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A PHYSICAL THEORY OF THE FINITE ELASTIC-VISCOPLASTIC
BEHAVIOUR OF SINGLE CRYSTALS

C. TEODOSIU (BUCHAREST)

The afm of this paper is to review some of the main results concerning the mycrodynamics of
dislocation motion in single crystals and to construct a finite phenomenological theory of the elastic-
-plastic behaviour on the basis of these results, The physical research done in the last forty years
has shown that plasticity and viscoplasticity are typical properties of crystalline materials and that
the motion of crystal defects (dislocations, point defects, grain and phase boundaries) is the main
elementary process that is macroscopically observed as viscoplastic deformation. However, the
real physical microscopic process is so complex that any macroscopic theory, derived hy applying
certain averaging procedures, has to focus on merely the main aspects of the process, in the hope-
of clarifying their relative importance in various regimes of loading, temperature, and crystal con-
ditions. This paper is intended to give a sufficient general description of the elastic-viscoplastic
behaviour of single crystals. However, anelastic deformation, viscoelastic deformation produced
by the motion of point defects, as well as recovery processes are not taken into account, and unload-
ing is considered as purely elastic('). The first three sections review the main present knowledge
<oncerning the microdynamics of viscoplastic flow, in order to get some guidance for the macrosco-
pic. theory, which is developed in the last five sections of the paper, and which is based on pre-
vious work by Kromer and Teopost [4] and Teopostu [5).

1, THERMALLY ACTIVATED MOTION OF DISLOCATIONS IN SINGLE CRYSTALS

1

When a dislocation glides, it generally encounters two types of obstacles:

(i) extended obstacles such as dislocation pile-ups, large precipitates or second-
~phase particles, etc.;

(i) local obstacles, such as impurity atoms, forest dislocations (dislocations
threading the glide plane), jogs in gliding dislocations, etc.

Extended obstacles produce a long-range stress field, which varies only slowly
with the position of the dislocation in the glide plane. The resolved shear stress(?)
generated by extended obstacles is usually denoted by t, because it is proportional
in the isotropic approximation to the shear modulus, z, and depends on temperature
only through the temperature dependence of the elastic constants. The mean wave-
length, A, of 7, is so large that thermal fluctuations cannot assist the resolved shear
stress produced by external forces, 7, to move the dislocations past extended obstacles;
therefore, such obstacles are also termed athermal obstacles.

(') For recent work relaxing some of hese restrictive assumptions see, e.g., PerzYNA 11, 2]
and Troposiu and Smororr [3].

(*) The resolved shear stress is the component of the stress tensor acting on the glide plane
and in the glide direction.
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Tocal obstacles produce short-range stress fields, which act over a few atomic
distances. Such obstacles are also called thermal obstacles, for they can be overcome

by the action of the effective stress,

(1.1) i F=T—1y, .
assisted by thermal fluctuations(®).

The resolved shear stress experienced by a dlsloca.tlon segment during its glide
is schematically represented in Fig. 1, where a positive long-range stress is consid-
ered to oppose the applied stress and a negative long-range stress to assist it in
moving the dislocation past local obstacles. For a dislocation segment to surmount
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Fig. 1. Resolved shear stresses acting on a gliding dislocation

the strougést local -obstacle at 0°K, 7 should equal 7,. However, at some temper-
ature above 0°K thermal fluctuations will assist the applied stress, and dislocation
glide can occur at a stress T<<7o. As temperature increases, 7 can decrease until
it becomes equal to the amplitude of the long-range stress field. Further increase
in temperature does not give any additional significant decrease in the applied stress,
since the energy barrier is too extended for thermal fluctuations to make a significant
contribution. Alternatively, if the applied stress grows beyond 7o, the dislocation
segment can overcome the local obstacle with no thermal aid: local obstacles become
penetrable to the dislocation motion. Thus, the stress regime corresponding to
the thermaiiy—actwated dislocation glide is defined by

(1.2) .. r<1:<'.c(, or 0<7*<ty,

where 15="14—71,. :
When a dislocation moves through an array of local obstacles, its velocity is
determined by the wait time, #,, which is tequired to cut or bypass obstacles,

(®) The Peierls stress, which represents the inherent resistance of the crystal lattice to the dis-
location motion, is a short-range siress field, too. However, if the dislocation glide is controlled
by overcoming the Peierls barriers, the effective stress should be considered as v# =141, since
this process takes place preferentially by thermal formation of double kinks at places where 7,
aids 7 in overcoming the barrier (6, 7}
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and by the flight or traverse time, f, which is required to move from one obstacle
to another. Hence, if /; denotes the mean separation distance between two succes-
sive obstacles, the average velocity of a dislocation 'segment is given by

(1.3) ' o=lf(ty ).

The relative magnitudes of the times 7y and #; depend strongly on the loading
and crystal conditions. Thus, for strain rates and single crystals used in routine
tensile tests one finds >ty or even fiy» tp. On the contrary, for very high strain
rates [8} and/or high purity single crystals [9] one finds #,, < ¢; or even f,, <. There-
fore, both times must be considered in a general treatment of the problem [10].

Since the dislocation has a negligible inertia, after overcoming an obstacle it
accelerates in a negligible time (*) to a-flight velocily, ve, which is limited by some
drag mechanism. During the steady-state motion of the dislocation, the dissipative
force acting on it equals the driving one, which leads for a unit dislocation length
to the balan?e equation

(1.4 Bop=hbr*,

where B is the drag coefficient, and & is the magnitude of the Burgers vector. The

magnitude of B is of the order of 10~ % cgs al room temperature and decreases to

about 1073 cgs at 4.2°K [11]. There are a number of mechanisms that are respon-

sible for the dislocation drag [12]. However, experiments carried out in the last few .
years on various metals with closed-packed atomic structures over wide ranges

of temperatures and dislocation velocities have shown that interaction with thermal

phonons and conduction electrons gives rise to the most part of energy dissipation

for moving dislocations.

A still open problem is the upper limit to dislocation velocity. Continuum linear
elasticity theory predicts that the total energy and effective mass of a dislocation
grow to infinity as the dislocation velocity approaches the minimum sound velocity
of the material. On the other hand, when the discrete nature of the lattice is consi-
dered, supplementary dispersion effects occur, which are very sensitive to the dislo-
cation core, and the lattice seems to support supersonic dislocation motion. For
mechanical fests, however, even under shock conditions, the dislocation velocity
is generally less than 1/10 of the minimum sound velocity, ¢. It has been shown [11]
that under such conditions, & can be taken in a first approximaiion as constant
being corrected only for high dislocation speeds by a “relativistic” factor of the
form

B=B, 1 —(vz/c)]"",
where O0<n<1. From Eq. (1.4) it follows that
(1.5 _ tp=Ipfvp=1Ip B/(br*).

(*) The acceleration time is as smalt as 1079 to 10~ sec at room temperature for close-packed
metals and increases by about cone order of magnitude at 4.2°K, This shows that dislocation velo-
cities are practically in phase with the effective stress even for very rapid loadings and high dislocation
velocities {111
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As pointed out by Frost and Asusy [13], drag also operates as the dislocation
bows out between obstacles before it ovércomes them; thus, in a more accurate
approach, it should be taken into account when calculating ty, too. However, in
a first approximation, we shall derive the expression of the wait time by the usual
approach of the rate theory applied to thermally activated aprocesses.

