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EXTREMUM AND VARIATIONAL PRINCIPLES IN PLASTICITY (*)

ILLTPPMANN (KARLSRUHE}

Extrema of functions (functionals) W are for numerical reasons frequently expressed in the
weaker variational form §W=0. The relationship between both is discussed. In most theories W
denotes somewhat Iike work, and % =0 the principle of virtua! work. Tn the Sec. 2 the variational
and extremum principles for rigid plastic matérials are considered. The classical dual Haar-von
Kérman-Sadowski-Phillips-Hill upper and lower bownd principles are given in general form which
is not restricted to specific boundary conditiods, or to incompressibility, rate-independence, homo-
geneity, or isotropy. They have become one of the strongest tools for applying theory to practical
problems. This is illustrated by a series of examples taken frem structural mechanics, metal forming
technology and soil mechanics to show alse some recently studied features concerning surface
fraction, action of volume forces, and volume compression, or extension, respectively. The Sec. 3
concerns the static problems for elastic-plastic material. Starting from the Cotterill-Castighano
principles for elasticity, PrRacer, HoDGE, GREENBERG and Baurr dexeloped simiiar principles for
perfectly-plastic or strain-hardening materials. There are, however, only few numerical applications.
Recently it has even been shown that utmost caution is necessary to avoid systematic errors. In
the Sec. 4 the rate-dependent or dynamic plasticity is discussed. Besides general principles of mechan-
ics like Hamilton’s principle there are a few specific ones partly related to the theorem of work and
energy which allow to estimate the magnitude of tofal deformation, or other quantities. The Sec. 5
is devoted to some generalizations and applications of principles discussed. As in clasticity,
attempts can be made fo apply directly the virtual work principle d#=0 in order to obtain pointwise
information on the unknown solution looked for. Also more general materials may be considered
Iike those having a non-associated flow rule. Most general principles are, however, closely conmected
to the method of weighted residuals only.

1. INTRODUCTION

1.1. Principle of virtual work

This paper will report on extremum and variational principles which have a
proper physical background in the sense that they are in some way correlated to
the principle of virtual work. We refer to an earlier review by Hopce [59] as well
as to considerations given in the textbook [1], the nofation of which will also be
applied in this paper, and use additionally some operator expressions which are
in a simplified manner taken from [2]. Then the well-known statical principle
of virtual work may be stated as

(11) 5W}n:6Wexs

where 6y, represents the internal, and 6W,., the external virtual work done at
the considered (system of) continuous bodies. Mathematically speaking, éW,;, and
OW,, are bilinear functions er functionals,

5P17in=Ain(Q5 qu') » 5Wex:Aex(Fs 5)6) ’

(*) General Lecture, held at the 16th Polish Solid Mechanics Conference, Krynica (Poland),
26 August - 3 September, 1974, . '
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of the state of (generalized, internal) “‘stress” @, (generalized, internal) virtual

“strain” g, (generalized, external) “load” F, and (generalized, external) virtual

“displacement” Jx, respectively. The quantities O, dg, F, dx may be considered as
1 2

points of given linear spaces, as any two different states O, @, etc. can be supet-

1 2
imposed according to aQ+ pQ, « and £ being real numbers. So, for instance, in a
classical three-dimensional continuum (finite body with a piecewise smooth, closed
surface) @ would represent the state of Cauchy stress g (piecewise continuously
differentiable with respect to space coordinates), d¢g the state of linear virtual strain
Jei* (piecewise continuous), F the state of surface tractions 7 as well as of volume
forces p; (both piecewise continuous but altowing isolated Dirac J-distributions,
i.e. single loads), and Jx/ the overall state of point displacements {continuously
differentiable with respect to space coordinates, apart from isolated jump surfaces).
Accordingly, for a straight Bernoulli beam undergoing pure bending we may adopt
Q as the mathematically sufficiently regular distribution of bending moment M,
8q of virtual curvature dr, while F comprehends the distribution of external transvers-
al forces p (including single loads), and dx represents the related vertical displacement
J7.
For the three-dimensional body (volume €, surface B) we have (1)

o . 'S g
Ain:f Oy 5£fkd§2+f T, 45x7dS,

where the displacements are assumed continuous except for single surfaces S (trac-

i)
tions T;) across which a jump Adx’ may occur, while

n B
Aexszjaxfd9+frj5xfd3.

Accordingly, for the beam of length / (axial coordinate ¢, 0< & it holds that
! H
A= [ Mowds,  Au= [ poydl,
0 ¥

and we shall generally assume in what follows that the function{al)s A;,, A, are
for the considered problem known in advance.

For the principle of virtual work to hold, the following two relations have to be
fuifilled :

“compatibility™

(1.2) Sg=Cdx,
and “equilibrium” '
(1.3) F=LQ

(1) Summation over paits of equal subscripts, one being an upper, the other a lower ong (Rwccr).
The instantanecus configuration is considered.
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using appropriate linear operators C and L. E.g., they are defined for thethves-
dimensional continnous body by .

i i
C:  dg* =?(§x*’ [*+dx51) ,
{1.4) .
L {Pf:—a,u—i" in ©,
Tj=0“nk on B,
where #* is the outward surface normal on B, and |* denotes (contra-variant compo-~
nents of) co-variant differentiation with respect to the geometric coordinates &&
Accordingly for the beam, '

s &2 oy
C: = — 862‘ ’
. M
: p= 5

We shall assume in what follows that C and L are pre-known for each considered
problem. Note that the inverse operators need be neither everywhere defined nor
unique. Therefore, we call

dg “compatible” if, and only if, dx=C"1'dg,
F “self-equilibrated” if, and only if, Q=L"'F

may be formed in the sense that at least one state dx or  exists, so that the Eq.
(1.2) or (1.3) holds, respectively.

m point masses (for kinelics}

i length

A; cross sectional area

Q; force

8q’ longitudinol virtuol extension
of rod no. j

C: 6q's 1(6x'+V36x%), 87z L(B%7-Bx'4/3 5xY,
tqd=bx?
L f=240,-Qy, F: g(qr‘az), F3=f03*%1),

F,.:Y—;Qz . F5=Y2;3“0: A F5=(03*%i)

Fig. 1. Plane truss.
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To illustrate the above relations as well as some of the results to follow in a
most simple manner, we need consider only a discrete system like the truss of Fig. 1
which is to serve us as a standard example rather than a continuum. The virtual
work is then given by the bilinear functions

(15) Aex(Fs 5x):Fj 5xj: Ain (Q! BQ)-':QJ 5qJ .

