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We consider the problem of the state identification of the deterministic systems with space-
distributed parameters, described by differential or integral equations. Formulation of the problem
was based on the model of dynamics and observations of the systems in question as well as on the
proposed error functional. Conditions for the optimal solution were discyssed with the use of dynamic
programming and maximum principle. ’

1. INnTRODUCTION

One of the basic prerequisites for the analytical design' of dynamic systems
in advancing science and technology is the establishment of an adequate mathemat-
ical model of the system. The derivation of such a model generally requires con-
siderable physical insight. But in the most of practical situations because of compli-
cations of physical phenomena, presence of the external disturbances as well as
a resilt of measurements errors such as inaccuracy of the measuring devices, it is
often not sufficient to describe the state of the system. Here, one can apply the state
identification method presented below for the case of deterministic space-distributed
parameter systems. Certain functional equations of dynamic programming approach
and the maximum principle associated with the optimal solution of the problem
for systems in differential or integral form will be discussed. '

2. (GENERAL STATEMENT OF THE PROBLEM

Consider a space-distributed parameter systems defined on a fixed spatial domain
42, an open, connected subset of an M-dimensional Euclidean space FE,,. We shall
denote the boundary of £ by d€2, the closure of 2 by =0 U dQ and the spatial
coordinate vector by X'=[x,, x,, ..., x)]. The state of such systems at any fixed time
t € [fy, T], where [t,, TT is the interval of the system observation, can generally be
specified by the real-valued vector function U (7, X)={u; (1, X), u, (¢, X), ..., uy (£, X)),
defined for all X' e 2 from specified state function space I' ()= 1", (@) x ... x I'y (£).
We assumed that the state function Uz, X) is not directly observable. We can
observe only certain prescribed functions of U, the output of the system denoted
by the real-valued vector function Z (7, X)=[z; (¢, X), z, (1, X), ..., z; {t, X}] from spec-
ified output function space ¥ () =% () x ... x ¥1,(2), where | <L<N. It can be seen,
as the result of a zero-memory continuous spatially dependent transformations of the



508 ANDRZEJ MASECWSKI

]

state function from I'(Q) into ¥~ ({2). The inaccuraces of the mathematical descrip-
tion of the dynamic systems considered as well as observations will be characterized
by real-valued vector functions Fg (f, X)=|[ £ X, T, %), .0 fE(, X)) and
FY(t, X)= LA X, 17 @ X), . f“”(t X)} for Xe @, and ¢ € {t,, T), which are dis-
tr1buted over all or certain subsets of &, defined as dynamic and observation error
functions, respectively. 1t is convenient {o classify these error functions as follows:

(@) local error functions Fg (£, X) and FJ (¢, X} for X e Q,

(i) boundary error functions Fj, (f, X) and Fj, (t, X) for X e aQ,

(iif) initial error functions F} (£, X) and FY(t X) for Xe Q and t=t,.
In the case where both local and boundary error functions are present, certain
compatibility conditions may have to be satisfied in the neighbourhood of domain
boundary as well as at the initial time 7.

The dynamic behaviour of considered space-distributed parameter systems at
any point X and time ¢ can be described by:

(a) partial differential equations of the vector form:

U, X)

(21) 8; ==;f [U(tn X),F:;(t,X)], XEQ, fE[toT},
2.2) % [U(t, X), FL, (1, X)]=0, XedQ, telloTl,
@3)  UleD=FU(X0), i X],  Xe@, 1=t

where 3 =[h,, ha, ..., hy] is specified spatial differential operator whose parameters.

may depend upon X and ¢; #=[g,, g4, ..., £x] 15 specified spatial differential operator

of the boundary conditions whose parameters may depend upon X and f; F=

=[J1: f2, - Js] 18 specified spatial operator of initial conditions at X and t=1,;

U, (X) is a vector function of the a priori estimate of the state at 1=1, in I' (),
(b) integral equatlons of the form:

24 UG, X) f Kolt, X, X', Uy (X)), FL (t0, X ’)]dX’

+ f le [t, ', X, X', U(¢', X'), FL (¢, X’)}dX’dt s
. where K, and K; are spediﬁed,vector valued functions of their argmhents and K,
has the property that
@5) [ Kolto, X, X', Up (X'), F&(to, X)X = 7 [Us (X), FL(to, X)l, XeQ.
: 2