The reciprocal value of the wait time of a dislocation segment in front of a local
obstacle is given by '

(i.6) Wty =vEi—v5,

where v}, and v, are, respectively, the effective frequencies of the forward and
backward jumps over the obstacle. According to the rate theory [14 - 16], these
frequencies can be calculated by multiplying the corresponding attempt frequencies
v§ and v; by a Boltzmann factor, which depends on the free enthalpy of activation
and gives the probablity of the co-operative thermal motion of atoms making an
attempt successful. Thus,

(.7 covE o=y exp(—AGHED),  vi=vy exp (-~ AG kD),

where k=1.38% 1023 J/mol °K is Boltzmann’s constant, and 4Gt and AG~ are,
respectively, the differences in the free enthalpy between the configuration of the
dislocation segment in the saddle point and in the ground state for forward and
backward jumps and depend on structure, applied stress, and temperature (see Sec. 2).
It is generally assumed that the two attempt frequencies are equal and that they
are proportional to the fundamental frequency of the dislocation segment, i.e.,

(1.8) va =g =k, v bj(2),

where vp~8 x 1012 sec™! is the Debye frequency, / is the mean separation distance
between neighbouring barriers along the dislocation line, and &, = 1.8 -2 is a factor
which depends weakly on structure {17]. Taking k;=2 and combining the Eqgs.
(1.6) — (1.8) yields !

(1.9) 1/tw =0 b/D) [exp (— 4G [k0) —exp (— AG™ [k0)].

The equation (1.9) has been derived in a more rigorous way by GRANATO ef al.
[18] by using statistical mechanics for temperatures higher than the Debye temper-
ature, for which classical partition functions may be used. Their result can be
shown to reduce to Eq. (1.9) when the activation entropy is conveniently defined
[19]. |

Assuming now that all local obstacles have the same strength and are disposed
in a square array, i.e., {~/;, we deduce from the Eqgs. (1.2), (1.5), and (1.9) that

(1.10) v=bvy {[exp (— AG*[k6) —exp (—AG~ k)] ™" +Brpft*} 77

To obtain a more explicit expression of the dislocation velocity, the activation
free enthalpy should be evaluated as a function of structure, applied stress, and
temperature.
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2. INTERACTION POTENTIALS ASSOCIATED WITH VARIOUS TYPES
OF LOCAL OBSTACLES

The first systematic description of the thermally-activated dislocation glide has
been given by Sercer [6, 20, 21]. Subsequently, two different approaches for the
thermodynamic analysis of dislocation motion have been developed. Thus CoNrAD
and WDERSICH [22] and Lt [23 - 25] employed as independent thermodynamic
variables the effective stress, t*, and the absolute temperature, 8, while Basniskr
{26, 27], Ginss [28 - 301, and Scroeck [7] proposed the use of 7 and 8. Although
these alternative descriptions seem. to eliminate each other, HiRtH and Nrx [31]
have been able to prove their mutnal compatibility: the (r, 8)-approach describes
the behaviour of an actual thermodynamic system, namely the whole crystal acted
on by external forces , while the (t¥, f)-approach uses a hypothetical Jocal system
(a small region around a particular pinned dislocation segment), which models
the real one in a self-consistent way. However, the first approach, which will be
adopted in the following, seems more natural, because it is the entire crystal rather
than a local region which adopts the minimum free enthalpy configuration consistent
with the imposed structure,

Let us fake as thermodynamic system a single crystal containing mobile disloca-
tions, local obstacles, and sonrces of long-range stress fields. Consider a disloca-
tion segment of length 2/, which is pinned at its ends and at the midpoint by local ob-
stacles. Denote as before by 7 and 7, the resolved shear stresses preduced by external
forces and long-range sources, respec-
tively. The dislocation segment is bowed
out under the action of the effective
stress t*¥=7—7,. Let us denote by &,
and £, the midpoint position of stable
equilibrium under zero effective stress
and under 7*, respectively, and by &,
and ¢, the corresponding positions of
unstable -equilibrium (Fig. 2).

By thermal activation ¢he disloca-
tion segment can overcome the central
obstacle and move in the direction of
7 until it is stopped by the next obstacle.
Since this elementary event takes place within a very short time, the applied stress, the-
temperature, and the long-range stress field can be considered as constant. Therefore,
the equilibrium positions, &, and &,, will correspond fo the minimum and the max-
imum frec enthalpy, respectively, considered as a function of the displacement ¢
of the midpoint in the glide direction. Denoting by ¢ the virtual displacement of
the midpoint, the abscissas of the ground-siate and saddle-point positions, &, and
&y, are the roofs of the equation

(2.1) 0G (&) =6F, (&) —t* bisé =0,

Fig. 2. Equilibrium positions of a dislocation
segment pinned by a local obstacie

Rozprawy InFynierskie — 11
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where SF, (&) is the variation of the dislocation-obstacle interaction free energy
and 7* bl 8¢ is the reversible work done by the effective stress (Fig. 3a). Equation
(2.1) can be obviously rewritten as

(2.2) G (O)=Fi (&) —7*bl=0.

If &, and &, denote the roots of this equation, then the activation free enthalpy
is given by

2.3) AG=G ()~ G ()

The equations (2.2) and (2.3) may be also interpreted in terms of the forces
undergone by the dislocation segment. Putting (=G’ (&) and f,(O)=F, (5,
> we see from (2.2) that the dislocation segment is acted on by the force

24 f@)=fi(E)—7*bl.

The two terms on the right-hand side give the forces exerted by the local obstacle

and the effective stress, respectively. In view of (2.2)," we deduce that & and &,

satisfy the equation f(£)=0, and hence they are the abscissas of the points where

the graph of f; (&) is infersected by a line denoting the constant force t* bl (Fig. 3b).
From (2.2) and (2.3) it follows that

&2 &z
@.3) 4G= [ f@Qdei= [ fi@)di—v*blds,
31 1

with A6=¢,—¢&,, and hence 4G equals the shaded area in Fig. 3b. The guantity

(2.6) Ag= f yAGLS

equals the area under the graph of f; (f) bounded by the &-axis and the lines {=¢;
and &=¢&,; it obviously depends on t* and represents the coniribution fo AG of
the atomic misfit produced by the local obstacle.

The guantities 4V* and A4% defined by

(2.7 AV*=pA4*=blAL,

which have the dimensions of a volume and an area, respectively, are commonly
termed activation volume and activation area. However, AV* is not a volume change
of the system, for dislocation glide does not alter the crystal volume.

With the notions (2.6) and (2.7), the Eq. {2.5) becomes

(2.8) AG=Ag—t*AV*,

Calculating the explicit dependence of 4G on 7%, 8, and structure requires the know-
ledge of the functions F; (&) or f; (£), which charactenze the dislocation-obstacle
interaction. In this respect distinction should be made between the so-called “‘rigid”
and “deformable” free energy profiles [19].

A rigid energy profile is given by a single dependence of I, on &, irrespective of’
the value of 7*; it characterizes the interaction between an undissociated dislocation
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and a rigid obstacle (such as a precipitate particle). On the contrary, a defor-
mable energy profile is represented by a function F; (&) that depends on t*; it chara-
cterizes the interaction between the gliding dislocation and a deformable obstacle
(such as a forest dislocation), or the interaction between a dissociated dislocation
and an obstacle, whether the latter is rigid or deformable. An accurate discussion
of deformable energy profiles would require the consideration of non-linear elastic
and core effects arising from the change of the atomic bonds in the deformable
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Fig. 3. Schematic representation of the ener- Fig. 4. SEEGER’S irfangular potential and
gies and forces associated with the overcoming its corresponding force — distance curve

of a local obstacle by a dislocation segment

obstacle as the gliding dislocation moves to its equilibriwan position &,. That is
why, for the sake of simplicity, only rigid energy profiles will be considered in
what follows. .