In Fig. 1, the considered truss is even statically determined which means that for
each system of applicable loads F, F,, Fy there are unique reactions F,, I, Fg, 50
that ¥ becomes self-equilibrated, and 7.=! is then uniquely defined according to

L% Qy=F+ + s,

F2 ' F+Fz _—F
l/g, Qz—'“ 1 ]/g: Qs"" 2 2]/3

3 1 3 '
if F4=—~]/_F1+2F2, FS-LFI"i' FZ: F5=F1+F3.

{1.6)

In the same way each state dg is compatible, so that |

: 1
c-1: 6x1=5q1-5q2+?5q3_,
(1.7) ) X :
5x2=ﬁ[6q1+5q2-;~-2— 5{,]3], dx*=dg*. ’
Though virtval kinematical quantities are in general considered as variations inde-
pendent of time ¢, the foregoing analysis remains correct if J is replaced by the

“incremental” differential d with respect to time ¢, or simply by a dot (7). Thus we
may replace dx, dg by the state of point velocities or strain rates

xX'=v, ¢=A,

respectively {belonging, apart from their physical dimensions, to the same linear
spaces as dx, dg do), and obtain the rate-of-work balance

(1.8) Wia=W e

or, after an mtegratmn the Work balance itself

d 9) Win=We

(preservation-of-work theorem), where '

(1.10) Wia=4w (@, 1), Wu=4u(F2)

holds while' the conditions of compatibility (1.2) and equilibrium (1.3} become
(£.11) A=Ce, F=I0,

respecﬁvely. We may generalize the virtual work theorem in a straightforward
manner also 1o kinetics, by adding simply (symbolically) the inertial terms —po to
the external loads ¥ or, more specifically, to the volume forces p.



EXTREMUM AND VARFATIONAL PRINCIPLES TN PLASTICITY 397

1.2. True and admissible stares

While the preceding relations are independent of material, we must now intro-
duce the “constitutive law”, and at first do this with regard to some rigid-plastjc,
or viscous body by relating strain rates 1 and stresses Q according to

(L.12) O=HL, A=H1Q.
The “constitutive operator” H as well as its inverse H—1 may have a bounded
domain only, and need by no means be single-valued(?). Consider as an example

the truss of Fig. 1 again, and assume that Y,>0 denotes the uniaxial vield stresses
of the rods i=1, 2, 3. Then H, H-! are defined by the constitutive relations

(1.13) Q;=4,Y,SGN 1, J,j:A(A?;,J_ )
in which the constitutive functions
1if a>0
SGNe=1{" f if a=0, where N EY ISR
‘ —1 if a<0 -
(1.14)
Z0 if a=1

A@){ =0 if —l<a<l
<0 if a=—1

are indeed multi-valued. SGNe differs from the conventional sign-function sgn e«

just by its multi-valuedness at « =0 but possesses an unbounded domain —oo <o <oo,

while the bounded domain of 4 (x) is given by —igagl

(Fig. 2). . _ SGNa
Now, for each problem to be considered we shall as- 1

sume explicitly that there exists a :

(1.15) “true state” F, o, O, 1

Ala)
which obeys compatibility and equilibrium (1.11) as well as -1 | a
the constitutive law (1.12), besides given boundary conditions | 1
not to be examined here. It will be compared with varying

“kinematically admissible states™ Fig. 2. Constitutive
functions for rigid-
- * * * * :
(1.16) v=C"'1, Q=HJ, F=I0, plastic frusses.

the strain rate A of which must therefore be compatible, and belong to the domain
of the constitutive operator H, Besides, the true state will be compdred as well with
varying “statically admissible states” :

[ 0 [0} 0

(1.17) i=H"'Q, F=I0,

(%) This is the reason why theorems stating ‘uniqueness in plasticity require further restrictive
assumptions to be made which were sometimes not realistic ; of. also DRUCKER [108],
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i3
in which the stress O belongs to the domain of the inverse constitutive operator

0 [}
H-'. The quantity p=C~* % will in general not be formed so that )(i need not be
compatible. Note that the definitions of admissibility used here were not at all related
to any boundary conditions [4] and are therefore more general in application 3, 5]
than those generally presented in literature (cf. [59]). Considering again the standard
example of our truss (Fig. 1), we have, according fo the Fags. (1.13), (1.14), that

each iriple of “rates” 1,, 1,, A; defines [because of its compatibility (1.7)] always
0 0 (]

an admissible state, while “stresses” Q,, 0, Q5 are admissible if, and only if,

4]
2

1.3. Dummy rate, and dummy load methods

They are based on the following two equations being an immediate consequencs
of the rate-of-work balance (1.8) in combination with (1.10), (1.11), (1.12), which
equations are especially fulfilled by the true state F, ¢. The methods hold for any
varying “dummy” state of velocity v or any self-equilibrated varying “dummy”
state of load F according to

I) dummy rate method:

(1.18) A (HCp, Coy=A(F,v),
- 1) dummy load method:
(1.19) : A (L1 F, H VL™ F)= A, (F, 9).

Both represent a strong tool for dealing with practical problems, but are in
literature in the first place formulated with regard to elastic bodies, though they
then form an approximation valid for small (linear) strains only rather than for
rigid-plastic or viscous bodies where they hold rigorously [1].

Application will be illustrated using our standard example of the truss (Fig. 1)
in combination with the Egs. (1.6), {1.13). Substituting the dummy states »* #0,

3 3
?=23=0, or F;#0, F,=F,=0, F4=_'l/'2—F11 F5=_]/?F1’ Fg=F, (self-

equilibrated) respectively, we obtain the explicit expressions for the true force i,
and the true velocity o, according to:

~ 1 A A ]- ~ ~ A
(120)  Fi=1 4, Y, SGNGE' +V33) =5 4.7 SGN (3 —2' +V399),

ot L L | Y L +£}+
a2n o ‘“{Al Y, l ' V‘E]}""{Azfz[ o Vi]

1 ! 15"+Fl Fy
2“{,431’3[3 2 293

I
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They are, as pomted out befoze by no means unique and may be completed by
similar formulae for £,, F,, o2, 23, if the dummy quantities were, as shown above,
chosen in an appropriate manner. But this choice is an applicational procedure
only, while the principles (1.18), (1.19) defining the methods remain valid no matter
how the dummy quantities have been chosen.

1.4. Variational versus extremum principles

The principle of virtual work (1.1), being the background of all the items treated
above, may be stated as

(1.22) - SW=0,

W being e.g. the functional W= W,,— W,,. The Eq. (1.22) vepresents a “variational
principle” only; the functional ¥ may assume an extremum (e. g a minumurm),
or a stationary value (e.g. a point of inflection) only. Both possibilities are illy-
strated in Fig. 3 using for the sake of _simplicity a function W(x) rather than a
functional.