The observations action of dynamic behaviour of considered space-distribute&;
parameter systems is assumed to be achieved in the following manner:
(26) Z(ta X)=M [U(f, X)s Fg (ts X)]a Xe ‘Q: te [t{): 'ﬂ:

- where 4 =[my, m,, ..., m;]is specified space-time operator whose parameters may
depend upon X and ¢, and Z (¢, X) is an output vector function.
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From the physical point of view it is sometimes necessary to impose on the sought
for state as well as error functions estimates additional constraints, in general ine-
qualities constraints, of the type:

(27) ggi [U(t! X)’\Fg(t’ X): Fg(ta X)]?O! .iz]-a 2: ey NC:

where 4, are specified vector functions or functionals of their arguments.

- The basis of selecting the estimates of the state as well as dynamic and observa-
tion error functions associated with a given partial differential or integral equations,
that is, the criterion of optimality, is that of “least squares”. We assumed the follow-
ing form of the error functional:

(2.8) BIUFLFA=IZ (6 X)~-Z(L X)P,  Xe @, tet, T],

where & (¢, X}=[#,, #,, ..., 2] is continuous real-valued vector function from
specified measurement space # (Q)=#] () x ... xW; (5_2), and {i(-)I* is some
appropriate squared metric.

Although the problem considered is determlmstlc one, that is if knowledge of the
statistics of the random disturbances which may be associated with the systems
and/or measurements is available, this knowledge of the statistics can be used to
advantage in choosing some weighting matrix defined then in error functional. Also
in the practical situations it is not always possible to indicate spatial profile of & (¢, X)
in the continuous manner but we shail consider the problem associated with the
above error functional. Next, we can formally report the results obtained for the
case of point measurements in space domain.

The optimal state estimation problem may now be summarized as follows. Tt
is mecessary to find the estimates U, F%, FY satisfying the Egs. (2.1), (2.2), (2.3) or
(2.4), (2.5), and (2.6), with respect to the Ineq. (2.7) such that the error functionals
the Eq. (2.8), is minimized for the given measurement function 4 (¢, X). Thus, the
determined estimates will obviously be optimal in the sense of criterion (2.8).

3. IDENTIFICATION OF THE SYSTEMS IN DIFFERENTIAL FORM

We will discuss the conditions of optimal solution associated with state identifi~
cation of particular class of the systems in differential form. We shall assume the
same form of the operator 5 as in the Eq. (2.1), that is, non-linear spatial differential
operator acting on U and a dynamic error function Fg :

AU (1, X)

(3.1 o

=HUX),Fi(LX)], XeR, telty,T].

The boundary conditions given by the Eq. (2.2) will be restricted to the form:
(3.2) U, X)=0, XeéQ, relt,, ir].

The initial condition given by the Eq. (2.3) receives the form:

(3.3) Uy, N)=Uy (X), Xe@ t=1,.
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‘We also assume that the operator .# in the Eq. (2. 6) is linear and consider the
output transformation of the type: - ‘ :
34 26, X)=M(@6, X)) U@ X), Xeb, telt,T],

where M is (Jx N)-dimensional space and time dependent iransformmg matux
We consider the following. error functional:.

. N T . .
3.5) ﬁ:fj. [ﬂ”(:,X)—Z(t,X)]T’ (7 (t, X)—Z(t, X)) dX dt=. -

= f f [# (6 %)~ M(, X) U DT (2 (1 X) MG, X) UGG, X)) dX dt,
o 0
where Tr denotes the transpose. of the matrix in brackets.

The condition of opﬂmal solution will be obtained in the form of certain func-
tional equations, using dynamic programming [1] approach given in [2]. We assume
that the solution to the Eq. (3.1), denoted by’ UF-E exists in the time inferval [1,, T']

and, for sufficiently small time increment A, can be written as:
(6)  Ussltot 4, X; Us (X), tolm Up XY+ 4{H U, X) Fg (2, NR+0(4),
where O (4) is an infinitesimal quantity of higher order than 4. Denote

