ms

Ms −Mf

,

while for the complete reverse (M→ A) transformation the solution is:

ξ = −γAΦA − Af

As −Af

.

Finally, another rate equation may appear if we choose the functions AM(ΦM)
and AA(ΦA) to be trigonometric ones. A possible choice is

(2.11) ξ̇ = −1

2
δM

〈−ΦMfΦMs〉
|ΦMfΦMs|

sin(δMΦMf )
〈
Φ̇M

〉

+
1

2
δA

〈−ΦAfΦAs〉
|ΦAfΦAs|

sin(δAΦAs)
〈
−Φ̇A

〉
,
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where the constants δM and δAare defined as

δM =
π

ΦMf − ΦMs

=
π

CM(Mf −Ms)
and δA =

π

ΦAs − ΦAf

=
π

CA(As −Af )
.

The solution of Eq. (2.11) for the complete A→ M transformation is

ξ =
1

2
cos(δMΦMf ) +

1

2
,

while for the complete reverse (M→ A) transformation the corresponding solu-
tion is

ξ =
1

2
cos(δAΦAs) +

1

2
,

which resemble the expressions for the martensite function suggested in the
so-called cosine model proposed by Liang and Rogers [10].

2.3. Thermomechanical state equations

As a final step we derive the model thermomechanical state equations. Fol-
lowing Simo [33] – see also [32] – we assume that the stress response is hy-
perelastic. For the present case of an SMA material, in accordance with the
thermomechanical treatment of damage – e.g., see [50, 51] – the Helmholtz free
energy is assumed to be decomposed into elastic (Ψe) and inelastic (Ψ tr) parts
as follows:

ρrefΨ(C, T,C−1
tr

, ξ) = ρrefΨe(C, T,C−1
tr

, ξ) + ρrefΨtr(T, ξ).

As it has been noted in Panoskaltsis et al. [23], this is not the conven-
tional decomposition of the free energy function performed within the classical
inelastic theories (viscoelasticity, plasticity, viscoplasticity) since the elastic part
(Ψe) depends on the internal variable ξ. In this work we shall deal only with
isothermal cases, as we are interested only in the elastic part of the Helmholtz
free energy. The latter is assumed to be given by an isotropic function in terms
of the invariants of the tensor CC−1

tr
, (see [34, pp. 258–259]; [32]) as

ρrefΨe = λ(ξ)
det(CC−1

tr
)− 1

4

−
[
λ(ξ)

2
+ µ(ξ)

]
ln

(√
det(CC−1

tr
) +

1

2
µ(ξ)[tr(CC−1

tr
)− 3],

where ρref is the material density and λ and µ are Lamé type of parameters
(λ > 0, µ > 0), which are defined in terms of the standard elastic constants
E, ν as

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
,
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and det(CC−1
tr

) and tr(CC−1
tr

) stand for the third and first invariants of CC−1
tr
.

The dependence of the Lamé parameters on the martensite fraction ξ is assumed
to be given by the following rule of mixtures (e.g., see [21, 27]):

λ(ξ) = λA + ξ(λM − λA), µ(ξ) = µA + ξ(µM − µA),

where λA, µA are the Lamé parameters when the material is fully austenite,
and λM, µM are those when the material is fully martensite. Then, the second
Piola-Kirchhoff stress tensor S can be found by the standard thermomechanical

state equation (e.g., see [34, p. 256]; [35, p. 210]) S = 2ρref
∂Ψ

∂C
, as

(2.12) S = λ(ξ)
det(CC−1

tr
)− 1

2
C−1 + µ(ξ)(C−1

tr
−C−1).

By employing once more a standard push-forward operation to Eq. (2.12), the
latter may be written equivalently in terms of the spatial quantities be and τ as

τ = λ(ξ)
det(be)− 1

2
i+ µ(ξ)(be − i).

3. Numerical simulations

The basic objective of this section is to assess the capability of the proposed
model to simulate several patterns of the behavior of SMAs under isothermal
loading conditions. In particular, the model will be implemented numerically
and will be used for the solution of three representative numerical examples
which comprise a standard uniaxial tension problem, a torsion problem, and an
additional problem dealing with non-conventional pseudoelastic response of an
SMA material subjected to a strain cycle. A general integration scheme for the
numerical implementation of a generalized plasticity model is discussed in [32],
while particular computational implications related to the case of an SMA ma-
terial, where the elastic domain is a non-connected set, can be found in [23].