\'t'est points ~

=

slationary point, R
undiscovered in W
approximation stationary

minimum

x
I . .
approximate minimum

1
I
H
i
i
I
1
H
i
|

Fig. 3. Step-by-step search for a stationary point.

If the solution £ of the Eq. (1.22) should, for more complicated problems, be cal-
culated numerically, then a finite process like a step-by-step search must be carried
out. It can intuitively be seen that it would yield approximate (or even converging)
values only in the case of an extremum, and this is the first reason for proper extrem-
um principles to be preferred.

The second argument would be that extremum principles such as

(1.23) L WeW, Wow,,
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may deliver, by virtue of the inequality (1.22), alsc bounds for other interesting
quantities like troe loads, displacements, etc.

Finally, there are historical (philosophical rather than practical) arguments
for establishing extremum principles. Some of them have been reviewed in [1].

As a consequence, let us pass on to the extremum principles themselves.

2. STATICS OF RIGID-PLASTIC BODIES
2.1. General

According to the Egs. (1.10), (1.5), the true internal rate-of-work of a truss
like that in Fig. 1 becomes A, (0, A)=10,! |#/], where the amounts alone need be
considered as, according to (1.13), the signs of 0, and A7 are equal. Only those terms
contribute for which 3770 holds, so that according to (1.13) and (1.14),, |Q;i is

(] 0
max1mal 10,1210, if 'Qy denotes any admissible state. It follows that 4, (0, i)>

zAsn (Q, 1) Consequently, A;, (Q, )> A €O, /1) since any kinematically admissible

state Q, ﬂ, may, according to (1.16), be considered as true, while O forms always
a statically admissible state. So using the Egs. (1.8), (1.10) we obtain two conjugate
basic extremum theorems:

0 P
Aex(Fs W) = Aex(Fe “3’):

- ¥ #
Acx (F, '0) S Ain (Q’ ;{') 3

the first of which is generally referred to as the “lower-bound theorem”, while the
second one is called the “upper-bound theorem™.

If for the sake of simplicity we assume our standard truss of Fig. 1 to have
in each of its rods equal cross sectional areas A;=A,=A;=A as well as equal
yleld limits ¥, =Y, =¥,=¥>0, and if it is externally loaded by F,>0 only while
F,=F,=0, then admissible states may be sct up as follows, using (1.16), (1.17),
Fig. 1, and (1.13), (1.14):

@.1)

0 o 1 0 —
0.=0,=TA, Q3= =5 Y4, Fi=FR=0, F,=V37,;
(2.2)

2o, 2el2V3, We—d, A=i=0, P=-1.

Thus we obtain from the lower and upper bound theorems actually lower and
upper bounds of the true applied load F, according to

(2.3) - VIYA<F,<2)3 V4.

Note again that the theorems (2.1) themselves hold independently of any boundary
conditions, which should be considered, particularly when a special problem such
as the one above is to be solved, in order to get the specific information wanted.

A continoum considered as some limit case of more and more branched trusses
which form fine mets, the meshes of which tend to zero, obviously preserves the
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validity of the upper and lower bound theorems. It can be shown [7] to be identical
with a “standard” rigid-plastic body. This shall be defined as unsual by a convex
yield surface (with the origin in its interior) in the stress-space, and the so-called
“normality rule” by means of which the theorems could directly be proved (cf. [6]).
They have, as stated here, but in contrast with general opinion, again nothing to
do with any boundary conditions [3, 4] (which need be regarded, as before, for
practical applications only), and are often correlated ‘with the names of Haar-v.
KARMAN (1909), SADOWSKI (1943), PHILLIPIDIS (1948) (*), or HILL (1948). Of course,
no further restrictions such as isotropy or homogeneity are necessary {73].

2.2, Applications

In civil engineering applications, it would be “safe” to look for a Iower bound
of the collapse load, while an (additional) upper bound gives information
about the degree of approximation. LANCE and SOECHTING derive displacement
bounds instead [67]. RabpENkovic and NGUYEN [2] show how to reduce system-
atically the procedure for continuous structures to discrete systems if the number
of load parameters'is finite. Thus the example given above using our standard truss
proves to be fairly general, so that we rencunce quoting further literature, the more
50 as, for structures undergoing small deformations, elastic-plastic bodies rather
than rigid-plastic ones should be considered.

H Samsen 18], 1973

H. Ernst, M.E.Merchant [9], 1941
E.H.Lee , BW.Shaffer [16}, 1951
GW. Rowe , PT.Spick [11] 1967
W.H.Feilbach, B.Avitzur [12] , 1968
B.Zinkler h3l, 1971

Culling , Machining etc.

Fig. 4. Metal separating (Review).

Instead, Figs. 4-7 give a review of literature on metal forming applications
(large deformations), and on soil mechanics under the (questionable) assumption
that soil {and rock) behaves as a rigid-plastic body as well. So far, this review has

(®) Now A. PmLiies.
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claimed to be neither complete nor critical ; there have even been considered papers,
the authors of which made use of this (more or less modified) method without being
aware that it had to do with the upper and lower bound theorems. Let us now deal
with a few special items which deserve comment.

D.C.0rucker,W.Prager
[46) 1952

{.F Coltins [52] 1973
A /

Retaining wali

—n
—
p——
]
—

RI.Shield [47] 1955
J.B.Cheatham , FR. Paslay,
lg CW.G.Fulcher |48,49] 1968

Z,

Lood carrying capecity

{column)
H.lippmann [50] 1971
¢ -
. 2
l ¥ /\u(F]\'})=gg¢icot¢- avp
B C
Pttt L\ .f\m(Q 7&) Zzsmq}kvcosda
b= —r
[ EERRE]

p:pressure

Supporling pressure 9:@ravitational accele-

in miring funnel © ration o
¢: angle of internal friction

Fig. 7. Soil mechanics (Review).

When varying the admissible fields in order to obtain optimal bounds, one
must neither vary the shape of the considered body (see, however, [102]), nor the
local distribution of material parameters (like yield stress ¥) in it. The first mistake
may happen if, e.g., the inclination of the shear zone S in Fig. 4 (cutting) is varied
[9]. Similar errors occurred in [11, 12, 13]. Jt is a basic handicap of the method,
that the “true” shape of the body (i.e. one for which a complete theoretical solution
may be assumed to exist} is rarely known in advance. So the sharpﬂedge of material
in cutting looks as questionable as the straight entry and exit of material {without
any lips forming) in drawing, extrusion and rolling. One can only hope that small
deviations in geometry do not affect the calculated bounds more than is admissible.
Occasionally, the unknown boundary may be approximated by an iterative proce-
dure [45), [115].
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Erroneous variations of the Y-distribution could occur if ¥ depends on J itself
{“rate dependent” material). To avoid this difficulty one may again ry some iterative
method [25].