{3.7) w[Us(X), r]=minpf, where t=7T—1.
I
Applying the principle of optimality, we have

to+4

(38) n{UO(X),ﬂzmin{ [ [l26x0)-M@X)Usglt X; U (X, to]] ™
i J A ‘

to. @
‘X[g(ts X)_M(t: X) UFﬂ [t’ X: UO(X): tﬂ]] +E{U(f0+A, X)s T“A]}'
We expand 7 [U (¢4 A, X), 1— 4] about U, and v as, follows:

J o \ It
B9 W+ X), = Al nllo (0, +4 | (%) )

an [Uy (X)), 7]
ot

x A 1o (X), Fg (to, X)) dX— +0'(4),

where & (-)/6 (-) denotes a functional partial derivative of the functional = with
respect to vector function Uy at a point X e £2. Using the approximation

to+d

(310) [ [[Z@0)=M@X) Uglt, X; Us (X), ] [2 (6 X) =
nw @ ZM(t, X) Ut [t, X; Uy (X)), to]] dX dtm A [ [ (o, X)—

M (t0, X) Uo (X7 {Z (to, X)— M (to, X) Up (X)]dX+ 0" (4),

[
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-

and substituting the. Eq. (3.9) into the Eq. (3.8) taking the limit as 4—0, and remark-
ing that result must hold for aH fe [to, T], we cebtain the following partial differ-
ential-integral equation: T : : g

mlUG X2l {(M}ﬂ N
% "n;}-nf 5011, X) H U (2, X), Fg (1, )]+

| +[££’(r -MG, X) U(f X)]Tr [zz’(t X)— M(t X) U(r X)]}

(3.11)

with the 1n1t1a1 condltlon

e . (U, 30, 01-0.

By introducing the Hamiltonjan defined by -

] S CONE1

G13 H(U, P, 1)=(P, Qba= Zplqad)f

2

where (P, g is the inner product in I (£2) and
on [U(z, X), 1]
3.14) . P=[p, P2y v Pra1}= [—W‘“, ]:
(315 Q=lg. a,, - ,qN+1] [%’T'{U(t X), Fq(t, X)L, [Z (1, X)“
—~M(t, X) U, X" (2@ X)-M(, X) U, X)]],
we obtain simplified form of-the Eq. (3.11) as follows: 7 |

x[U (¢, X), 7]

(3.16) P

= min H(U, P, )=H° (U, P, 1),
#

where H® is the minimum of Hamiltonian K with respect to Fj. It can be shown
[2], if the solution of the Eq. (3.16} is regular that the optimum solution of the prob-
lem is the solution of the Hamiltonian canonical equations of the form

3V, X) _ H'(U, P,1)

GA7 & sU(LX)

Xef2 telt, T,
318 oP(1,X)  SH°(U,P,t) -
(.18) a sU@LX), °

where & (+)/J (+) denotes functional partial derivative, with initial condition
{3.19) U, X)=Us(X), Xef2,

and terminal CO]ldlt]OIl at time T

(320 P(I, X)= [0 1]

because U(s, X) at =T is free, ‘ i
It can be mentioned that the boundary conditjons, the Bq. (3.2), are taken care
of by restricting the domain of the operator acting on U. The Eqgs. (3.17) to (3.20),

Rozprawy Inzynierskie — 3
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which consist of a two-point- boundary value - problem in a function space, are the
necessary. condition of the optimal solution of the identification problem for the
dynamic systems described by the Egs. (3.1) to (3.4) with error functional given
by the Eq. (3.5).

' .

4, TDENTIFICATION OF THE SYSTEMS IN INTEGRAL FORM

We shall consider a class of dynamic systems described by the Eqgs. (2.4) where
U, (X) is taken to be zero, without loss of generality, and with output transformation
of the type given by the Eq. (3.4). The error functional will be taken in the form
“of the Eq. (3.5). Extending formally the outline of the proof given, in [2], we obiain
‘necessary condition of optimal solution asa partlcula:r case of maximum pr:nmp]e [3].
To simplify the notations, we denote (¢, X) by S and. {t,, T]x & by £. We shall
consider the functional . ‘
(CRY) B=co [ 12(8)— M(S)US1Z ()~ M(S) U(S)]d8 .
&
Let S be a regular point in the domam &, and 4, a small region surrounding S with
volume ¢ such that ¢-0 as the diameter of A0, We shall mtroduce a perturbed

