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MAGNETOHYDRODYNAMIC OSCILLATORY‘5 FREE CONVECTION FROM
A VERTICAL PLATE

SHANEAR PRASAD MISHRA and JUGAL CHARAN MUDUL L
{(BHUBAMESWAR)

This paper investigates the problem of oscillatory free convection Jaminar boundary layer,
flows from a semi-infinite vertical flat plate in the case when the mean surface-temperature vaties
as a function of the distance from the leading cdge and there is a transverse magnetic field imposed
at the plate. The induced magnetic field and the viscous dissipation term have been neglected and
the study of the oscillatory flow is restricted to a small amplitude only.

NOMENCLATURE

n,v velocity components, '

coordinates,

Ry
~

time,

acceleration due to gravity,
coefficient of thermal expansion,
temperature,

kinematic viscosity,

magnetic conductivity,

magnetic field,

density. of the medium,

thermal diffusivity, ‘

means steady temper'atm'e function,

f e TS % N wm oo

N

frequency of oscillation,
a function, Eqgs. (2.4},
velocity in outer flow,

=
o BB

-~ =

stream function,
characteristic Iength,
amplitude of oscillation
functions, Eqs. (2.7)
Prandtl number,
magnetic number,

Eqgs. (3.1),
Eq. (3.2},

functions,
functions,
functions,
V-1,

constants,

Egs. (3.8) and (3.15), (3.16)
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+ dimensionless variables,
‘ derivatives with respect to ¥,
o ambient conditions,

7 01,2,

n 1,2,3,..,35

1. INTRODUCTION.

In recent years considerable attention is being drawn to unsteady boundary
layer theory with boundary layer response to imposed oscillations. The solution
of this problem consists in solving a system of partial differential equations. Such type
of problems have been studied, among others, by NaNDA and SHARMA 1], KELLEHER
and YANG [2], Mugur! and Marrt [3], MiTaL [4], MERKIN [5], ZeyTOUMIAN [6]
and Por [8] who has studied a problem of oscillatory free convection flow past
a semi-infinite vertical plate.

Unsteady magnetohydrodynamic free convection flow past a hot vertical plate
has been studied by Cmawara [9], SoUNDALGEKAR [10], Por [11], MisHrA and
MoHAPATRA [12, 13] and many others. In this paper our aim is to study the problem
of oscillatory free convection flow past a vertical plate in the presence of a magnetic
field. As in most of the free convection problems, here we find that we cannot
make the x-component of velocity u to be zero at a large distance from the plate.
For this reason, we assmne the presence of a steady outer flow. In addition, a special
feature of the present paper is that it develops a formally exact solution of the time-
dependent boundary layer equations. By disregarding higher power of ¢ amplitude
of oscillation, solutions for the velocity and temperature fields in the boundary
layer are obtained.

2. FORMULATION OF THE PROBLEM

We consider a semi-infinite vertical plate for which the axes x, y are taken aleng
and transverse to the plate with the origin at the leading edge. The equations of
unsteady boundary layer flow, in presence of a uniform magnetic field, are given by

du v
2.1) E_I-_B}—xo,
(2-2) %+u~3—{+vﬁ‘:gﬂ(2‘wT I+ azuHJ—qu |
ot ox dy ® "t ’
aT a1 or FPT
2.3) by Rl

at dx ”a—y:“ ay* ’

The fluid is assumed to be almost incompressible, so that changes in density are
important only in producing buoyancy forces. Viscosity, specific heat and thermal
conductivity are taken as constants and viscous dissipation is neglected. The induced
magnetic field is also neglected.