Because of the multi-valuedness of the canstitutive operator H omne cannot
expect unicity of solution, at least not in general, So there is also no proof whether
the statically and the kinematically admissible states become automatically true if
the upper and lower bounds coincide. Based on this expectation, however, authors
have tried to set up multi-parameter approaches in order to obtain approximatively
true solutions after the bounds have been numerically optimized (generalized R1TZ
method {24, 25, 39, 40, 45, 55]). To facilitate this, graphical and computational
[53, 56] procedures, or even procedures based on functional analysis [54, 57] for
constructing the admissible states, have been described.

It can frequently, be read that kinematical admissibility is mainly defined by
incomypressibility, so that especially velocity discontinuities having the character
of pure shear become always admissible. This is correct for the commonly used
yield laws of metal plasticity (TRESCA, Hueer-LEvy-Mises-Hencky, of. [6, 7]}
but not for the compressible behaviour of soils (cf. [46, 57, 50], errors in [48, 491).

Referring again to the boundary conditions which in general are usually included
in the concept of admissibility, we are going to illustrate now that this is not only
unnecessary but could even become misleading. Actually, neither Coulomb surface
friction nor volume forces have been admitted in the past. The mining-tunnel
example in Fig. 7 allows, however, the taking into account, in a very simple manner,
the constant downward gravitational field (volume force pg, p being the initially
constant density of soil). It was proved in [50] that a velocity distribution as shown
in Fig. 7, which equals 0 outside the drawn triangle (base BC) but having one constant

vertical component z inside, is admissible with respect to the so-called Coulomb
yield law which means that deformation takes place in a discontinaous manmner,
only along the inclined sides of the triangle. Then the external work A as given
in the figure may immediately be formed, while A, follows from the fact [50] that

along discontinuity surfaces work is done only by the shear components;cos &
against the internal adhesion k=const>0 of the grains. Thus, we obtain from the
upper bound theorem (2.1), quite strangely a lower (!) bound of the supporting
pressure {

D= acotcﬁ{j‘;-pgaﬂk}

which unfortunately is unsafe, while the lower bound theorem would provide a safe
upper (1) bound of p [50]. 4

Coulomb friction has been considered by Corrms with regard to plane strain
drawing [5], and to soils [52]. So if 7'in Fig. 8 denotes the (unknown) true drawing
force (incompressible metals), then it is known that both dies react horizontally
with T2, so that .'

-

T

' sin o
2icosa+
#
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acts parallel' to them (resultant frictional force; constant coefficient of friction
#>0). Introducing admissible velocities » that art constant inside the drawn trian-
gles (g, w arbitrary) but jump in pure shear by Ay 4> A;B along AC, BC just as shown
in Fig. 8, we may quite easily write down the upper bound theorem (2.1), using
a constant shear limit A£>0, according to:

%

To5e1 % #*
S < 2k IAC| 45, + 2k |BC| dug,

Cos ot -+ —sina

)(2.4) To—

from which formula there results in general an upper bound of 7. Note, however,
that possible difficulties may arise due to the negative second left-hand term. Fur-

.

thermore, as ‘;m has to be assumed constant which need not hold for 7., the

y=a

P em-a

=
~|2

A

E 3
Y

<

A

o

A

Fig. 8. Plage strain drawing; force T per unit width.

method will hardly give us an approximation of the true solution, and the lower-
bound theorem does not even provide a bound of 7" at all.

Despite such troubles, the bounding theorems (2.1) form a strong and successful
means for approximate calculations with respect to rigid-plastic materials.

3. STATICS OF ELASTIC-PLASTIC MATERIAL
3.1. Elasticity

Let us first take a glance at the well-known COTTERILL (1865) — CASTIGLIANO
{1873) extremum principles which refer to small (geometrically linearized) elastic
strains ¢, and displacements x which behave kinematically like virtual quantities
dq, Ox, so that compatibility (1.2)

(3.1 g=Cx,
and consequently the virtnal work theorem (1.1) remain valid using g, x instead
of ég, Jx, i.e.

3.2) Ain (@ @ =Aex (F, x)

Rozprawy Inzynierskie — 3
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for any two independent siates O, F or ¢, x, respectively. Considering then a finite,

=

yaiguely invertible, sufficiently i‘eegular constitutive law,
(3.3) 0=Hq, g¢=H"'Q,

rather than the incremental one (1.12), and re-interpreting the definitions (1.15)-(1.17)
~of true or admissible states after having replaced v, 1 by x, g just in terms of (3.1)-
(3.3), the extremum theorems gquoted above become [1]:
U (@)= Adex(F, 9 2 U@~ Ace(F, ),
G4 .
V(Q)— A (F, D =V(0)— Aux (F, D).

Here, the so-called “elastic potential”

q
(3.3) - U(g)= | A (Hg, 3¢)
q
is identical with the internal work W,,, which therefore has to be assumed independent
of the integration path, connecting any arbitrary fixed state § with the current one g.
The “complementary potential” ¥ (Q) follows from U (g) for any two states related
by the elastic law (3.3), according to

(3.6) U(@+V (@) =42, D).

In physically linear elasticity, # forms a linear operator, and

, 1 1 1
(3.7 U= V(Q)=7 4in(Q, 9} =?Ain(Hq, @)= 4ulQ H Q)
(cf. [1]) become second order functions of their arguments. Note that an immediate
extension of (3.4) to geometrically large deformations cannot hold, as a minimum
of the left-hand sides (so-called “‘potential epergy” or “complementary energy”,
respectively) will then express some statical condition of stability which, quite
naturally, need not be valid for unstable structures.

3.2. Elastic-plastic bodies

The majority of the elastic-plastic extremum theorems given below, which
represent generalizations of (3.4), would therefore expectedly be restricted in validity
to small linearized strains as well, even if nowadays they are occasionally set up
making a difference between the initial and the instantaneous configuration of the
considered body [61, 67, 68, 98].

