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TRANSIENT RESPONSE OF A PLATE-FLUID SYSTEM TO STATIONARY
AND MOVING PRESSURE LOADS(Y)

FR NORWOOD and W.E.E WARREN (ALBUQUERQUE)

Bernoulli-Euler plate theory, in conjunction with Laplace and Fourier transforms, s utilized
to investigate possible wave motion in a fluid half-space which supports an infinite plate. The sur-
face of the plate is subjected to time and space dependent loadings. Two specific loading conditions
are considered, one stationary and one moving, and wave front approximations for the pressure
disturbance in the fluid are obtained. Limitations on previous steady-state analysis are pointed
out, Resnlts are compared with those obtained in the absence of the plate. Within the framework
of this theory, the presence of the plate weakens the pressure wave front over that in the plane
fluid half-space,

1. INTRODUCTION

Interest in hardening underground structures to withstand surface shocks has
led to studies of the dynamic response of plates in contact with a supporting fluid
to transient and moving loads [1, 2, 3]. Of principal concern in these analyses is
the nature of the pressure wave which is transmitted through the plate into the fluid.
The case of a supporting fluid gives the main features of the solution for a general
elastic foundation, and is simpler to treat than the general case. Limitations on the
analysis by assuming an acoustic fluid rather than an elastic media have been detailed
in [3].

Previous investigations of this plate-fluid interaction problem for conditions
of a moving load have been based upon a pseudo steady state assumption. This
assumes that the moving load has been travelling with a constant velocity for
sufficiently long time that, to an observer moving along with the load, the material
response is independent of time. As shown in this analysts, this steady state assump-
tion suppresses all bt one of the possible wave fronts, and indeed suppresses the
major contribution to the pressure wave propagating info the fluid. Also, two very
significant limitations on the steady state analysis are, firstly, that it is not possible
to define how long, if at all, it takes to achieve the steady-state motion, and, secondly,
it prohibits an investigation of the physically significant problem of a moving load
whose amplitude at the load front is changing with time. :

To circumvent. the limitations associated with the moving load steady-state
solution, this paper considers the full-field behaviour of the plate-fluid system. The
Bernoulli-Euler plate theory is assumed to govern the plate behaviour, while the fluid

() This work was supported by the United States Atomic Energy Comumission.
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. is assumed to be an acoustic medium. This assumption restricts the range of validity

of the present analysis to loading velocities less than the plate seismic velocity,
For the application considered here, the plate seismic velocity will be much greater
than the acoustic velocity of the fluid, so some interesting cases of loading velocities
super-seismic to the fluid are within the scope of this analysis. The geometry is two-
~dimensional and the applied pressure is defined in terms of one space variable and
‘time. By the application of a double Laplace-Fourier transform to the field equa-
tions and boundary conditions, and making use of a change of variable employed
previously by Norwoobp [4], an expresssion for the pressure in the acoustic medium
is obtained. The complexity of the result prohibits an exact transform inversion
for the pressure for all time, however, using the techniques of {4 — 7], one readily
.shows the existence and the behaviour of pressure wave fronts propagating into
the fluid. Within the spirit of this investigation, RusspLL and Herrmany [8] obtain
the complete solution to the problem of a submerged infinite cylindrical shell subjec-
ted to a moving load. They also utilize the Bernoulli-Euler theory for the sheel,
but this analysis is restricted by their assumption of an incompressible fluid
{infinite wave speed).