The activation volume, AF*, depends on ¢# through both A¢ and I In the
original treatment of the thermally-activated dislocation glide given by SEEGER
[32,6], it was assumed for simplicity that the profile F; (£) is rigid and that 4¢ and
! do not depend on * and 8. This is equivalent to assuming a triangular free encrgy
profile or a rectangular force-distance curve (Fig. 4). Such a potential is believed
to give a reasonable approximation for defect-emitting jogs.

A more intricate interaction potential, which, however, seems to be adequate
for a broader class of rigid obstacles, is the sinusoidal potential proposed by Morr
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and Naparro [33]. Choosing for convenience the origin of the £-axis in the ground-
~state point for zero effective stress, as shown in Fig. 3a, the free energy profile is
given by the equation

(2.9) EA=(F2)[1 - cos (nE/E)},
‘whence, by (2.1) and (2.3),
(2.10) AG = (AF{2) [oos (rE,/E3) —cos (mé /£,)] — 1% bIAE
" In view of (2.2), the abscissas &, and &, are the roots of the equation
@.11) sin (n/E5) =28, ble*{(mAF),
-and hence
2.12) Ey=(&im) sint 28, bEH(FAF)],  $a=8—Eu
It then follows that
(2.13) AE=¢,— &, =& {1 —2fm)sin~ 1 [2£, ble*[(mAF)]}.
Substifuting now (2.12) into (2.10) yields
(2.14) AG=AF, {1 = [2&, blt*[{(mdF)*}11* —v* bIAC .

Under the action of the local effective stress, v, the dislocation segment bows
out between obstacles, which increases the probability of the contact with other
obstacles. The amount of bowing out depends on t* and on the line tension, and
hence also on the shear modulus, u. Consequently, the average spacing / of the
obstacles along a dislocation line depends on t* and-& (through the tempera.ture‘
dependence of ). From the statistics of dislocation-obstacle interactions FRIEDEL
[34] deduced that, for not too small and not foo large values of %, [ is given
by the relation

(2.15) I=(ubAft*) 3,

where A is the average area swept out by a gliding dislocation during an activation
event, which is assumed independent of % and 6.
_ Introducing (2.15) into (2.13) gives

(2.16) AE=(20,/m) [mj2—sin =1 (v%/75)*%],
where
@217 & = [RAF 28, b7)] [RAFJQE} p A2

is the value of T corresponding to 4Z=0, i.e., the minimum value of t* for which
the dislocation segment can overcome the local obstacle without thermal activation.
From (2.14) - (2.17) we finally obtain

(2.18)  AG=AF, {{L —(e¥[zh)*31H> —(t* [v)*/* ]2 —sin~{ (/)]
The plot of AG/AF; versus 1%/t, is shown in Fig. 5.
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Although the sinusoidal potential has been originally proposed for describing
the interaction between dislocations and precipitates; it gives a reasonable intuitive
interaction potential for other types of rigid obstacles, too. On the other hand,
for large values of £* for which the ratio t%/7, approaches unity, the Eq. (2.18)
yields _

(2.19) AG = AF, 22 [1 — (g#]25)*13]32,
a dependence obtained as high-stress limit also for other intuitive potentials. Thus,
for the interaction potential

(2.20) F(Q)=AFexp (£/Eo)/[1+exp (£/0)],

which has been introduced by SeeGer [35] in connexion with the theory of
irradiation hardening, one obtains after a similar calculation
THO- @y "

(221) 115:250 10g ]."—{I _(r*/,rz)z,’s]lfz » ﬁf

. AF; ,
222y wo=—(5 [AR/(Lo u ]2, : _
8b* &g

(223)  AG=AF {[1~(z*[15)?/*] 2 —
—(T*[z) 23 AEJ(AE)},

and the last equation yields for v#/;, close to unity

(2.24)  AG=Q4F/3) [L = (t*[z5)* ]2, g s
i.e., the same functional dependence of AG on Fis. 5. Variation of the activétion free

7* as that found in the high-stress limit for the enthalpy with the effective siress
sinusoidal potential. :

Before closing this section we note that, in view of (2.8) and assuming that the
quantities Ag and 4V* are approximately equal for forward and backward jumaps
over local barriers, we can write

(2.25) ACGY =Ag—t* AV*®,  AG~ =dg+1* 4V*.
Substituting now (2.25) into (1.10} leads to
(2.26) v=bvp {exp (Ag/k0) [2sh (z* AV*[kO)} 1 + Bypfr¥} 1,

Various simplified forms-of this equation, corresponding to variouPs stress and
strain-rate regimes, will be analyzed in the next section. We note here only
that, as expected; v vanishes together with the effective stress, T+,

It has been already mentioned that drag operates not only during dislocation
flight, but also as the dislocation bows out between obstacles before overcoming
“them. As pointed out by Jonas [36], since drag reduces the velocity of the dislocation
during activation, the apparent activation free enthalpy will be AG'=AG+ 4GP,
where 4GP is the energy dissipated during activation. Therefore, experimental
activation energies can be expected to be higher than theoretical ones for & given
class of obstacles by an amount which increases with the velocity of the dislocation
during activation.
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3. THE MACROSCOPIC VISCOPLASTIC STRAIN RATE

We will analyze now the relation between the microscopic dislocation motion
and the macroscopic viscoplastic strain rate, Assume for simplicity that a single
glide system is active and that glide is macroscopically homogeneous in the whole
crystal,

" Let oy, be the mobile dislocation density, i.e., the length of all mobile dislocation
lines per unit volume in the active system, at a given time, ¢. From these glide
dislocations only a small fraction, say a5 are moving between obstacles with
the flight velocity, vz, The other glide dislocations (density ay) are waiting at each
local obstacle a mean wait time, #, before overcoming it by thermal activation
. {Fig. 0).
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Fig. 6. Schematic representation of waiting and flying dislocations

The macroscopic viscoplastic strain rate, g, is given by OROWAN’S relation [37](%),
(3.1) d=bogvg.
The flight motion is said to be guasi-stationary(®) if
3.2) op Az CONSE.

during the mean flight time, ¢r. This requirement is fulfiled if no essential changes
in the stress, temperature, and structure conditions take place during the time #p,
ie, if )

(3.3) ttekt, Of<0, {tpge, dip<a,

where « is the fotal dislocation density and c¢ is the concentration of point defects.

(*) For a rigorous proof of OrROwAN’s relation in the case of a finite elastic-plastic deformation
see [41.

(%) The notion of quasi-stationarity of the dislocation motion has been independently introduced
by MeckiNG [38] and by de RosseT and Granato [10], being further discussed by MEecking and
LUckE {39], NEUHAUSER ef al. [40], and others,
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Since #5 is as small as 10-° sec [38], conditions (3.3} are certainly satisfied for

all macroscopic routine tests. R
Differentiating (3.2) with respect to t gives
. (3.4) G?Fzﬂwltw—“otp/tp=0,

where oty is the mobilization rate of the waiting dislocations and cg/ty is the
immobilization rate of the flying dislocations. Since o, =y +os the Eq. (3.4)
vields

(3.5 orpfte =y /tw=tr/(tw + 15,

and hence

3.6) oty =ty Ity gy =0y,

where lr=w; fr is the mean distance between obstacles and
3.7 ' v=Ipf(tw+tr)

is the mean dislocation velocity. From (3.1) and (3.6) it resulis that
{3.8) d=bhuyv,

where a,, means, as already mentioned, the total mobile dislocation density, which
includes flying and waiting dislocations as well.