" Consider now any “true” instantaneous state of stress and strain, load and dis-
placement 0, 4, T, £ which is assumed to be prescribed (say, as a result of previous
caleulations). Only the increments (or rates)

O, g=h F,x=v

are to be varied. In a continuum,.tensorial time differentiation means in general
a convective one performed in a moving frame, though sometimes the convective
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terms become negligeable. More guestionable (sece below) is the assumption that
equilibrinm (1.3) is to hold in an unchanged form, also with respect to the rates

(3.8) F=LQ"

The total strain-rate A=A4,+ 4, will be formed by superimposing elastic and plastic
parts A, A, vespectively, so that for a strain-hardening, rate-independent material,
each increment of stress dQ=0" dr generates an associated increment of strain
dg=2Adt or,

(3.9) o=, i=AQ,

where the constitutive operator H may for every point of the continuum assume
two different values depending on whether there is (elastic-plastic) “loading™, or
{purely elastic) “unloading”. Otherwise, /7 and H~*! are linear and follow directly
from differentiating, and superimposing any elasticity law to a “standard” rigid
plastic one (cf. Sec. 2.1.), Using (3.9), the concepts of “true”, “kinematically admis-
sible”, and “statically admissible” incremental states 07, A, F', v may immediately
be transferred to the present situation by replacing in the Egs. (1.15)-(1.17) the sym-
bols F, O, H by F', ', H, respectively.

Consider now, as an example, again any truss (as in Fig. 1) and form
| N . 1 woE L a
(3.16) o @V = QA= (W =D 05= (0 + 0 4) - 0) 4

The first two right-hand terms are, in the event of strain-hardening(*), obviously
non negative, independent of the state of loading or unloading, as correlated terms
0, A bear the same sign, If the true and the admissible states refer to different load-

«
ing/un]oading situations, then Q) M0 (for the considered term j, no summation),

and —(Q jl = 0. I, however, both states describe equally loading or unloading, then
the constitutive operator H>0 is the same, so that

1oww o e HO
E""(Qj”""Qj’lJ)*Qj/p :?()“J—A NP2z0,

where the equality signs hoeld if, and only if J=21. Thus we have always (because
of (1.8), (1.10) using ", F" rather than Q, F, and the Egs. (1.5) besides the identity
(3.10)) that

3.1D) 3 Aw@ D= 4B > 5 400 )~ 4eF9),

and accordingly

1 o 0 0 1 s .
(3]-2) ":2_' Ain(Q-a ’D_Aex (F.: "0) = ?Am(Q ) A)_Aex(F » 'U) -

{*} For rods in the stable region (no necking, i.e. not very large strains) are correct. Three-
-dimensional plastic media are always assumed to be stable in the sense of Drucksr (cf. [6]).
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These are the well-known extremum theorems of PRAGER, HODGE, (GREENBERG,
Bavrr (1946-1948, of. [6]), valid for elastic-plastic strain-hardening, or, in the
limit, for elastic-ideally plastic material in which the minimum of the left-hand
sides is reached if, and only if, the admissible states to be varied assume the true
ones. Again, boundary conditions have not been involved but may become important
for applications. The theorems (3.11), (3.12) have repeatedly been proved (cf. [6]),
re-discovered [51, 61, 103, 106], and generalized to nonhomogeneous, non-isotropic
[58, 60], visco-thermoplastic [111], or even, in a rgstricted sense, to strain-softening

! T T P G.Hodge, R.B.Stout :
——————————— [59,631 1968,1970

Torsion

|

C.H.Lee,5.Kobayashi

TR T R R l64] 1970
Flat Punch Indentaticn

Tube under Internal Pressure H.Eggers
! 65 1972

iifei

N \]
Cylindrical Red belween Rigid Platens/
Wheel on a Rigid Track VK.Garg,
S.C.Anand,
PG.Hodge
[109,1974

Fig. 9. Elastic-plastic problems (Review),

materials [96, 98]. However, there is one major difficulty. In setting up (3.11), (3.12)
the virtual work theorem (1.8), (1.10) was used after replacing Q, F by ¢, ¥°. This
can be correct as long as the modified equilibrium condition (3.8) holds (besides
compatibility A=Cv which is unaffected). Therefore, authors examined the first
equilibrium condition (1.4) and demonstrated that in the case of small strains, no
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large mistake could occur {cf. [6]). However, by a complete counter-example [66]
it was shown that the mistake caused by the second condition (1.4) with respect
to the first exiremum theorem (3.11) may become arbitrarily large, as a differen-
tiation of (1.4) yields, nsing Cartesian coordinates fixed in space,

(3.13) T)=65 /4 64,7,

so that an additional term appears which contains the unknown true rate-of-deform-

* #*

ation #" beside the admissible kinematical terms 4, ». Note that this difficulty has
nothing to do with small deformations and arises even if the deformation becomes
zero (initial state). It may formally be avoided if a fixed reference configuration
[61, 67, 68, 98, 110] were considered, for which. 7i remains constant. Then, howeve;,
T represents no longer the true stresses but those won by an appropriate spatial
transformation which would involve 7 itself, so that the inconvenient term appears
again,

There are not yet very many practical, or numerical applications of the basic
extremum theorems (3.11), (3.12), but those shown in Fig. 9 fortunately refer to
(civil engineering, small strain) situations in which the surface does not rotate much
under the action of external (including reaciive) forces, so that the additional term
in the Eq. (3.13) either disappears or remains small.

The second extremum theorem (3.12) remains in any case rigorously valid
[66]. An approach using functional analysis to construct admissible states is given
in [62].

3.3. Generalizations

Attempts have been made to generalize the elastic principles (3.4), and especially
the theorem on the minimom of complementary energy (3.4);2, to elastic-plastic
bodies without passing to the incremental state. Hobge [70] therefore imposed
further restrictions on the statically admissible fields, so that thé true solution could
no Iongef be reached, but obtained the following result: The complementary energy
calculated as if the body were purely elastic forms an upper bound to the suitably
defined elastic-plastic complementary energy (cf. also Save [107]). This definition
alone is tricky because energy integrals such as (3.5), and accordingly for the com-
plemeniary energy V, become path-dependent functionals rather than functions
of the state only. So MarTIN [71] as well as (without a mutual reference) SOECHTING
and Lawnce [72] introduced “maximum’ paths along which ¥ reaches a maximum
value, and thus proved bounding theorems which again need not converge on the
true solution. Different constitutive laws have been examined by Triraw [104, 105).

Another problem if displacements and strains x, ¢, are’to be considered rather
than rates @, A arises from the fact that compatibility (1.11), though transferrable
to x, g in a generalized form, may even then become wrong if the elastic, and plastic
parts ¢,, g, of strain are separately examined. This means that g, splits off into
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compatible elastic strains ¢, and incompatible ones g, due to residual stresses or dislo-
cations, so that g, and ¢, form together a compatible state. The first analysis(*}),
given by CERADINI [92], was continued by DE DonNato and Mater [68, 69, 97, 98].