As examples of this analysis, two specific loading conditions are considered.
The first i3 a stationary load suddenly applied over half of the plate surface, and
the second is an expanding load spreading out from the origin in both directions
with a velocity # and exhibiting exponential decay with respect fo both time and
distance. In the second problem, an additional -wave cceurs if u is greater than the
fluid velocity, and is the only wave obiained in the steady-state moving load anal-
ysis [1]. It is found that, for both of these problems, the strongest pressure wave
front arises from a pole of the double transform of the loading function. Analogously,
the weakest pressure wave front arises from the zeros of a denominator representing
the plate-fluid coupling. This latter front is parallel to the plate and moving in a direc-
tion normal to the plate surface. This result is in accordance with the well-known
parabolic nature of the Bernoulli-Euler plate equation which provides for an in-
stantancous disturbance everywhere along the plate surface. _

Resulis are compared with those obtained in the absence of the plate for both
loading conditions considered. The presence ‘of the plate.greatly reduces the sharp-
ness of the propagating wave fronts in the fiuid. For the stationary load, the discon-
tinuity in pressure is reduced by the plate to a discontinuity in the pressure rate at
the wave front.- A similar reduction occurs in the moving load case.

2. STATEMENT OF THE PROBLEM AND GENERAL SOLUTION

In a rectangnlar coordinate system consider a plate supported by a fluid half-
-space. A pressure load is suddenly applied, at time =0, to the plate, as shown
in Fig. 1. The governing equation for the fluid is -

21 CZ'qufJ:fﬁ,m c*=Klp,
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where ¢ is the time, X is the bulk modulus, p is the fluid density, and ¢ is the dis-
placement potential function. This potential function is related to the fluid pressure
p and displacement u by ’

22 - p=—p0u, u=Vp.
[
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Fic. 1. Problem of a pressure loaded plate supported by a fluid.

The plate displacement w satisfies the Bernoulli-Euler equation
(2’3) . EIW, xxxx T Nw,rr=(1““Po s

where E7is the flexural rigidity of the plate (*), 1t is density per unit area, gis the applied
pressure, and p, is the pressure at the fluid-plate interface. At the fluid-plate interface,
the following conditions must be satisfied:

ag
(2.4) P=Po=—ppuy, w=—— at z=0.

The potential ¢ is required to vanish for large z, and zero initial conditions are as-
sumed for ¢ and w.

Formal solution. The Laplace and Fourier transforms to be “uscd here are deﬁned
respectively, by the equatlons :

@3) o) =i (,59)= [ o(e 5,07,
.6 | vez0= [ 00z ds.

() For plates, Ef=ER/12 (1—v?), where & is the plate thickness, & is the elastic modulus
and v is Poisson’s ratio.

. Rozprawy Inzvniersicie — 12
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The assumption of zero initial conditions leads to the double transforms

d?¢*
2.7 —d—z—(k2+a232)¢*=0, ac=1,
(2.8) (EIk*+ us?) W* =4* —pg .
The solution for ¢* which vanishes for large z is given by
2.9 0% (7 )= A (e B0, gk, )=k +a? s>

where the required branch is Re# (k,5)>0. By the first of conditions (2.4), one
has that .

(2-10) fo=—pstAlk,s),

and the second of conditions (2.4) yields the relation

(2.11) W= —n(k, ) Ak, 5).

The substitution of (2.10) and (2.11) into (2.8) leads to

(2.12) [(EI* + ps®) (K, )+ ps?) A (K, s)= —8* (k. 5) .

From the equations (2.9) and (2.12), and the inversion expression for the Fourier
transform, it follows that the Laplace transform of ¢ may be written as

a1 (k. 8} 2 +ikx Jr-

+ us?yy (k, )+ ps®

Q1) Gmng=— - f 2*(6:9)

Following NorwooD [4], the change of variable ik= —s0 is now introduced in
(2.13) to obtain

i i e—s[r; (to, 1) 2 +ax]
(2.14) 06z =5 - fcj"(zscr, R -
(2.15) D(s,a)=(Els*o* + ps*) n (ic, 1)+ ps.