Assume now that during the viscoplastic deformation stronger obstacles (such
as Lomer-Cottrell barriers) are generated that can no longer be overcome by thermal
activation. Let us denote by L3/ the average spacing between these obstacles, ie.,
the mean free path of the dislocations before their final immobilization, and by
t, the mean life time of a mobile dislocation. The entire dislocation motion is said
to be gquasi-siationary if

{3.9) g const
during the life time #;. This condition is satisfied if the stress, temperature, and
structure condifions do not significantly change within the time #;, le., if
(3.10) to<€t, O,<0, it<c, <o,
As t; is of the order of one second, condition (3.10) is always fulfiled for low and
moderate strain rates. On the contrary, sudden changes in temperature or strain
rate cause a transitory behaviour until a new quasi-stationary state is attained
[38, 39].

Differentiating (3.9) with respect to ¢ yields
(3.11) Opr=Fp—Fr="Fp— Ol =Fp— g0/ L=0,
where r, and r; are, respectively, the production rate and the immobilization rate,
of the mobile dislocations. Hence,
(3.12) oy v=rplk,
and the Eq. (3.8) may be written as
3.13) d=brpL.
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Finally, if the immobilization of the dislocations by strong barriers is definitive
(no recovery takes place), then the production rate of the mobile dislocations equals
the rate of the total dislocation density, i.e., rp=d, and hence

(3.149 d=hbal.

‘This equation has been repeatedly-used in the literature [32, 41, 421, If the variation
of L with o is known, then the Eqg. (3.14) expresses the viscoplastic strain rate in
terms of quantities characterizing the dislocation multiplication and motion.

The analysis of thermally-activated dislocation glide undertaken in the preceding
sections enables us to replace the velocity » in (3.8) by the expression (2.26), thus
obtaining

(3.19) d=b% oy vp {exp (dg/k) [2sh (z* AV k)]~ + Byp/r*1—1,

It should be noted, however, that passing from (2.26) to (3.15) requires averaging
over all dislocation segments moving through the crystal. Therefore, when using
the Bq. (3.15) for the interpretation of macroscopic experiments, the quantities
Ag, ©*, AV*, and «,, should be regarded as phenomenological parameters, which
correspond to those denoted by the same symbols in the Eq. (2.26) only in special
circumstances [19, 31]. Nevertheless, the Bq. (3.15) has the merit of suggesting the
right macroscopic variables to be included in the continnum theory and will be used
to this aim in what follows.

In order to investigate the influence of various parameters on the viscoplastic
strain rate, the dependence (3.15) has been studied by means of digital computer
technique [43].-It was assumed for simplicity, like in SERGER’S original treatment
of thermally-activated glide, that Ag and A¥* do not depend on *. Denoting
as before by

Ty =AgldV*
the effective stress for which local obstacles become penetrable without thermal

activation, the Eq. (3.15) can be rewritten in the equivalent form -

2
G.16) a=— SR s N—
{oxp (=g (1 —*/ra)/k8] —exp [ 4g (1 T T e kdl} 1+ Byl

The following typical values of the parameters have been chosen for illustration :
b=3x10"%cm, BPayv,=10°sec™!, Ag=1eV=1.6x10-"erg,
AV*=1.0005°, 15=0.6x10°dynfcm?, Br,jrs=060.

For details concerning the graphical illustration of the relations between the
parameters d, ¢, and 7%/7;, when one of them is considered as constant, we refer
to [43] and [5]. We content ourselves here with indicating that the numerical analysis
of (3.16) reveals that the general relation (3.15) may be given several simplified
forms depending on the prescribed stress or strain-rate regime:

i) For low effective stresses, ie., for 0<t¥/rp<0.l, the glide is obstacle-
-controlled. The hyperbolic sine in the Eq. (3.15) can be replaced by its argument,
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and the flight time can be neglected against the wait time, thus obtaining a linear
dependence, ’

(3.17) a=(26% oy vy AVERG) T exp (— Ag k),

~ between the strain rate and the effsctive stress.

1) For moderate effective stresses, i.e., for 0.1 <t%/1550.7, the glide is still
obstacle ~controiled. The hyperbolic sine can be replaced by an exponential function,
and the flight time can be further neglected against the wait time. It results that

(3.18) 4=b2 oy vy exp [~ (dg— % AVD)/(k8))].

ii) For high effective stresses, ie., for 0.7%1*/7:; <1, the glide is both obstacle
and drag-controlled. The hyperbolic sine can be still replaced by an exponential
function, but both wait and flight time have to be taken into consideration,
and hence

(3.19) d=>0% oy vp {exp [(dg — % AVl + Bypjr*}=1,

iv) Finally, for wery high effective stresses, i.e., for t*jty=1, the glide is only
drag-controlled, and “relativistic™ effects should eventually be taken into account
through a velocity-dependent drag coefficient (cf. Sec. 1). The wait time vanishes,
which again leads to a linear strain rate vs. effective stress dependence:

(3.20) d=b? oy T*/B.

We return now to the problem of obtaining macroscopic equations by averaging
procedures from microscopic ones. A rigorous averaging should include the statis-
tical representation of the long-range stress field as well as of the short-range bar-
riers. ‘

Unfortunately, none of these are known in detail. Tn order to evalnate the effect
of the long-range stresses, some assumption must be made about their form and
distribution.

Since long-range stresses are produced by internal sources, their mean value
on each section of the crystal is zero. Therefore, the simplest possible assumption
is that the long-range stress field, 7, (£), varies simsoidally, with an amplitude
7, and a wavelength A (Fig. 1). Accordingly, the effective stress field, 7% (&), is
given by

(3.21) : T* (&) =T-+1,5in (2né/4),

where v is the applied stress, assumed as being uniform throughout the crystal.

Various treatments of the effect of a periodic long-range stress have been carried
out by CHEN et al. [44], ArseNAULT and L1 [45], Apams [46], L1 [47], ArGoN
[48], Nrx' et al. [49], SoLoMoN and Nix[50,] and LutoN and Jonas [51].

Accounting for fluctuations in the long-range stress is rather important, since
these markedly decrease the average velocity of the dislocations; indeed,
more time is lost in the low stress regions than is gained as high stress regions are
traversed. To illustrate this effect, we will make use of a linear velocity-effective
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stress dependence, which is typical for very low or very high effective stresses.
In this case, again neglecting all inertia effects, the instantaneous velocity is given by
{3.22) 0 {x) =v, [1-+(7,/7)sin 2w/ 4)],

where v, is the velocity of the unimpeded dislocation under the applied stress 7.
Following the approach of CHEN et al. [44], the average velocity, », is given by

A d -1
(3.23) 5=A[ f vé)] .

Substituting (3.29) into (3.23) and setting a=2néld gives

A dee -1
v =2m}0[! 14+ (1,7 sin o ] ’

This integral can be calculated by residue theorem [50], thus obtaining

(3.24) p=0 [1— (71?12 <2

Similar calculations have been carried out for power and hyperbolic sine velocity-
-effective stress laws (see, e.g. [48, 51]).

Another important problem connected with the macroscopic averaging, which
stirs up an ever increasing inferest, is that of the dislocation movement through
random arfays of obtacles, which has been approached by using both analytic
solutions and/or computer simulations [13, 52 - 66].