4, RATE-DEPENDENT AND DYNAMIC PLASTICITY

A “standard” rigid-plastic: material (Sec. 2.1), the local yield surface of which
is “raté-dependent” (i.e, this, or the distribution of uniaxial yield stress ¥, say,
depends on 1), obeys without any change the basic upper and lower bound theorems
(2.1) in which, however, the material ‘parameters (vield surfaces, yield stress etc.)
must not be varied with the admissible states. Instead, iterative procedures might
be tried ([25], see Sec. 2.2). '

A different approach considers rate-dependent plastic bodies as viscous fluids
(MARTIN 1966), a sufficiently large class of which fulfill dual extremum theorens
which are immediately derived from those for elastic materials (3.4) if ¢, x were
replaced, also in (3.5), by the rates A, », respectively. The resulting theorems (cf. {1]
also for further references) become, in contrast to those (3.4), even rigorously correct
becanse the virtnal work theorem (1.8) could be applied without modification.
A “limit”-material showing a yield limit but behaving otherwise than a Newtonian
fluid, is the so-called “BincHAM”-solid the extremum principles for which were
first given by PrAGER [74], and extended to elastic-viscoplastic continua by PERZYNA
(see [101] also for further references). Happow and Lumic {75, 76] give examples
(torsion), while Leckie and Ponter [77, 78] superimpose elasticity as well as
rate-independent plasticity, and apply their principles to beams, plates, and cylindrical
shells. Mrdz and Ranieckl [111] deal with thermo-viscoplasticity, while GarEwskr
[93] develops an approach based on functional analysis. De Boer [114] generalizes
PERZYNA’s constifutive law, and PonNTER [117] considers creep again.

Let us now turn to dynamic plasticity in its proper meaning, namely plastoki-
netics. Then, the kinetic work balance yields

T+ W-in:T0+Wex

where W, W, are the current values of internal and external work, while 7, Ty
are the instantancous and initial kinetic energies, respectively. Thus, for an initial
pulse load T, >0, W,,=0 one obtains at the very end of the deformation, 7'=0, that
Wia=1T,, from which equation simple bounds of maximum displacements may be
derived [79]. The method was extended by MartiN [71] using the maximum-path
concept referred to in Sec. 3.3, as well as by DE DonaTo and MawEr [93] to strac-
tures taking geometric changes into account. See also Ponter [116]'.

From now on we shall examine extremunt theorems in which the state of acceler-
ation o" will be varied and jor bounded, and denote by —pr" the state of related
body forces (p: mass, or mass density) to be added to the state of “statical” external

(°) Obviously containing computational errors.
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loads F*, so that symbolically F=F—ps becomss the compiete external load.
Then Tamuzd [80] established the minimum principle

. %, Lo s Av .
(4.1) J(5,2)=Acx(‘2—,ﬂv ”F,;)%-Am(Q*, 2} = M,

where the modified “kinematically admissible” state i 3:', (* has to be varied,
while the ipstantaneous state of rate i, and therefore of force O=HI1, F=L{ is
assumed to be known. H denotes the rigid plastic constitutive operator, cf. (1. 12},
According to a more premse interpretation given by MARTIN [81], the aleLlSSlb[G

state of strain-acceleration }t should not be won by a dlﬁ‘erentlatlon of A but for-

mally by means of the compatibility conditions (1.11), so that ) =Co , and belong
to the domain of H (apart from its physical dimension) at least in all points where

the known strain-rate 1 vanishes (rigid region of the body). There, Q*wlﬁ by
definition, while 0*=( (true stresses) in the deforming region 730,

"It is seen that for an everywhere deforming body there is no internal constraint
imposed by the constitutive law at all, and the Tamuzh principle is as valid as, say,
the work-and-energy theorem. The constitutive operator H was introduced, very
strangely, only with respect to rigid zones (where it should propesly be of minor
1mportance) so that the meaning of the theorem. is somewhat obscure. Of course
it holds, like the constitutive law (1.12) itself, for viscous fiuids as well [941.

Much more straightforward, and related to rigid plastic bodies are two dual
extremum theorems which follow immediately from the basic upper and lower-
bound theorems (2.1) by introducing an “admissible state of acceleration” 2;',

0 . o .
so that F=F5—p¢’ is statically admissible in the sense of (1.17), and F* denotes the

statical part of the true external load which is assumed to be predetermined. Then,
F=Fs—pg’ yields the true external load, and we obtain

e A

Aenp2, ) = A7, 9),
(4.2)

Aer(p7s D) 2 Aoy (F%, 1) — 410 (0, 1)

The Eq.(4.2); was without any reference to (2.1) proved by MARTIN [81], and in
a more specialized shape by CAPURSO [94], while MARTIN gave a mugch narrower
form of (4.2), as well [81].

As an example, let us consider again our standard truss in Fig. 1 the rods of
which are assumed to be equal with respect to cross sectional area as well as yield
limit, '

A =A,=Ay=d4, Y,=Y,=Y;=Y,

and where the masses m are concentrated in the nodal points. Only the (true) force
F$#0 is to act, while F§=F5=0 and the initial state P =v?=2>=0 refers to the
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structure at rest. Using then the kinematically admissible state given in the Eq.
(2.2), we obtain from (4.2), the estimate
4.3) Lo +— ! o2 ! Fs—7VA

. ml|——= - > —F
( 2 1/ 3 /
(in which intuitively o1 <0, 2° %0, 2 3 <0 if £%>0). The inequality (4.2), is, because
of 9=0, identically satisfied. If we, however, substitute the subsequent state of velocity
p=2odt, di>0 (time increment), then we obtain, using the statically admissible
state (2.2) in order to construct the admissible state of acceleration(),

Q 0

0 1 . —
Tloei=0, o= (F3-V37A)
and
(4.4) (Fs—V3YAw 2 2 m@ )2+ 2+ (92

Tt is seen that in the case of £ sz—>]/ 3 Ya, only statical deformation (m=0) may occur,
so that £5>>1)/3 Y4 should be expected. Therefore (4.3), (4.4) generalize, as could
be expected before, the former ineguality (2.3).

Another approach is examined by Symonps [118].

5. FURTHER GENERALIZATIONS AND APPLICATIONS

Non-standard plastic behaviour cannot be illustrated by truss-like structures
but may play a tole, e.g. in soil mechanics. Denote by (, as before, the global state
of generalized stress in discrete systems but the local one in the points of a continuum,
so that Q may always be considered to have a finite number of n components Q;
only, which define a vector (“‘stress vector”} in the n-dimensional Euclidean “space
of state”. Accordingly, the state of rate 1 may be represented in the same space
of state, by the “rate vector” having n components A%. The immer product

(5.1) QA=0; %

gives us, according to the Eq. (1.5), the total iternal rate of work A, (Q, A) in
discrete systems, while in a continuum a body integration needs to be carried out
before, so that Q4 is then the rate-of-work “density” only.