Before introducing a specific form of g (x, £), it scems appropriate to consider
the Eq. (2.14) for z>0 in its present form(?). From the work of NorRwoOD [4, 5},
it follows that the wave character of @ is embodied in the exponent 5 (ig, 1} z+ox,
while the information about the load is found in §* (iso, 5), and the denominator
D (s, o) determines the effect of the plate on the solution for the fluid. Thus, in
accordance with [4, 5], the cylindrical wave front information at 1*=a” (x*+z%)
will result from the saddle point of (2.14), and the information at other possible
wave fronts will be dednced from the poles of 4% (isa, s} and the zeros of D (s, 7}
In the absence of the plate, it is casy to show that the solution is given by the Eq.
(2.14) by setting # and EI equal to zero. '

For simplicity, consider the region x>0, In thl° region the integration path of
Fig. 2 will be used, where ¢, and C, ate arcs of a circle, and Path I will be selected

(3) The solution scheme for z=0 is easier and will be outlined at the end of fhis sectio
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as a path of steepest descent. It is easy to show by Jordan’s lemma that, for the
4* uinder consideration here, the arcs C; and C, give zero contribution. The saddle
point of (2.14) is located at - '

2 2 -+
(2.16) o.=xa(x*+z%)" 2
CZ
o — POLE
X — BRANCH f— PATH |
POINT
°g
cuy cur

o - PLANE

Frc. 2. Integration Paths in the o-plane.

and the path of steepest descent through this saddle point is given by

x2 iz 5wl s ad
+m(k —~t3)7, to=a(x*+2*) gh<oo,

(2.17) g= *x'é J;;z_ +

where the + sign (—sign) holds for the upper (lower) portion of Path I. By residue
theory it follows that

(2.18) d 2 ) =F (x,2,9)+F, (x, 2,9+ F3 (x,2,5) ,
2.19) Fi(x,z,5)=2 Residues at the poles of §*(isa,s),
. i g-slalio, 13z +ox] Jr
{2.20) P (x,z,8)= B f §* (iso, 5) Dis o) R
Path I
2.21 Fy(x,2,5)=% Residues at the zeros of D(s, o),

" where it is understood that only residues from points lying in the closed contour
of Fig. 2 are to be included.

The expressions (2.18) — (2.21) are not in general readily invertible in the Laplace
transform variable 5, so consideration will be directed to the investigation of possible
discontinuities. In accordance with the Tauberian thoerem for hyperbolic equations
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[6], the behaviour of equations (2.18) —(2.21) as s—co gives the jumps at wave
fronts and also the approximate behavior of the disturbance near the arrival time.
These wave front asymptotics will be found by combining the techniques utilized in
references [4--7].

. The first step in deducing the behavior of F; for large values of s isto find APProx-
imately the zeros of D (s, o). From (2.15) if follows that

(2.22) D@, 0)=D(s,0)=D{s, —o)=D(s, - a),

where the bar denotes the complex conjugate of the quantity. Therefore, if D van-
ishes at o, then it also vanishes at — oy, 09, and — d,. Also, by the branch cut se-
lected for # (io, 1), there are no purely real or.imaginary zeros of D. The function

(2.23) ' D (s,5)=D{s,5)—2ps

satisfies relations equivalent to (2.22), but admits the possibility of two purely ima-
ginary or purely real roots between o=a and e=—a. This follows from the fact
that, for ¢ on the imaginary axis and also for —a<o<a, the function # (io, 1) is
real and positive, approaching zero.as o approaches 1-a. Thus, as ¢ varies along
the imaginary axis and between —a and a,

2.249) 0< (EIS gt s (io, 1)< o0,

and, by the evenness on o, there are two points +a at wh:ch the quantity in the
inequality equals ps, so that @ (s, g) vanishes at these points. The polynomial in ¢
(2.25) D {s,0)D(s,0)=0

~ has ten roots. In the approximation as s approaches infinity, D (s, o) has a complex
zero at

(2.26) )= "‘/4{1+('D )~1~+ } b4;i
. 0‘0({))— S1f2 4pa, ey EI

and, by property (2.22), it also has zeros at —o, (p), 05 (p), and —og (p). D (5, 7}
has zeros at ¢4 (—p), I( ;;)_ —ag (—p), and —ay (—p). By the foregoing argument,
% (s, o) has iwo more zeros cither between —a and +-a or along the imaginary
axis. This accounts for all the zeros of (2.25). Thus, it has been shown that D (s, o)
has four zeros in the g-plane which are deduced, approximately, from the Eq.
(2.26). 1t follows that F, may be written as

(2.27) Fy(x,z,5)={Residue at o, (p)+ Residue at a,(p)}.