The critical stress required to move a dislocation through a random array of
short-range barriers at zero absclute temperature has been determined by FOREMAN
and MagN [35] and by Kocks [56 — 58] They observed that the stress required
is less than that necessary to move a dislocation through a square array of the
same concentration of short-range barriers. :

A very complex one-dimensional stochastic model of the dislocation glide, with
random barrier height and spacing has been studied by Forman [66]. It comsists
of a series of obstacles with quadratic dislocation-barrier interaction potentials that
the dislocation must overcome by thermal activation and between which it moves
subject to both inertial and viscous drag forces. Tn addition, the model allows for
multiple jumps occurring when the dislocation, after traversing the interbarrier -
distance from the (n— 1) barrier, has an energy still greater than the n'™ barrier.
Computer simulations using this model led to the following conclusions:

i) The effect of the random spacing is negligible for all values of stress.

i) The effect of the random distribution of barrier strengths is important only
in the low stress, obstacle-controlled regime (#3 f5). It leads to a decrease in the dis-
location velocity in comparison with a model with uniform barrier heights equal
to the mean value of the random distribution. This is so because the larger-than
average barrier heights increase the wait ‘time much more than the smaller-than-
-average barrier heights decrease it
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iif) The coupling between barriers becomes important in the transition regime
(tw=1g). 1ts neglection would be physically unrealistic in the high stress, drag-con-
trolled regime, for the dislocation ought to be stopped at every barrier. It is worth
noting that multiple jumps become frequent from about t*/7, =0.6 to 0.7, in accor-
dance with the beginning of the transition regime found above by using a simpli-
fied deterministic model. -

Two-dimensional models of the dislocation glide are, of course, more complicated,
but they have the advantage of accounting for some important aspects arising
from the two degrees of freedom of the dislocation in the glide plane, such as kink
formation, curvature effects and unzipping (sideways motion of the dislocation).
Computer simulations using such models have been obiained by Frost and AsHBY
[13] and by CADMAN and ARSENAULT [65]. The latter showed that, as the shape of the
mobile dislocations is concerned, there are two possible types of gliding, depending
on the stress, temperature, and structure conditions. I the stress is large or the tem-
perature is high, the dislocation moves at the drag velocity and traverses the glide
plane as a straight line. If the stress is reduced or the temperature is lowered so
that some short-range barriers become effective, the dislocation does not temain
straight; it bulges out at several places, these bulge outs grow until they link together,
and the dislocation moves, forward in this manner. The magnitude of the bulge
out increases with the ratio between the applied stress and the obstacle strength.

Although much work has to be done towards a complete statistical description
of the elementary glide processes, the results obtained so far seem most promising
for a future improved macroscopic theory based upon the understanding of the mi-
crodynamics of viscoplastic flow and of its statistics (see also [4, 67]).

4, KINEMATICS OF THE ELASTIC-VISCOPLASTIC DEFORMATION AND iTS RELATION TO
THE DISLOCATION MOTION

Consider a single crystal % at time #,, free of any surface tractions and body
forces, at a uniform absolute temperature 8,, and choose this configuration, say (k,),
as reference configuration of €.

Assume that the crystal is imperfect. Then, a global matural configuration,
i.e., a stress-free configuration of the whole crystal, does not exist. Let X be an arbi-
trary particle of % and denote by N{X) a material neighbourhood of X whose
diameter in (ko) is small with respect to that of € but large in comparison with the
mean separation distance between crystal defects. To determine the residual macro-
scopic elastic deformation of N (X) in (k,) we may, at least in principle, cut out
this neighbourhood and release it under fixed positions of all crystal defects(?).
Let (ko) denote the configuration of N (X) obtained in this way. We then call the

(") For thin specimens, this requirement can praciically be fulfilled by irradiating the crystal
with fast neutrons before load-removal thus pinning the dislocations in their under-load posi-
tions (see MuGHrAB1 {68, 69]). However, the configuration (ito) plays in our considerations only
the role of an ideal configuration, which need not be achieved by any real experiment.
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deformation of N (X) from (k), to (ko) the residual elastic deformation of N (X} in
the unloaded teference configuration (ko).

Assume now that the crystal undergoes an elastic-viscoplastic deformation
under the action of external loads and of an inhomogeneous temperature field. Let
(k) denote its current configuration at time 7, and let x, and x be the position vectors
of the material point X in the confignrations (k,) and (k), respectively. The motion
of the crystal is given by the one-parameter family of mappings
CR)) - L ox=x(%08) |
and the welocity field by

- aX (X()s t)
(4.2 =
“2) i

The deformation gradient associated with the motion (4.1) is

3% (%o, 1) .
T %y, :

(4.3)

To determine the thermoelastic deformation undergone by N (X) at time ¢, we
may repeat the cutting out procedure used at time #,. Let (k) be the configuration
of the material neighbourhood A (X} obtained by cutting it out at time £, suddenly
reducing its temperature to 8,, and releasing it from. the constraints exerted on it
by the remaining part of the crystal, all crystal defects being again considered as
fixed. Then, the deformation of & (X) from (%) to (k) will be called the thermoelasiic
deformation of N (X) at time *.

" Like (ko), the local configuration (k) is a natural state only for the macroscopic
stress produced by the external loads, the inhomogeneous temperature field, and
the incompatibility of the viscoplastic deformation. To remove also the microscopic
stress produced by dislocations it would be necessary to cut the crystal into even
smaller pieces with diameters comparable to the mean separation distance between
the dislocation lines. According to our dcfinition of the configurations (fp) and (k)
we shall always understand by stresses and strains the corresponding macroscopic
quantities, i.e., mean values calculated over macroscopic surface and volume ele-
ments which, therefore, do not contain microscopic fluctuations.

The configurations (k,) and (k) have been obviously defined to within a rigid-
-body rotation. We now remove this indeterminancy by requiring that the mean
lattice orientation, as defined at points far from crystal defects, be the same through-
out the motion and for all particles X € %. According to this convention, the glide
directions and planes in the configuration (k) will be parallel to those in the confi-
guration (k,) for any X and 7. Then the deformation of N (X) from (ko) to (k) is
called the wiscoplastic deformation of N {(X) at time t(®).

Let now Y be another particle of N (X), and let dx, dX,, dx, d%,, denote the
position vectors of ¥ with respect to X in the configurations (k), (ko) (k), and (ko),

(%) This definition is justified by the fact that dislocation glide leaves unchanged the mean
lattice orientation of the crystal.
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respectively (Fig. 7). We define the .tkhermoelastic distortion, A, the residual elastic
distortion A,, and the wviscoplastic distortion, P, by the relations

4.4) dx=Adx, dxo=A,d%,, . dX=Pdx,. ‘
We also assume, that, for sufficiently small neighbourhoods N (X), the so-defined
values of the distortions at X do not depend on the choice of the neighbourhood
N (X) and of the material point ¥ e ¥ (X). Consequently, by repeating the same
procedure for all particles X € ¢ and times 4, we may define the fields A (x, ), Aq (%o),
and P (x, 1)(°).

Fig. 7. On the definition of various distortions and coofigurations associated with the elasfic-
-viscoplastic deformation

Suppose now that the tensor fields ¥, A, and P are continuously differentiable
and admit for any fixed time ¢ the inverses F-1, A~', and P~!. Since, by (4.3),

(4.5) dx =¥dx,,
it follows from (4.4) that
(4.6} F=APA L.