3.1. Uniaxial tension

The first problem we study is that of uniaxial tension. This problem is a stan-
dard one within the context of large deformation analyses and it is defined as:

x1 = (1 + λ1)X1, x2 = (1 + λ2)X2, x3 = (1 + λ2)X3,

where 1+λ1 and 1+λ2 are the straining parameters (principal stretches) along
the axial and transverse directions, respectively. Note that in the infinitesimal
case, λ1 and λ2 are equal to the principal normal strains ε11 and ε22, respectively.
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The model parameters are set equal to those reported in the work of Boyd and
Lagoudas [12] for a generic SMA, that is:

EM=13, 000 MPa, EA=30, 000 MPa, ν=0.30, Mf=5◦C, Ms=23◦C,

Af = 51◦C, As = 29◦C, CM = 11.3 MPa/◦C, CA = 4.5 MPa/◦C.

All numerical tests start with the specimen in the parent (austenite) phase
(ξ = 0). As a first simulation, we will show the ability of the model in predict-
ing pseudoelastic response. For this purpose we perform a complete loading-
unloading cycle by holding the temperature constant at a value above Af (T =
55◦C). The results are shown for three different values of the model parame-
ter β in Fig. 1, where the Kirchhoff stress τ11 (in MPa) is plotted versus the
axial strain λ1. By referring to these results, the ability of the model in simulat-
ing pseudoelastic phenomena for a wide range of values of the model parameter
β is easily demonstrated. More specifically, we note that the value of β controls
the direction and speed of the transformation process: the higher the value of β,
the higher the speed of transformation, which in turn leads to phase transfor-
mations which occur in a narrower displacement range under higher values of
the applied stress. It is interesting to note that for small values of β the model
can predict phase transformation processes which are accompanied by the ap-

Fig. 1. Uniaxial tension. Uniaxial stress τ11 vs. axial strain λ1 for different values of β.
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pearance of very large deformations; for instance for a value of β equal to 1
the specimen attained an elongation of the order of 15% (see Fig. 1) by being
only 30% martensite. Such a case may find application in magnetically actu-
ated SMAs (e.g., see Arndt et al. [8]), which exhibit very narrow (lens type)
hysterisis loops at slightly higher temperatures that pseudoelastic SMAs.
As a further step we consider three additional simulations starting at three

different values of the (reference) temperature T , namely T = 51◦C, i.e. T = Af ;
T = 40◦C, i.e. As < T < Af , and T = 25◦C, i.e. T < As. The value of β for these
simulations is set equal to 5. In the first test (at T = Af ) the specimen, as in
the previous tests, is subjected to a complete loading-unloading cycle exhibiting
pseudoelastic response. In this case, since the temperature has been set exactly
equal to the austenite finish temperature, the inverse (M → A) transformation
ends at zero stress. In the next two tests the specimen is first subjected to a
stress cycle, keeping the temperature constant, and then to a temperature cycle
at zero stress, consisting of heating to a temperature greater than Af , where
martensite is unstable, and by cooling it back to the initial temperature. After
the complete stress and temperature cycles, no permanent deformation exists
and the material is fully austenite. This is the phenomenon of shape memory
effect. The results of this stress cycle are shown in Fig. 2.

Fig. 2. Uniaxial tension. Uniaxial stress τ11 vs. axial strain λ1 for different values
of the (reference) temperature T .
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3.2. Torsion of a SMA tube

As a second problem we consider the response in finite torsion of an SMA
tube. A similar problem has been also considered within the context of the
infinitesimal theory by Lagoudas and Entchev [15]. This problem is defined
conveniently in cylindrical polar coordinates as

r = R, θ = Θ + ωZ, z = Z,

where R, Θ, Z, and r, θ, z stand for material coordinates and spatial coordinates
respectively, and ω stands for the angle of twist per unit undeformed length. The
later is related to the relative twist angle φ of the two end sections of the tube

by ω =
φ

L
, where L is the length of the tube. The dimensions of the tube are

considered equal to those reported in Lagoudas and Entchev [15], namely:
inner radius: 2.5 mm, outer radius: 3.17 mm, length: 0.67 mm, while the tube is
twisted by controlling implicitly – via the angle ω – the relative twist angle φ.
The temperature is set to a value higher than Af (T = 55◦C), while the model
parameters are set equal to those used in the uniaxial tension problem with
the value of β being equal to 5. The SMA tube is subjected to two-sided cyclic
loading exhibiting two-sided pseudoelastic response. The results are shown in
Fig. 3, where the shear stress (τθz) is plotted versus the twist angle φ.