To simplify the work in subsequent sections, one now assumes 4% (iso, 5) to
be a ratio of polynomials in o and s*. By this assumption one can now proceed

to the details of the integration along the path of steepest descent. Let oy be de-
fined by

x)\. 4
3 ( 2_ro)2

i
2.28 N= +
(228 . () x?+z* x4z

*} If ¢* (ise, 5) is not of this form, one might have to redefine Path T.



TRANSIENT RESPONSE OF A PLATE-FLUID SYSTEM 365

and denote by f(g) exp (—s/) the integrand of (2.20). Then the integration along
Patiz I gives

229 Fy(x,z9= { e dl 4 f flas (A))___u}m_(__)_ e"‘a’ﬂ,}
which is reduces to
o Im o1 ()
(2.30) £y 2,9)= = f £(5. @) ;,1 —sgy
do (%) inlie, 1) zA, - ix
231) A oy M D= s (Bt
(A2 —13)

Introduce the change of variables t=1-1, into (2.30) to obtain

ff(ai (t+ o)) — o (T+tﬂ) e~ dr.

(2.32) Fy(x,2,8)= —e”‘°

To obtain the approximation for large s, one takes the contribution about the saddle
point to obtain as the first term

in (10'1 (to), 1)
= 2E

{2.33) Fo(x,z5)~ —e""“"" e" dr,

f Fo1()
At the saddle point, # (io, 1) is real and therefore D (s, 5) is also real. By the

definition of §* (isg, 5) via (2.5) and (2.6), §* (iso, 5) is also real at the saddle point.
Consequently, one can write (2.33) as

Q34  Fi(xzs)=- e Sl ‘D) 1 (o (t), 1) f

T ID

d’r =

e f(0'1 o))
T Q)

oo (2P

In this equation, one now recalls equation {2.5) to deduce that exp {—s¢,) is the
Laplace transform of & (#-1,), so that (2.34) represents a cylindrical wave front

atr=f,=a (x? —i~z2)2

For z=0, the analysis proceeds by setting z=0 in the Eqg. (2.14)-(2.21),
but now Path I collapses to an integration path along the branch cut from a
delta to oo,

3. LoAD OVER HALF OF THE PLATE

Assume that the applied pressure is given by

a.h gx,3=H{{H(—x)e™, «>0,
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as shown in Fig. 3; when «=0 this represents a uniform pressure over half.
of the plate. The Eq. (3.1) leads to

' 1 1

3.2 . # (i -

(3.2 q* (so, )=— s

LOAD
HitH-xe™
-
] PLATE §
f_\ : X
o ."f',,
N

FLuin

¥
z

Fig. 3. Problem of a stationary load over half of the plate.

which has a pole at 6= —a/s. For x>0 the contour in (2.14} is closed to the right
and one finds that only #, and £, contribute. For large s, at o=0, (1),

1
(3.3) g% (iso |, 5)= -

527

D(s,0)~EIs* o n(io,,1).

Thus the Eq. (2.34) becomes

(3.4) EBy(x,z,8)m — de s s™132
(3.5 - A=[2t, m)* Elc? ()] .

Therefore, for Ty=7—1t, sufficiently small, it follows that
(3.6) : Fy(x,z,0)m — AH(T) T 2 =1 (13/2),

where I' is the gamma function. The Eq. (3.6) represents a wave emanating from
the point (x =0, z=0) and travelling info the fluid with the fluid velocity ¢, as shown
in Fig. 3.