From (4.2) and (4.3) we deduce that
¥ =0x/0%,=(grad x) F,

(*) Ecxart [70] was the first to use time-dependent, focal natural configurations, fike 0,
in order to separate the elastic from the inelastic part of the total deformation. The non-linear
composition rule (4.6) of the distortions was independently introduced by Lk and Lt [71] and
Fox {72, 73] in the special case Ag=1, and by Troposiu [74] and Rice [75] in the general case.
The special choice of the orientation of the configuration (£) made in this paper was first used by
Teoposiu [74], and independently considered by Rice [75] and ManpeL {76].” As pointed out by
Lsg [77] and ManpeL [76], the configuration (£) may be nniquely defined only if the macroscopic
stress tensor, T, is uniquely determined by the current values of A and @, being independent of the
defect content of the crystal, This simplifying assumption is based upon the low sensitivity of the
elastic constants to the viscoplastic deformation, which has been revealed by various experiments.
It can be expressed mathematically by the additive decomposition of the free enersy density into
a thermoelastic and a dislocation-dependent part {Eq. (5.6) below].
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where a superposed dot denotes the time derivative for x,=const, and grad denotes
8/éx for t=const. The last equation can be written in the equivalent form

4.7 grad x=FF~ !,
from which, by making use of (4-.6), we obtain
(4.8) ‘ grad x=AA" +APP P,

This relation shows that in the non-linear case the velocity gradient cannot be de-
composed into a purely elastic and a purely plastic part, unless elastic strains and
rotations are small enough to allow the replacement of A by 1 in the last term of
the Eq. {4.8).

. Let n be the number of the (potential) glide systems of the crystal, and denote
by g and o), s=1, ..., n, the unit vectors of the glide direction and of the normal
to the associated glide plane of the s™ glide system in the configuration (k). Tt can
be shown [4] thai (1%)

4.9) Ppi= 2 W gt @
where
.10 GG =B ) 5

is the viscoplastic shear rate in the glide system (s) measured with respect to the
vectors g0 and n®, and the sum in (4.9) extends to all active glide systems. In
(4.10), b is the magnitude of the true Burgers vector, « is the total length of the
mohile dislocation lines at time ¢ per unit volume in the configuration k), and
v is the mean expansion velocity of the dislocation loops, i.e., the mean value of
the dislocation advance per unit time, measured on the outward normal to the loop
in the configuration (k) and in the s™ glide system. The quantities o', 9 are
assumed non-negative for any s. Consequently, we distinguish two glide systems
that correspond to opposite glide directions for each crystallographically potential
glide system. ‘

The equation {4.9) relates the macroscopic kinematic equation (4.8) to quanti-
ties characterizing the dislocation motion. It may be viewed as a generalization’
of OROWAN’S relation (cf. Sec. 3) to the case of the finite elastic-viscoplastic defor-
mation.

_ 5. THERMODYNAMICS OF THE ELASTIC-VISCOPLASTIC DEFORMATION

Before passing to this section, a word on the thermodynamic aspects of plasticity
may be appropriate. As is well known, the entropy, as a measure of the degree of
order, plays a decisive role in thermodynamic considerations. In our problem,

(19 In [4], the quantities associated with the corfiguration (k) are distingnished from the
corresponding quantities associated with the configuration (k) by a superposed tilde. In the present
paper, a1l kinematic quantities involved in the Egs. (4.9) and (4.10) are referred to the configuration
(%) and, therefore, no tildes are used to label them.
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the interest is not only in the degree of order as determined by heat vibrations, but
also in that of the dislocation arrangement, which is respousible to a very large
extent for the instantaneous state of the body. It seems, therefore, that the deve-
lopment of an accurate method for describing the internal state and ifs evolution
has to be more complex than the application of classical thermodynamics [4]. How-
ever, due to the high complexity of the problem, we confent ourselves in the follow-
ing with applying the common concepts of continuum thermodynamics, in agree-
ment with the level of accuracy adopted for the kinematical description of the de-
formation. .

The thermodynamic process must be compatible with the laws of balance of
linear and angular momenia

(5.1 divT+pf=px, T=T7,
and the balance of energy
(5.2) pi=T.gradx—divg+pr.

Here T is the stress tensor, f is the specific body force per it mass, ¢ is the infernal
energy density per unit mass, q is the heat flux vector, and r is the heat supply per
unit mass and unit time.

Along with Eq. (5.2); which expresses the first principle of thermodynamics,
we shall use the second principle in the form of the Clausius-Duhem ineguality

(5.3) piyz —div(@/f)+pr/t,

where # is the entropy density per unit mass.
Eliminating r between the Egs. {5.2) and (5.3), and taking into account (4.8),
we obtain ' _
pifzpi—(AA '+ APP ' A ). T+(1/0)q-grad 8.

Finally, by introducing the fiee energ); density

(5.9 w=e—nt,
the last,inequality becomes
(5.5) —pf —pr0 H(AA" +APP T AY)-T—(1/0) q-grad 620

We adopt now a set of constitutive equations, by taking as independent variables
besides the classical thermoelastic variables A, 0, and grad 6, a set of internal {or
structural) state variables, namely the total dislocation densitites o, ..., o™, and
the concentrations ¢V, ..., ¢ of various puint defects per unit mass(*'). These
constitutive equations are

w=y (A, 0, &, &)= (A, )+ (0, a, ¢),
(5.6) T=T(A, 0, e ¢), 7=0((A0 ar¢),
q=q(A, 0, grad 8, e, c),

Y There exists an extensive literature concerning the thermodynamics of _matesials with
internal state variables (see, e.g., [1-5, 74-99]). Some of the papers on this topic discuss also the
physical significance of the internal state variables in the case of the viscoplastic deformation [1-5,
84-86, 88-91, 94, 95, 991
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where
(5.7) a={a, .., a},  c={cP, .., "},

denote the vectors of the structural state variables,

The particular additive form adopted for y assures the.independence of the

. thermoelastic constants on the defect content of the crystal (cf. footnote p. 34);

¥ (6, o, ¢) may be mterpreted as residual free energy density in the confipuration

(k). Including grad @ as independent variable into the first three equations (4.6)

proves to be incompatible with the Clausius-Duhem inequality and, therefore,
it has been omitted from the very beginning.

Let us now investigate the restriction imposed by the Clausius-Duhem inequa-
- ity on the possible form of the constitutive equations. From (5.6); we find

o & . o ol
VEa AT gt et e

Introducing this expression into (5.5) gives after some manipulation

o ab oo .
>8) =T(A_1)T“p aﬂ TA- ”("+ aa)g P aa TP e T

+(APP A~ T+(1/8)q-grad 80,

It may be shown that there always exists a real thermodynamic process for
whick A and 0 take arbitrarily prescribed values at a given time. Therefore, in order
for the Clausius-Duhem inequality to be satisfied by all thermodynamic processes
compatible with the balance laws, it is necessary that the co-factors of A and 0
in the above inequality vanish, whence

&y (8, 6) (A 8 a0
s AT’ ” =
dA a0

{5.9) T=p

The possible form of the constitutive equations (5.6),, (5.6)4, and (5.9) may be
further restricted by requiring their form invariance under superimposed rigid-body
motions. If results that:

=V (B, 0, a, )= (F, )+ (6, o, ©),

o (E, ) L WE 60
(5.10) T— o e
q=Aq(E, 6, A" grad 0, o, ¢),
where
(5.11) : E=(1/2)(ATA—1),

is the elastic strain tensor, and where, for simplicity, the same notations were pre-
served for the functions W, i, and i, after replacing A by E.
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The equation (4.8) suggests that the term (APP~*A~%).T in (5.5) is connected
with the mechanical power expended in viscoplastic flow. Indeed, by using (4.9),
it follows that

(5.12) (APP~'A~)T=(p/p) BP*)-E=(pfp) ¥ a®1®,

where j is the mass density in the configuration (k), Z is a stress tensor related
to the Cauchy stress tensor T by [97]

.13 E=@Fp)ATTAT L,

and 79 is the resolved shrear'stress(lz) corr:esponding to Z in the élide system (), i.e.,
(.19 @ = (g n) . E= (Znf)-g).