function #% T defined about the optimal "FF as
: . °FE(S) forall Sed-— A,, ,
(4.2 FI(S)= '
) 5 £ for all Sed,

and corresponding to the state function as U (S) and U® (8), respectively. Because

the function under the integral in the Eq. (4.1) has continuous first partial derivatives

with respect to U(S) we can compute the value of B’ with the perturbed function

Fr as

@3 pr=c f {2 ()= M () U (S)* [Z (H—M (S U (S)]—
—[Z(S)—M(S)U*(S)| M (S)s U(S)}d&

because U depends on Fg Next, from the Eq. (2.4), the increment 56U (S) satisfies,

with an accuracy up to small quantities of higher order than s, a nonhomogeneous
Fredholm integral equation, linear in 8U (S):

@44 5U(S) E{KI {S 8, ue(S), F'1- K1 £, 8 U°(8), °FL (S} +
3K, (S, 5, U, °F)
+f au°

SU(S)de’,
where K, /oU° is a matrix with elements 8K1,/3u 9, 4,j=1,2, .., N. The solution
to the Eq. (4.4) can be written as .
@4.5) SU(S)=e{K; IS, 5, U°(8), FL"1 K, IS, S, U°(S), OFF(§)]}

- j w(s, 8 [K. 15", S, U (S), FE' - K, S, §, U°(S), OFF(S) 48,
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where the kernel . W(S §7) satisfies. the: following mtegral equatwn :

0K, [S 5, U(s), L (S)}

(4.6) WS, 8+ 7l

[ s, 5 LI5S UG FL(S)]
= | W{(S, 8): - o= — aé
F U

Substituting the Eq. (4.5) into the Eq. (4.3) and calculating the difference between
B’ and p' corresponding to C'Ji’?F we have

@n 4f= ﬁ—%f [Z(5)- M(S)U"(S)]T‘[&””(S) M(S) U"(S)]dé‘“* "

——cof{[ﬂ"(S) M(S)UO(S)]M(S)rSU(S)}dé“ &' [0S Fr*) G(S "F’")],

where &'>0, and the function # is defined by
@8) ' 0(S, F=co[Z(S)~ M (S) UGS Z ()~ M(S) U(S)] -
—26, [ 12 (5)- M (S) U(S)]) M(SH [K, [S", S, UES), FL(S)]—
’ - f WS, 8K, S, 8, U(S)FF(S)]dé”} as".

If we set in the Eq (4 7 cp= —1 then 45’ must be nonposrtlve about the opti-
mum f’. Thus S , . _

@9) 068, FD)>0(8, FE).

Since the inequality (4.9) is valid for any Fg‘;*_,' then § (S, F) attains a maximum
with respect to Fg for fixed §, that is, for almost all §e & we have: -
(4.10) 08, Sy =sup 0(S, FL).

. ‘ Fg‘-

Now, we can summarize the resulis as follows. 'I-‘he' optimal solution- of the
problem for the dynamic systems in the integral form given by the Eq. (2.4), at
U, (X)=0, with respect to error functional, the Eq. (3.5) is the dynamié error functlon!
°F£ which maxiniizes the function 8 (S, F! :; } d_eﬁned by the Eq. (4.8), according to the

Eq. (4.10). Optimal ¢stimate of the state function U (S) we can next obtain from
the Eq. 2.4). - :

5. EXAMPLES OF THE APPLICATION & -
To illustrate the basic features of the above formalisﬁl, we shall consider two

simple examples. The first is the case of the dynamic system in the differential form
described by following diffusion scalar equation in.one spatial coordinate x given by

du(t,x) & utx) -
.1 T g T, xe1] te [0, 7],
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with boundary condition. « (¢, 0)=u (£, 1)=0 and initial condition u (t, Xy =1 (%),
when f3 (¢, x) is dynamic error function, The observation is given by

(5.2) 2@, M=au(t, x),  a>0, xed, 1], te[0, T},

where « is proportionality constant.
~ As an error functional we choose !