From (2.26), (2.27), and (3.2), it follows that
3.7 F 3 (x,z,5)=2Re (Residue at a4 (9)) .
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For large values of s, this equation becomes

—saz
(3.8) Fs(x,2,8)m — ———— Re gt #2agbxs 2 elnrt

2aus

In the case of F,, one was able to show in the Eq. (3.6) the power of 7, which
holds at the wave front ¢ —f,=0. In the case of F; this is not possible, and one must
then provide some corresponding information about Fs. This can be done by identi-
fying exp (—saz)=2 {4 (t—az)}, and noting the decaying exponential in the last
factor: exp (—bxst/? 271/2), The Eq. (3.8), for T sufficiently small, leads to

(3.9) Fa(x,z,t)x—@G(x,z,T),« T=t—az,
2apn

where
(3.10) G (x,2z,5)=Re git” =/2a g=txs'? ";’"4.9‘4.
Using the relations
@3.11) | L} =L { O (O —F D (+0),
(3.12) lim s/ () =£(0),

s~¥>an

repeatedly in the Eq. (3.10), one concludes that G (x, z, T} and all of its partial
derivatives with respect to T vanish at 7=0. By these results one concludes that (3.9)
represents a wave which is infinitely smooth at the front. This result is in accordance
with the diffusive behavior of the plate equations, the effect of which is inherent
in D (s, o) as pointed out in the paragraph following the Eq. (2.15). This wave
motion parallel to the surface of the plate and travelling with the fluid velocity ¢
resuits from the Bernoulli-Euler_plate equation which provides for any disturbance
to be felt instantaneously everywhere in the plate.

For x<0, one closes the contour in (2.14) to the left along the mirror images
of Cy, C,, and Path I. By residue theory, one obtains

(313) q’t)(x, Z, S):fl (X, Zs S) +f2 (JC, Zy S)+f3 (x3 z, S) ]
(3.14) fo (x,.z, )=F(x,z,5)),
(3.15) - flze) = —Fi(—x,55),

and f; (x, z, §) is the contribution from the pole of §* (iso, 5) at = — a/s. The be-
havior of f; (x, z, £) and f; (x, z, t) follows from (3.6) and (3.9). For f; (x, z, 5),
one has

e—-s[rr (tafs; 1) 2 —ax/s]

52D (s, ‘_"/S)

(3.16) ] filxz8)=—

For large s, this reduces to

e xx e—saz

(3.17) fi(x,z,8)~ —

?

pas*



368 F. R. NORWOOD and W, E. WARREN

leading to

eatxHT T3
ua ()3!'

(318) fl (X,Z,I)%"‘

By the first of relations (2.2), the pressurc may be obtained from

(3.19) Bx,z,8)=P,(x,25) +B,(x,z,9) +_133 (x,2,5),
(3.20) B (x,2,8)=—ps>fL(x,2,5).
Thus, from (3.4) and (3.8), it follows that for x>0,
(3.21) P, (%, z, D pAH (1) TIPT1(9/2),
(3.22) Pi(x,z,t)=p (D) & G(x,zz, D .

‘ 2au ar

" For x<0, (3.14) and (3.15) yield corresponding relations for the pressure con-
tributions. In addition, one has the contribution from the Eq. (3.17) which gives

e H(T)T

623 N LT

In the absence of the plate, the solution for the potential p may be obtained
from the Eq. (2.14) by setting  and E7 equal to zero. In the case when « is iden-
tically zero, the technique used to generate the Egs. (2.14) - (3.23) would give the
exact solution. However, the present purpose is to exhibit the asymptotic form
for non-zero «. This form is given by

1

o ’ z 2T \%
(3.24) p(x,z,t)%e“"H(——x)H(T)+H(To)*f—€;( p ) ,  x#0,
. - 4]

Comparing [(3.21) —(3.23) to (3.24)], one concludes that the presence of the
plate has prevented the load discontinuity from propagating into the fluid. Also,
the presence of the plate has created a wave front at z=cf for all x.