Taking into account (5.4), (5.11), and (5.12), the balance equation of energy
(5.2) and the Clausins-Duhem inequality (5.8) become

. 3_ a . .
(5.15) ,5( i ;’l ot —éii . c) Z d®W 1) — (pp) divq -+ pr,
° aw L] alﬁ . a s ~
©.16 Wp(aa L '°)+ D980~ (5)p0) g-grad 0.

- When no plastic deformation takes place (g=c¢=0, ¢*)=0 for any s=1, ..., n),
these relations reduce to the familiar forms correspondmg to the purely thermoelasnc
deformation :

{517 - pBn=—divq+pr,
{5.18) q-grad 0<0.

Inspection of the Eqs. (4.10), (5.16), and (5.18) reveals that the nonthermal part
of the dissipation is entirely due to the motion of crystal defects.

In the subsequent two sections, the thermoelastic constifutive equations (5.11)
willbe completed by evolution equations for the structural variables.

6. RATE-INDEPENDENT PLASTICITY

It is worth noting that for sufficiently high temperatures (0> 6.,) at a prescribed
strain rate, or for sufficiently low strain rates (¢ <d,,) at a given temperature, the
necessary effective stress for overcoming the local obstacles is negligibly small,
and the glide proceeds by a thermal mechanism. The critical values of ¢ and @ cor-
responding fo the boundary between thermal and thermally activated glide can be

(**) It can be proved [3] that in the case of a finite elastic deformation, this 1'esoivcd shear
stress coincides with the one used for analyzing the dislocation glide in Sec. 2. For infinitesimal
elastic deformations, the resolved shear stresses corresponding to T and = are equal to each other.

Rozprawy Inzyhlergleie — 12
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obtained by setting t*=0 in the relation (3.18), which neglects terms accounting
for back fluctuations and drag dissipation. It results that(*?)

(6.1 G =b* ey vpexp{—AF k),  O,=AF [klog(b®vy e/

Considering also (3.20), we deduce that for #=const, the strain-rate range of the
thermally activated glide is given by

(6.2) o Go<d<b*amte/B. '

Alternatively, to point out the critical temperature i 4 constant-strain-rate
test, the flow stress, t,, is commonly written, by considering (1.1), as

(6.3) Tp=1*(d, 0) 1.

The variation of the flow stress with @ for ¢ =const is schematically shown in Fig. 8.

Such a diagram is in agreement with many experimental observations and in fact

also with the Eq. (3.16). According to the considerations above, thermal fluctuations

' ) - _can provide for > 8., the entire energy

' necessary for overcoming short-range

obstacles. As shown in Fig. 8, ¢ inc-

reases with d.in agreement with the

Eq. (6.1),. For 8> 8,,, practically 7% =0,

and the flow stress slowly decreases

_ with ihcreasing temperature due to the

temperature dependence of the elastic

cohstants intervening in . If 8, lies

9 g o —% - above'the melting temperature, the flow

stress vs. temperature diagram in Fig. 8

has . no longer a flat portion. Also,

more than one flat region may occur

for the entire temperature range from 0°K to the melting temperature, for a short-

-range obstacle at some lower temperature may become ineffective at a higher

one [6]. ) o . o

Suppose now that an isethermal elastic-plastic deformation proceeds at sufficien-

tly small plastic shear rates that §@ <d® for any s=1, ..., n. Then, since ¥ 20

for any s, in order for the glide system (s) to be active, it is necessary that the corres-
ponding resolved shear stress satisfies the activation condition(**)

(6.4) ' @ =19 (@),
If plastic flow takes place, say in the first p glide systems, then the Eq. (6.4) is

identically satisfied for s=1, ..., p. Differentiating the corresponding equations with
respect to ¢ yields S

To

-
L
|

"I
1

I ——

Fig. 8. Flow stress vs. temperafure at a pre-
scribed strain rate :

L (s}
. _a.ﬂ ()

(6.5) §0)= TR

s=1, ..., p.
~ i=1
(1% For t*=0, obviously, dg=AG=4F, (cf. also Sec. 2).
(1) We assume that point defects give no contribution to the long-range stress field and
to the mean free path of the gliding dislocations, L.
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By solving this system with respect to ¢, ..., &'P), we obtain the evolution equations

6.6) i = Z A (@40, s=1,..,p,

where ASY are known funcuons of their arguments.

Since the deformaticn is assumed to proc‘eed slowly, the dislocation glide is
cerfainly stationary (cf. Sec. 3). Hence, we can appiy (3.14) for each aciive glide
system, thus obtaining

. 14
67 L AO=BOLO (@) Y A ()¢,
' =1
where L (o) denotes thé mean free path of the dlslocatlons gliding in the system
(s). Finally, substituting (6.7) into (4.9) glves

(6.8) PP-l= E A () 1O (cx)*r“%‘“@nm
Si=1
This equation('%) is valid if at least one glide system i~ active. If ™ <7%) (@)
for any s, then all rates &, 4% vanish by virtue of (3.15), and hence PP~ '=0, i.c.,
the deformation proceeds elastically.
Equation (6.8) is obviously invariant to a change of the time scale and hence it
characterizes a rate-independent plasticity.

7. RATE-DEPENDENT PLASTICITY {VISCOPLASTICITY)

et us consider now the more general case when rate effects cannot be disregarded
and transitory phenomena corresponding to rapid changes in temperature andfor
strain-rate regime must be also taken into account.

The activation condition for the glide system (s) reads now

(7.1) T =7 70 () >0,

Suppose again that this condition is fulfilled for the first p glide systems. By virtue
of (4.9) and (4.10), we have

»
7.2) PP 1= DLaRo0bP@n,

y=1 '
The microscopic analysis done in Sec. 3 suggests the adoption of the following
evolution egquations:

7.3) S5 0@ (T (), 0,0, ¢)  for s=1,..p,
0 for s=p+1,..n
(7.4) dts;“{&m (&~ (a), 0,0, ¢)  for  s=1,..,p,
) 1o ' for s=p+1,..n
(7.5) 0 = 69 — S 0 L9 (e,

(%) The linear form of the Kg, {6.8) has been discussed by Zarka {88, 94} for a special choice
of the functions L%} (). The present form has been independetly derived by Troposiu [89].



180 C. TEODOSIU

where the functions %, L&), /9, and & are characteristic for the given crystal.
Their form can be deduced theoretically, by using microscopic models, as has been
done under certain simplifying hypotheses by Zarka [88]; or can be determined
experimentally.

We complete the system (7. 3) (7.5) by adopting for ¢ an evolution equation
of the type

(7.6) t=2 (0, 0, 0.

We recall that the viscoelastic behaviour produced by the migration of point
defects when no disloaction glide takes place is not taken into consideration. The
equation (7.6) is primarily intended to take into account the influence of the tempe-
- rature and of the dislocation glide on the concentration of point defects, in parti-
cular the generation of point defects during glide (*¢). '

The influence of the stress fensor on ¢ is rather complicated, for it depends on
whether the symmetry of the point defects is the same or lower than that of the lattice.
A complete description of the evolution of point defects would also require consi-
dering diffusion equations for various species of point defects. All these complex
phenomena are not included in the present theory. For recent progress in achieving
a more complete description of the viscoelastic-viscoplastic behaviour of single
crystals, we refer to [3]:

&, DisCuUssIoN OF THE THEORY PROPOSED

We collect here for convenience the basic field equations, namely the kinematic
equations

(8.1) F=APA;!, E=(1/2)(ATA-1),
i

8.2 gradx=AA~*+APP 1A', PP '= Z‘i“)g{”tgn“’,
g=1

the balance laws

(8.3) div T+pf=px, T=TT,
a . Ay, . _
(8.4) P(Uﬁ+“£'a+"é:-C)=(APP‘1A“1)-T—d1vq+pr,

the thermoelastic constitutive equations

(8.5 : w=1 (E,0, 0, )=y E,0)+§ (8, a,0),

ol (E,0) 2 (B, 0, o, ¢)
(8.6) T=pA ng LT T Ty
3.7 g=Aq(E,0,AT grad 0, a,¢),

(%) For a description of this phepomenon in NaCl see Frank [{100L
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which have to be associated with the condition of activation and the evolution
equations, i.e., (6.4) and (6.6) for the rate-independent plastic deformation and
(7.1), (7.3) ~ (7.6) for the viscoplastic deformation. To complete the formulation
of the boundary-value problem, we have to add to the above field equtions the
thermomechanical boundary conditions.