As in standard plasticity we assume the existence of a convex “vield surface”
in the space of state, containing the origin 0 in its interior,

(5.2) ' F(@=0, [f(®<0,
. ‘
so that the statically admissible states Q shall always be defined by

(5.3) f (é)so )

{%)} Obviously useful only if }*‘;>0
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In the event of the tip of the vector Q fixed at the origin lying on the yield surface
so that f(Q)=0, then plastic yielding might occur in standard plasticity, so that 2
forms an outward normal to the yield surface in the tip of 0, i.e.

af
an ?
where 1 denotes an additional variable, and £ is assumed sufficiently smooth or
regular(”). Now, an often discussed class of non-standard rigid-plastic comstitutive
operators H uses, instead, a different function g, so that (smoothness and regularity
provided)

(5.4) =] 1=0,

PO i
(5'5) - aQ’ E]

is to hold. Here, g (Q) shall, like 7, define a convex “flow surface’ in the space of
state containing the origin 0 in its interior, i.e.

(5.6) g(@=0, g(0)<0.

A kinematically admissible state is characterized by a compatible rate-field 1, so

1=0

that (5.5) is invertible, to give any @ obeying f{Q)=0.
Because of

X (=0) _ ( dg (0) )
20, 00 5w

it follows from (5.5) using «>0 that an elongated (or shortened) vector § may be
considered instead of Q, for which g ()=0 is to hold if in the positive direction of Q

there is no point of infinity of the ﬂow surface. Vice versa, each compatible field 1
for which at least one solution Q of ’(5 5) exists is admissible if in the positive

direction of Q there is no point of infinity of the yield surface.

Regarding this, the non-standard
law of plasticity described above
may be illustrated by Fig. 10 where
(ontward) normality holds with re-
spect to the flow surface, in the
positive elongation J of the vector O
which ends on the yield surface.
Standard plasticity arises as the Fig 10. Non-standard rigid-plastic constitutive law.
special case g=af, a=const>{.

Rather complicated extremum theorems for such non-smndald elastic-plastic
materials have been derived by MAIER [69, 98] though his condition of admuissibility
f<0 seems artificial and might exclude the true solution, Taking this consciously
into account one can much more easily set up rigid-plastic bounding theorems first

(?) For generalizations, see KoOITER 6]
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stated by Rapenkovié 1961 [82], which are agam an immediate consequence
of the basic rigid-plastic upper and lower-bound theorems (2.1).

First we assume that the flow surface g =0 either possesses no points of infinity,
or possesses those only in common with the yield surface, so that both surfaces form
cylinders in the related directions of infinity. Then by a simp}é transformation

(5.7) 2(0) = g (A +C; A=const >0, C=const,

it will always be found that the new right-hand expression becomes non-negative
if f vanishes, so that it generates a new flow surface to be denoted again by g(Q) =0,
which is completely enclosed by the yield surface f=0 as shown in the right half
of Fig. 10. For practical reasons it is desirable that this internal surface shouid
not become too tiny, so that for the sake of a better adaption, two constants A
and € have been introduced in the Eq. (5.7) rather than only one C as would have
been sufficient in principle.

Relating now the upper and lower bound theorem (2.1) to the inner flow surface

- PR 0 x * L2
only (F instead of F, F instead of F, O instead of (), and observing F'=aF where
a=1, it is seen that the lower bound theorem (2.1), may immediately be extended
to give

o )
(5.8) A (F, 0) < Ao (F, 0) < A (F, 0},
where only the outer terms are the interesting ones, while the statical admissibility

LA 2
of F=LQ means g(Q)<0.

Assume mow inversely that there are no points of infinity of the yield surface,
or only common ones with the flow surface, so that both surfaces form cylinders
in the related directions of infinity. Then by a trapsformation (5.7) it can always be
enforced that the new flow surface being again denoted by g (2)=0, lies completely
outside the yield surface # (no Figure). Then we get from. the upper bound theorem
applied to the flow surface, using F=of {(#=1) that, in the caseof a positive lett-
hand side, '

2% Y
(5.9) Aoy (B, 3) < Aen(F, 0) € 412 (0, )

holds, where again only the outer terms are relevant, and fulfll the same inequality
in a trivial manner if the left-hand term should be negative, or vanish. Kinematicat

admissibility in the generalization of (1.17) means here that 1= Cy forms on outward
*
normal to:the modified flow surface in the point 0, so that (5.5) would have to be

inverted mutually with g (5)=0.

All the variational or extremum theorems considered in this paper may be
modified according to the method of Buler-Lagrangian multipliers by intreducing
side-conditions and redundant variables, or by adding, or subtracting them, but
eventually then lose their extremum property [1]. Those procedures have been
repeatedly proposed in elasticity (Reissner-Hellinger principles, etc., ¢f. [1], resulting
from (3.4)), and were applied to rigid-plastic materials by SCHROEDER and SHERBOURNE
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[83], to elastic-plastic ones by Kremger [112], while Lung [25], MaAnrRENHOLTZ and
Krie [113] used them in numerical applications.

Also for numerical purposes it becomes unnecessary to ask for any physical
meaning of the extremum theorems, so that quite artificial ones, combined with the
method of weighted residuals [85], may be installed which may additionally involve
arbitrary side and boundary conditions. After a first step done by HiLL [90], applied
in [99], KoLarov [86] proposed a method which was extended and widely applied -
to metal forming processes by ADLER, DALHEIMER, and STECK [87, 88, 89, 911,
Boanpart and ODEN [84] tried to elaborate a very general scheme of how such
extremum theorems should be set up. It turned out (according to this author’s
feeling) that the proper idea would be that #* becomes a minimum if 4 =0 represents
any constitutive equation. To deal with such purely mathematical or aumerical
procedures in greater detail would break the frame of the present review,
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STRESZCZENIE

ZASADY EKSTREMALNE I WARIACYJNE W PLASTYCZNOSCI

Ekstremum funkeii (funkcjonatéw) W jest czgsto z prayczyn numerycznych stosowane w slabszej
formie wariacyjnej dW=0. W pracy przedyskutowano wspolzaleznoié pomigdzy tymi dwoma
sformulowaniami. W wigkszosol teorii W ozZnacza prace 1ub wielkoé¢ analogiczng, natomiast §FF7=0
zasade prac przygotowanych (wirtualnych).