4, MOVING PRESSURE LOAD

Consider a pressure load spreading over the plate, and assume that the intensity
decreases with time and distance from the origin. The specific form to be con-
sidered is (see Fig. 4) '

4a.n g(x, D={Hx) H{t—vx}e -+ H(—x) H(t+vx)e*|e™",

where vu=1 and u is the travelling speed. Taking the Laplace transform on time
and the Fourier transform on x, one obtains the expression

. _ 1 . |
4.2 q* (ise, 5)= ! [ sot(B+s)v+ra  so—(f+s)v—a ]’
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with poles located at to,, so,=(f+s5)v-+a

By the symmetry of the problem, it will suffice to consider the region x>0, so
that the Egs. (2.14) - (2.34) are directly applicable. In this region there is a pole
contribution if the inequality o,<o, is satisfied (o, is defined by (2.16)). This ine-
quality can be satisfied only if w>e, and it implies that

(4.3) X > ¢z (u2—cz)'% :

~ﬁt e x|

FiG. 4. Problem of a moving pressure load.

"That is to say, the contribution is found only for pomts to the right of the line
x (u? —02)2-—02 shown in Fig. 4, One finds that

i e sWlop Vatay]
s(s+ ) Ds,o,)

By approximating this equation for large values of 5, one finds that

{4.4) Fi(x,z,8)= —

B
e=s [(a%—v*) "z +vxl s
i —_ — 2, A2y
(4'5) Fl (x, Z, S)N - " e {(vB+a)Ex—cz (n*—c?) 3,
ER* (a* —y*)2s®

GRS

_ T H(T,)e 09+ Lo 6 -e ’ s
(4.6)  F,(x,z,0)~ — - » Tp=t—vx—(a®—v?)7z,
Eft (a* —v*)z 5!

which is valid in the neighborhood of the straight line r=vx+z (¢*—v*)% shown
in Fig. 4. This wave front correspends to the conical wave fronts found in [5).
It does not exist for u<ec.
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For large s, at the saddle pomt o=a, (t,),

2y
_(4-7) §* (isc,, )= T e
Substituting this into (2.34), one obtains
(4.8) Fy(x,z,5) e Be st g= 1312,
(4.9 B=2y {[02 (1) — V| Eto (o) 2n1e) ¥},
(4.10) Fo(x,z, ) mBH(T,) TEH2 1 (13/2),

valid for Ty=1¢—1, sufficiently small.
From (2.26), (2.27) and (4.2), one finds that

4.11) Fy(x,z,5)=2Re (Residue dt o4(p)),
and, for large values of 5, this reduces fo
(4.12) 1«3()‘, z, 5y ba= 1t g 520 R g ten/4 oit% 224 5 —beltH xsti2 (ofa

The comments given afier the Eqgs. (3.8) and (3.12) apply in this case also, mutatis
mutandis.

Appealing to the first of the relations (2.2), the results for the pressurc follow
from (3.19) and (3.20). Thus, from (4.5) and (4.8),

u Tg H(TB) e—(v.’]+a) [x—cx{u?—»") -3
(4.13) Py{x,z,0)p i ,
6E (o> —v*)?2

(4.14) P, (x,z, 1)~ —pBH(T) TI* F=1(9/2).

Once again, P, (x, z, 1) vepresents a wave front at f=az whlch confains the smooth-
ness properties of Fy {x, z, ).

As was indicated previously, in the absence of the plate, the solution is given
by (2.14) with D (s, 6) defined by D (s, ¢)=ps. This leads to

(4.15) Py (x, 2,6) 0 H(Tg) e~ 09 rme =™ Fal
(4.16) Po(x, 2,0y C(,2) H(To) T2 >
@.17) C(x,2) =2z Q) [1 (v? — 07 (£0)) (2 +22)]

Comparing {(4.13) to (4.15) and (4.14) to {4.16), cne again concludes thatthe
presence of the plate has prevented the load discontinuity from propagating info
the fluid, and that the presence of the plate has created a wave from at z=ef for
all x.