1. '
63 ﬁzff‘y[zr(t,x)—z(t,‘x)]z-dxdt,"

where vy is the Welghtmg coefficient.
In view of the Eq. (3.11), the correspondmg functional equatlon is as follows:

o an[u(t,'x)',ﬂ_ - ‘{aﬁ[u(z,a"c) r}[&zu(t %)
(5.4 I———Br ——Tgn ! 5u(t, ) |

+IE 00|47 1 3) =t 91}
- where t=T—1,; with initial condition - .
(5.5) L 7 [u(T, x), 0]=0.

If Sm/ou+0, then it is evident that the integral in the Eq.(5.4) will take on its
minimum with respect to fg (£, x)= —co - sgn (dn/du). Then it is necessary to restrict
the magnitude of estimated dynamic error function as follows:

(5.6) - 1S3 (& XS Fo (8, %),

where ‘Fj (, x) is maximum admissible value of dynamlc error function for given ¢
and x. At that time- ‘
o [u(t, x), ©] } '
T — - R
(5‘7) fﬂ (f, x)_ FO (t!‘x) Sgﬂ{ ‘su (t, x)

From the Eq. (5.4) we obtain:

 amlu(t, x), 7] 3 2 o7 [ (1;, x), 7] [82 u(t, x)
§5.8) ot _f | du(t, x) axt . B

on
~ Fyt, x) sgn{ 50 }]+y[£(t x)— o2, x)]zl

with initial condition, the Eq. (5.5).
Now, the Hamiltonian canonical equatlons are:
Cou(t,xy  2Puls, x)
ot o
optx) _ _ Pt x)
ot - X

(5.9) ~Fo(t, x) sgn p(t, x) ;

(5.10)

+2yufz (t, x) oz, )1,
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where
C om {u(z x), 7]
plt, x)=
du(t, x)
with initial and terminal conditions -
(5.11) | (to, %) =10 (),
(.12 g | (T, X)=0

and with boundary conditions _ _
(.13 - u(t; Q) =u(t, B=p, 0)=p(@, 1)=0.

The value of state estimate u (¢, x) we obtain by huinerical solution above two-
point boundary value problem in function space directly, or transforming the Egs.
(5.9) and (5.10) with conditions, the Eqgs. (5.11) to (5.13), into integral equation
as below. Because the Eqgs. (5.9) and (5.10) are linear partial differential equations,
we can assume that thefr solutions satistying the boundary condltmn the Eq (5.13),
a.t any ‘time 7 ¢an be expressed in the form ’ ‘ ! .

5. 14) ult, x)= fkl(t 0, x, x)uo(x)dx -

—ffkl(rr x5 XV Fo (', x’)sgnp(t x)dx dt',

i

(5.15)  p(t, x)= sz(t 0, x, x') po (x") dx’ +

t 1

+2yocfsz(fr xx)[sr(t x) om(t xY] dx"dr’,

&)

where kernels £, and k, are Green functions of the type

(5.16) k(v x, x7)= 22 exp[ nam (t—t) sm(nnx)sm(nnx)

n=1
(5.17) ka(t, ¥, x, x’)=22 exp [n? n? (¢ —1')] sin (n7x) sin (nax’).

From terminal condition, the Eq. (5.12), we obtain the relation' for p’o (x) as follows:

T 1

(5.18) po(x)= —2ocy9 1, 0)ffk (T, ¢, x,x)[sx(t x') au(t’', xYdx"dt',

where 6-1 (7, 0) is the inverse of the operator f ko (1,0, x, x") () dx’. Substltutmg

the Eqgs. (5.15) and (5.18) into the Eq. (5.14), we obta.m the relation for state estimate
of diffusion system considered in the form of integral equation:, ‘ :

t 1

(5.19)  u{t, x)= fkl(tOx\x)uﬂ(x)dx —ffki(tt x, x7) Fo (', x")x
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1 T 1 ‘
x8gn {sz (', 0, x*, x'"} [—2&)’9‘--1 (T, 0) f sz (T, ¢, ", x"" Y (", %)~
Q 0o o

t 1

—an(r, 5" ]dx”’dt”] de' 20y [ [ Iea (817, %0, 57 [2 (87,
Q0

—om (", x")dx’ dt’} dx" dt’
-
which can be solved by means of some numerical procedure. .