Fig. 3. Torsion of an SMA tube: Shear stress τθz vs. relative angle of twist φ.
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3.3. Response under a strain cycle

As a final example, we examine the predictions of the model in the case
where an SMA material is subjected to a strain cycle. For this purpose we
discuss two problems proposed within the context of a hypoelastic formulation
(e.g., see [34, pp. 256–258]) in a paper by Meyers et al. [52] and subsequently
used as reference problems for the case of a SMA material by Panoskaltsis
et al. [27].
The first problem (Cycle 1) deals with a square element of size H×H, which

is imposed into a strain cycle by rotating both upper corners along a cycle of
radius r. In this problem, the element submitted to both combined extension
along the X2 axis and 1–2 shear preserves its original (parallelogram) shape (see
Fig. 1 in Meyers et al. [52]). This problem is defined as follows:

x1 = X1 +
sinφ(r/H)

1 + (1− cosφ)(r/H)
X2,

x2 = [1 + (1− cosφ)(r/H)]X2, x3 = X3.

To show the computational versatility of the model, we work here with another
set of parameters, namely those used in Tran et al. [53].

EM = EA = 62, 300 MPa, ν = 0.30, Mf = 263 K, Ms = 248 K,

Af = 301 K, As = 296 K,

while the remaining parameters are those of the previous problems i.e.:

CM = 11.3 MPa/K, CA = 4.5 MPa/K,

and the value of β is set equal to 10.
The corresponding stress-angle of rotation curves are given for three different

values of the ratio r/H in Figs. 4, 5, and 6, while the evolution of the material
martensite fraction is plotted in Fig. 7. By referring to Figs. 4, 5, and 6, we realize
that at the end of the strain cycle, the stresses go back to zero and the material
by obtaining its original stress free state is giving the false impression of being

elastic. However, this recovery has its origins in the martensitic transformations,
since, as it is clear from Fig. 7, both the A→M and the M→A transformations
have been activated during this strain cycle, resulting in zero final stresses.
This is a non-conventional manifestation of the pseudoelastic phenomenon, since,
unlike the previous (conventional) simulations where the material was subjected
to stress cycles, in this case the material is subjected to a strain cycle; however,
the exhibited response is identical.
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Fig. 4. Cycle 1: Normal stress τ11 vs. angle of rotation φ.

Fig. 5. Cycle 1: Shear stress τ12 vs. angle of rotation φ.



LARGE DEFORMATION CONSTITUTIVE THEORY. . . 373

Fig. 6. Cycle 1: Normal stress τ22 vs. angle of rotation φ.

Fig. 7. Cycle 1: Material martensite fraction vs. angle of rotation φ.
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As a further example, the response of an SMA specimen which is subjected
to 10 straining cycles (r/H = 0.025), is illustrated in Fig. 8. As it was expected
the aforementioned non-conventional pseudoelastic response appears once more,
and the corresponding stress angle of rotation curves have the same qualitative
characteristics with those of an elastic material; see for instance Fig. 5 in Mey-
ers et al. [52].

Fig. 8. Cycle 1 stresses vs. angle of rotation.

In order to provide a further insight to this kind of non-conventional pseu-
doelastic response, a second strain cycle (Cycle 2) which is accompanied by
large rotations is considered as well. In this cycle the square element is sub-
jected to a deformation according to which the two upper corners are rotated
by a cycle of radius r to their right size; see Fig. 2 in Meyers et al. [52]. As in
the previous problem and in this one, the material element preserves its initial
(parallelogram) shape. This problem is defined as:

x1 = X1 +
(1− cosφ)(r/H)

1 + sinφ(r/H)
X2,

x2 = (1 + sinφ(r/H))X2, x3 = X3.

The corresponding results are illustrated for both one-cycle and 10-cycle
cyclic loadings in Figs. 9 and 10. By referring to these figures, the aforementioned
pattern of non-conventional pseudoelastic response, can be easily verified.
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Fig. 9. Cycle 2 (r/H = 0.05): Stresses vs. angle of rotation φ.

Fig. 10. Cycle 2 (r/H = 0.025): Stresses vs. angle of rotation φ.
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4. Concluding remarks

The basic contribution of this paper is the provision of several insights into
the constitutive modelling of shape memory alloys within the context of large
deformation generalized plasticity. In particular, in this paper by assuming the
multiplicative decomposition of the deformation gradient into elastic and in-
elastic (transformation induced) parts as a basic kinematic assumption and a
standard fractions approach:

1. We have introduced a rather general model accounting for diffusionless phase
transformations in a two-phase shape memory alloy. The model has been
developed in an invariant setting, that is in a setting where the basic equations
have an identical format in both the reference and the spatial configurations.

2. We have shown possible extensions of the model in order to deal with more
complicated phenomena appearing in SMAs such as the tension-compression
asymmetry and the rate of loading effects.

3. We have implemented the model numerically and we have shown its ability in
predicting several patterns of the extremely complex response of this material
under both monotonic and cyclic loadings.

Moreover, we have also exploited mathematically the formulation of the rate
equation underlying the evolution of the material martensite fraction, which
plays an essential role in the correct prediction of the material response.
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