5, DIsCuUsSION OF RESULTS

In both the stationary and moving load problems, three distinct types of waves
are generated in the fluid. Two of these have counterparts in the solution with
no plate present, while the third wave arises from the plate-fluid interaction. The
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pressure associated with this last wave, along with all its time partial derivatives,
vanishes at the wave front. Also, this wave front is found fo be parallet to the plate
surface and propagating into the fluid with the fluid velocity. These characteristics
of the plate-fluid interaction wave are due to the parabolic nature of the Bernoulli-
-Euler plafe equation which provides for a disturbance to be felt instanfaneously
everywhere in the plate. The remaining two waves arise from (i) the specific nature
of the loading function itself, and (ii) the hyperbolic nature of the wave equation
governing the behavior of the acoustic fluid.

The contribution to the wave motion in the fluid arising from the specific loading
function yields the strongest wave fronf, In both the stationary load and moving -
load probiems, the strength of the wave fronts are reduced by the presence of the
Bernoulli-Euler plate. For the stationary load, the time discontinuity in pressure
is reduced to a discontinuity in pressure rate. A similar reduction oceurs in the moving
load case.
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STRESZCZENIE

PRZEJSCIOWE ZACHOWANIE SiE UKLADU PEYTA-CIECZ POD WPLYWEM
CISNIENIA STACJONARNEGO I RUCHOMEGO

Teoria Bernoullicgo-Eulera oraz metody transformacji Laplace’a i Fouriera zostaly wykorzystane
do badania mozliwego ruchu falowego w polprzestrzeni wypelnionej cieczg i podﬁierajacej nieskon-
czona plyte. Powierzchnia plyty jest poddana obciazeniom zaleznym od czasu i wspohzednych
przestrzennych, Rozwazono dwa szezegdlne warunki obeigzenia: stacjonarny i ruchomy oraz
otrzymano przyblizone rozwiazanie e czole fali dla zaburzenia cidnienia w cieczy. Podano ograni-
czenia dia przeprowadzonej wezefniej analizy stanu ustalonego, Otrzymane wyniki pordwnano
z przypadkiem braku plyty. W ramach tej teorii obecnos¢ plyty ostabia czolo fali ci$nienia w sto-
sunku do ci$nienia wystgpujacego w plaskiej polprzestrzeni wypelnionej ciecza,
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Pegszowme

IEPEXOOHOE HOBE,[[EHI/IE CUCTEMEL THTACTHHKW-KUAKGCTH
G BIMAHWEM CTAITHCHAPHOIO W TIOABMOKHOTO HABIIEHASA

Teopuss Depryume-Ofinepa B MeTOIL npecbpazopammit Jlammaca ¥ Dyphe HCMOAL3OBAHLL
LT ACCHCA0BANNA BOSMOZKHEOTO BOJIHOBOTO JIBHACCHHS B HOSYIDOCTPAHCTES 3ATIOIHCHAOM JKHAX-
KOCTRIO M PORNEPEHBAOINEM OeCKOHCUNYIO NNACTHHKY. 1JOBEPXUOCTS IiaCTHHKT NOABCPTHYTA
HATPY3KaM 3aBRCAIM OT BPEMEHU W TIPOCTPAHCTBEHHLIX KOODAHAAT. PACCMOTPEHEI ABA YACTHRIX
YCIOBHA HATPYMCHHA: CTALMOHAPHOS H LCABHNEOS H TTOHYYSH0 TPHGIEDKEHHOS BRPAKEHHE IS
BO3MYINSHHS IABNICHEA Ha (poure Bosusl, J{ArOTCA OTPAHMYSHHS UL BPOBCACHAOIO Dpapee
AHANHN3E YCTAHOBHBIUEroCA COCTOANMA. [lonyweHHbIe Pe3yALTATHL CPABHEHLI CO CHyIASM OTCYT-
CIBEA IMACTHEKH., B pamkax aroli TeopEM mpECYTCTBEE HNACTEHKK Oonabiser fporT BOHBL
JABIEHHA TO OTHORICHMIO K NABNEHHI0 BLICTYUAIOMIEMY B INIOCKOM NOIYHPCCTDAHCTBE 3aL0N-
HEAHOM JKHLKOCTBIO,
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