W punkcie 2 rozwazono zasady wariacyjne i ekstremalne dla materialéw sztywno plastycznych.
Klasyczne zasady Haara-Karmana-Sadowsky ego-Phillipsa-Hilla o dolnej i gornej ocenie przed-
stawiono w postaci cgdlnej nie ograniczajac si¢ do szczegblnych warunkow brzegowyclh, niedcisli-
wosci, niezaleznosci od predkosc, jednorodnodel czy izotropil. Zasady te staly sig najsilniejszym
narzedziem dla stosowania teorii do problemow praktycznych, Zilustrowano to kilkoma przykia-
dami z mechaniki budowli, obrobki, obrobki metali i mechaniki grantdow pokazujac rowniez pewne
ostainio badane wlasciwodci dofyczace tarcia powierzchniowego, dziatania sit masowych i écisliwosci
materiatu.

Punkt 3 dotyezy zagadnien statyeznych dia materiafu spreZysto-plastycznego. Wychodzacz zasady
Cotteriil’a-Castigliano dla spreystoéci, PRAGER, HODGE, GREEMBERG i BAUER wyprowadzili ana-
logiczne zasady dla materiatow jdealnie plastycznych lub ze wzmocnieniein. Jednakze zasady ie
znalazly malo zastosowan numeryczoych. W ostatnim czasie wykazano, Ze trzeba bye przy tym
bardzo osiroznym, aby unikna¢ bledow systematycznych.

W punkcie 4 przedyskutowano zagadnienia zalesne od predkosci deformacii fub dynamicznej
plastycznodcl. Opréez ogdlnych zasad mechaniki, jak zasada Hamiltona, istnieje kilka twierdzefi
specjalnych, zwiazanych z praca I energla, pozwalajacych szacowad wielkoé¢ calkowitych defor-
macji lub inne wielkosci,

Punkt 5 poswigcono pewnym uogdlnieniom i zastosowaniom przedyskutowanych zasad. Po-
dobnie jak w sprezystoéci czyniono proby bezposredniego zastosowania zasady prac przygotowa-
nych (wirtualnych) 8FF=0 do otrzymania jnformacji o nieznanym, poszukiwaiym rozwiazaniu.
Moga byé rowniez rozpatrywane materialy bardziej ogolne, jak np. o niestowarzyszonym prawie

plyniccia. Najbardziej ogélne zasady sa jednak écifle zwigzane_ z:metoda:—.;waionych rezidudw.,

PezioMe

SKCTPEMAJILHEIE W BAPVALIMOHHBIE NPWHLKILL B NITACTAYHOCTH
i
DxiTpenvyM HyFknEi (dymuponanos) WouacTo, [0 UHCICHHBIX npnmaam,‘iupmeﬂﬂemﬂ
- Gonee cnaboit papualMoRHOi dopme 6 =0. B pabore 00CYRIEHA P3aAMO3ABHCHMOCTE MEXIY
ATHMH HBYMS (hopmMySHpoREama, B GonbIIHHCTES teopmEit W obo3Hayaer paboTy HIH ARANOTHY-
HyIo Bemmyuny, & 6W =0 -— UMHUAI BO3MOXKHEIX (sEpTYansHEK) PAGOT.



EXTREMUM AND VARIATIONAL PRINCIPLES IN PLASTICITY 421

B mynxTe 2 paccMOTpPeHB! BAPHAIMMOHMLIC H SKCTPEMAIbHDbIC MPHHITHNEL JUIS WECTKO WIACTH-
vyeckmx Marepmanos. Knaccmueckme npuwunnel Xaapa-Kapmasa-Canoeckoro-Pummnca-Xuina
© HIKHEH M BepXHeH ONGHKAX 1PEACTABISHE! B 00MEM BHIE, He OIPAHMYMBAACH TACTHHIMHE FPaHNY-
HEIMH  YCIIOBHAMY, HECKHMAEMOCTSIO, HE32BHCHMOCTBI) OT CKOPOCTH, OAHOPOIBROCTBID MK
w30 Ipormell, DTH IPHHIAE! CTAY CAMbiM CHREHEIM aniapaToM ViR TPAMEHEHHS :reolimz[ K OpaxTa-
YyeCcKHM 3a7[a¥aM, DTO MIRKCCTPHEPYETCA HECKONBKEMA TIPEMEPAME M3 CTPOHTENBHON MeXaHHKH,
obpaboTry, 06padoTEA METAINOB B MEXAHHKH TPYHIOB, OOKA3LIBAZ TOMKE HEXOTOPEIE HCCHERY-
eMBle B HOCHEIHeC BpeMs CBOBCTBA, KACAIOMIMECH TIOBSPXHOCTHOYO TPCHESA, MeHCTBHS MaCCOBBIX
CHII ¥ CHKHMAEMOCTH MaTepHana.

DNyaxT 3 xacaeTcd CTATHYECKHX BOHPOCOB IS YEPYTO-IDIACTHYCCKOIO MaTepmana. Mcxoxd
w3 opaauuna Kotepumma-Kactunessno s ynpyrocty, Tparep, Xonx, T'penbepr u Baysp BeisenH
AHAAMTHYECKHS DPHMHLHNLL T ANeadbHO NIACTHIECKAX MATEPHATIOB TH MaTepdasioB ¢ YIpouy-
"ermes, OppaKe 5TH DNPHHIPNLI HAOUIE MAJIO MHCACHHLIX OpHMEHeHHH. B nocnemHee Bpems
FOK&32HO, YT0 Hazmo GMTh OpPH 3TOM OYEHh OCTOPOXKHEIM, YTOOH HM36eKATh CHCTEMATHYECKAX
ommuBok. )

B nysExTe 4 oficyxuersl 3a7a9d 3aBHCAMNEE OT CKOPOCTH JehOopManpy HIM ORHAMIYeCKOi
IIACTHYHOCTH, Kpome oOUIMX HIPUALENOB MEXaHHKH, Kak opuHimmpo ['aAdnsToHA, CYINECTBYET
HECKONBLKO CHeRAaILHBIX TeOPeM, CBA3AHHBIX ¢ PaboTo 1 sHepryeH, KOTOPEE TMO3BOLIIOT OLUSHHTE
BEJHUAAY HOMHELK FehOopMAIHi .MM ApYTHE BCIRYHHEL,

Iyspxr 5 nocesameH HexoTOPHEM oDODmEHHAM W OpHMeHeHHSM ODCYXJASMLIX HPHHIHIIOR,
A¥TOTHYHO KAK B YOPYCOCTH UPENUPHHHMANMCE NONBITKE HENOCPEACTEREHHOIO NIPHMEHSHUA

HCKOMOM DELUICHIHA, MOI‘}!’T TOXC pacCMaTpHABATHCA Bonee OG]II,'HE Marepyansl I€M o HEAcCoLMpo-

BaHHOM 3axoHe TeueHws. Hamnbonee obiupe npuuuums: oaHaxe OIH3KO CBA3aHbLI ¢ METOOOM BEI-
UCTOB C B&COM.

Rozprawy Inzynierskie — 4