Let us test now the completeness of the above system of equations by using a
time discretization. Assume that we know at a given time ¢ the configuration (%),
and the state of the material, i.e., all thermoelastic and structural variables. The evo-
luticn equations permit to calculate the rates ¢, ¢%), and ¢, as well as the quantities
L and 9, and hence the term PP~ is deternined by the Egs. (6.8) or (7.2). Then,
the determination of x and § from system (8.1)—(8.7) becomes a generalized
thermoelastic boundary-value problem. By considering that the solution of this pro-
blem is valid during the time interval (7, £+ 4¢), where At is small enough, we can
determine the configuration and the state of the body at time #+4¢, and then con-
tinue the solving procedure in the same way.

We conclude that the theory proposed provides a sufficiently general framework
for the macroscopic analysis of the elastic-viscoplastic deformation of single crystals.
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STRESZCZENIE

FIZYCZNA TEORIA ZACHOWANIA SIE MONOKRYSZTALOW PRZY
SKONCZONYCH $PREZYSTO-PLASTYCZNYCH ODKSZTALCENIACH

Celem ninigjszej pracy jest przeglad niektdrych podstawowych rezultatdw dotyczacych mikro-
dynamiki ruchu dyslokacii w monokrysztalach i na fch podstawie zbudowanie fenomenologicznej
teorii sprezysto-plastycznego zachowania sig monokryszialow w zakresie odksztalcefi skoficzonych.

Przeprowadzone w ostatnich czterdziestu latach badania fizykalne wykazaly, Ze plastycznosé
i lepkosplastycznodé sp typowymi cechami materiatéw krystalicznych i Ze ruch defektow krysztatow
(dyslokacje, defekty punktowe, granice ziaren i faz) jest podstawowym elementarnym procesem
obserwowanym w skali makroskopowej jako deformacia lepkoplastyczna. Jednakze rzeczywisty
fizyczny proces makroskopowy jest tak zlozony, ze kazda teoria makroskopowa wyprowadzona
przy uzycin niektérych procedur udredniajacych musi skupié sig jedynie na glownych aspektach
procesn w nadziei wyjasnienia ich wzglednego znaczenia w roznych zakresach obciaZenia, tempe-
rafury i warunkéw krystalicznych. )

Zamierzeniem niniejszej pracy jest podanie wystarczajaco ogdlnego opisu sprezysto-plastycz-
nego zachowania sie pojedynczych krysztalow, Nie zostaly jednakZe uwzglednione w rozwazaniach
odksztalcenia niesprezyste, odksztaicenia lepkosprezyste wywolane ruchem defekidw punktowych
jak rdwniez procesy nawrotu, a odciazenie przyjeto jako czysto spreZyste.

Pierwsze trzy rozdzialy zawieraja przeglad podstawowej aktualnej wiedzy dotyczace] mikro-
dynamiki lepkoplastycznego plyniecia celem dostarczenia pewnych wskazowek dla teorii makro-
skopowej rozwijanej w piccin koficowych rozdzialach pracy, a bazujace] na poprzednich pracach
Kronera i Teodosiu [4] i Teodosiu [5].

Pesrome

CH3IMYECKAS TEOPWUS TIOBEAEHNMSA MOHOKPUCTAIIIOB IIPH
KOHEYHBIX VIIPYTO-HNACTHYECKHX OEGOPMANMAX

Ilempio BacTOsme paboTht ApIsetca 0Go3peRre OCHOBHEIX PE3YNRTATOB KACRIOHIMXCH MHAKPO-
JPHAMPKY ABZKESHVH JACIOKANHA B MOHOKDHECTAIUIAX M HA MX OCHOBE HOCTPOCHHE (PEHOMEHOIIO-
I'HYECKOH TEOPHMH YIPYro-IIACTUYECKOTO IOBEACHWS MOHOKDHCTA/NOB B 00NacTd XOHEWHBIX
Iedopmani. :

IIposenenHse B NOCICAHKSE COPOK JeT (M3HYecKuMe WCCTICHOBAHEA HOKA3ZANH, 4T0 IUIACTHY-
HOCTH H BASKONNMACTHYHOCTS SABIAIOTCH THRHYABIMK cBOHCTBAMK KPHUCTRIINTAYCCKAX MAaTCpHANOoB
B YTO JBFOKCHEC AedeXTOB XPHCTAMIOR (IHCIOKAIMN, TOYCUREE NedleKTH, FPAHBIE 3epeH ¥ da3)
SIBNAETCH OCHOBHBIM DTEEMeHTapHEIM fIpoeccoM, HabIonaeMoM B MaxPOCKONHYECKOM MaciiTabo
KaK Ba3komnacTHdeckas gmedopmanma. OnHAKe peansHbId  (QH3EICCKAH  MAKPOCTIOMMYECKH
NpOLIECC TaK CHOXEH, YTO BCAKAA MAKPOCKOIHYECKAs TeOpHS, BHIBCACHHAA NP MCIOIEIOBAHHN
HEKOTOPHIX YCPeNHAIOMEX IPONSAYD, AGBKHA COCDENOTOYMTLCH TONBKO HA TIABHEIX ACIeKTax
HpoHecca B BAgeskye BLIACHCHHESA HX OTHOCHTENBLHOLO IHAYSHHA B PA3HEIX MHTEPBANAX HATDY3KH,
TOMOCPATYPEI ¥ KPHCTAINTHYCCKUX YCIOBHH.

Hameperrem HocTORme! paboTh ARIACTCH NPHBEASHNS AOCTATOTRO OOLEr0 ONMCAHHA YIIPYIO-
IVIACTHMECKOTO TOBCACHHSA OT/CTBYBIX KpHECTANIOB. OMHAKC B PACCYNJCHUAX He YYTEHBI HEYIpy-
e Bedopmanmy, Ba3koympyrEe AedOPMAUEM  BLIBAHHBIE JBIDKEHMEM TOUSTHRIX ME(EKTOB,
KAK TOXKe YIPOLECCH BO3BPATA; PA3TPY3KA e IPHHATA KAK IACTO yupyras.

Ileperie TpH INIABH comepkarT 06G30p OCHOBHBIX AKTYanbHbLIX 3HAHWH, KaCAiOU{MXCSd MEKDO-
HHHAMHAKY BASKOTUTACTHIICCKOTO TCYCHMA ¢ HENBI0 OPABEACHWA HEKOTOPHIX YRA3AHWH JIIL MAKpO-
CKOIMYCCKON TEOPHE pa3BHBAEMOi B HATH 3aKNIOMATENLHLIXK Tiiasax paboTel ®m Gasupyroniux
Ha npeasaymEx pabortax Kpemepa m Teonocny {4] u Teomocuy [5].