The second example is the case of dynamic system in the integral form described
by the following linear scalar equation:

{5.20) u(t, )= [ k(15 ) fra(t) dr',

where fL, is a boundary error function which does not vary along the boundary
of the region [0, 1], k is a specified Green’s function, and the initial condition at
=0 is 1, (x)=0.
The observation is given by the Eq. (5.2) and as an error functional we choose
" the index given by the Eq (5.3). In addition, the boundary error function is constrain-
ed by:

(s:21) , | (OI< Fo,

where F, is the maximum admissible value of a boundary error function. The function
corresponding 1o @ in the Eq. (4.8) is as follows:

(5.22) 8t x, fra)=co [z (t, X)—ous(t, x)|*—

Tt

~2¢0 yo [ [ [z (& ¥)—au(t, 0] K (T, 1, ) fa (¢) v it
o 0

Since ¢, = — 1, then the maximum of & with respect to /%, (¢), subject to the constraint
Eq. (5.21), is attained when

1
(5.23) O fa (Y=Fysgn { f [z (¢, x)—au(t, x)1 k(T 1, X) dx}.
4]

Next, the optimal state estimate we obtain from the Eq. (5.20) with °fs, given
by the Eq. (5.23)

{5.24) u(, x)é f k{t, t', x) Fy sgn{f [z (¢, x)—ault',x] k(T ', x) dx} dt
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For particullar case of the diffusion system with boundary conditions u (%, 0)=0
and u (t, )= fa‘;2 (£), the Green’s function k is given by:

B

(5.25) k@t 1, x)= Zzn( )"“nsm(n:n:x)exp[ n? 2(:-:)]

n=1

From the physical point of view is interesting the constraint of the magnitude of
dynamic error Tunction (in the first example) and boundary error function (in the
second example) estimnates, given by the Egs. (5.7) and (5.27), respectively. It is seen
that in the linear case it is mot possible to obtain more precisely error function
estimates but only their maximum value, if we used dynamic programming approach
or maximum principle,

6. CONCLUSION

The method of identification of the space-distributed parameter systems presented
in this paper is based on the mathematical formalism known as dynamic optimization
which is used in the theory of optimal control. Thus, the methods of dynamic opti-
mization can be used to the solution of the problem under consideration. General
condition of the optimal state estimation derived above can-be. applied to the so-
lution of a large number of problems. But it must be underlined that the semi-ana-
Iytical solutions we can obtain for simple cases, for example, linear homogeneous
systems described by a few of differential or intergral equations. In other situations
effective approximation schemes and computational procedures rust be devised [4].
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STRESZCZEWNIE

O IDENTYFIKACII UKEADOW O STALYCH ROZEOZONYCH W PRZESTRZENI

‘Rozwazany jest problem identyfikacji stanu ukladéw deterministycznych o stalych rozloZzonych
w przestrzeni, opisywanych rownaniami rézniczkowymi lub catkowymi. Problem zostal sformulo-
wany na podstawic modelu dynamiki i obserwacii rozwazanych uktadow, jak réwniex przy wykorzy-
staniu wprowadzonego wskafnika jakosci identyfikacji. Przedyskutowano warunki optymalnego
rozwiazania wykorzystujgc metod¢ programowania dynamicznego i zasadg maksimum.
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Pesrwome

OF MAEHTUPHKAITNA CUCTEM C IIPOCTPAHCTBEHHO PACIIPEAEIEHHLIMTE
TTAPAMETPAMMU

B macroameit paboTe paccMaTpusaeTes npofreMa HASHTAGUKAIHA COCTOANAA ACTEPMHUHACTH-
YeCKAX CHCTEM € HPOCTDAHCTBEHHO pPaCHPEAeICHHBMA HApaMeTpAME, | OIMChIEAeMBIX e~
PEHUMANEHEIMA I MHTETDATLHEIMA  YPaBHEHIAMY. (I’OpMyJ'iﬂp()BKa YOOMAHRY O npobiems
paerca Ha OCHORE MOJENE AMHAMEKH | Haﬁmo,uennn PACCMATPHBASMEIX CHCTEM, 2 Takke HA
OCHOBE TPeNIOXEHHONO MOKAZATENS XavyecTBa. [IpEBOZATICH YCNOBHA OHTAMANLHOLO pelneHms,
HCTIONB3YA MOOXOH JTMHAMBYECKOTO HporpaMMupOBaH:ﬂH H IpHEAIEO MAaKCAMYMA. ’
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