MAGNETOHYDRODYNAMIC OSCILLATORY FREE CONVECTION FROM ... 837

We shall consider the case in which the plate temperature is allowed to oscillate:
harmonically in time with small amplitude about a certain mean distribution along
the plate. The boundary conditions will, therefore, be writlen as;

(2.4) u=v=0, T-T,=T,(xX)coswi+H(x), at p=0,
2.5) u=U(x), T=T, -as p-oo,

where 7, (x) is as yet an unspecified function of x, H (x) and U (x) are unknown
functions to be determincd. Functions H and U are interpreted as a secondary effect
of free convection due to the non-linear terms which are contained in equations
(2.132.3). From the continuity equation (2.1} we can define a stream function by

d d
(2.6) 11=a—zj“, ':—%.
Introducing the non-dimensional quantities
elvt,  ymyt ()’ 8T g Tyt
@ @ lw? | 3?
@7 TT T AT, A(ch)= ) ey T
7Y g (8pT..)

v OH?
Pr=-— and m*=-—,
o ' pw

equations (2.2) and (2.3), superscripts “+7 being disregarded take the dimensionless
form ‘

a* Ay 9?7 dy Py a3 Fi
(2.8) -—l-l-e(— V.Y 2)= w“MZl,
agtoy dy dxdy dx dy oy? ay
ar ow oT oy 8T\ 1 T
2.9 —tel e = -3
at dy dx dx 0Oy Pr op?

where ¢is a small quantity. _
The corresponding boundary conditions become:

8): ={, = 7. sA(x), £<€l, at yp=0,
2.10) ,
dyr :
e =gB(x), T=0, as y-oco.

3. METHOD OF SOLUTION

To develop a solution we follow the method of Schlichting. The non-liniear
convective terms in the boundary layer equations (2.8) and (2.9) can be assumed
to be of smaller order than the linear terins when the frequency parameter is small.
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Therefore equations (2.8) and (2.9) suggest the expansion of y and T in powers of g,
(3.1 ' w=yotey +etyat ..., |
3.2) T=To+eT,+&*TH+ ...

Substituting these expansions into equations {2.8) and (2.9) and equating the terms
with equal powers of g, we get the following partial differential equations:

: Py Py o
_ 2 —

(3.3) a1y Fe +m By Tos
) ar, 1 T,
(39 T e g O

3 Py d dwy 02 dyrg 07
(5 G emt =g S She W S

dat dy dy ay ox oy dy  dxdy

8T, 1 8T, gy T, dwe T,

3.6 - = — e
(3.6) ot Pr &y dx dy ay dx’
subject to the boundary conditions

Py s

Wo = 2y —y/lg—g;-—(}, To=Taconst, Ti=A{x), at p=0;

(3.7)

Mo dyy

&y =0, 2 =B({x), To=T,=0, as y-co.

In order to solve these equations it is convenient to use the complex notation
for harmonic functions in which only real parts will have physical meaning.

In view of the boundary conditions (3.7) we assume the solution of (3.3) and
(3.4) to be of the form

(3.8) To=Tulo(Dets  Wo=Tolo(y)é".
Substituting (3.8) in (3.3) and (3.4) and using (3.7) we arrive at
(3.9) 0o —iPri,=0,

(3.10) Lo — (P +1) (o= —bq,

(3.11) GoO)=1, Lo(0={3(0)=0, Oofe0)=Lp(o0}=0,

where primes denote differentiation with respect to y.
The solutions of (3.9) and (3.10) for Prs1 are

(3.12) 0o =exp -V Pr/2(1+0)y],

/P

(o 3 R N

(13) T i (1~ Pr)) P (i)
| a+ny 5
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Now equations in (3.8) in real notations become: .
i s
(314) T HI(OOB +9 e—lr) WD :_2— :rm (CD e!t+C0 eﬁu)a

where the bar denotes the complex conjugate.
Passing to the second approximations, we see from (3.14) that 77 and w? consist

of a steady part and a time-dependent part. This suggests that the solutions of (3.5)
and (3.6) may be assumed as

dj’;?l

1 -
(3.15) Ty= 5 Ty 100 ()€ 480 () e +20,, ()],

: dr,
(3.16) W1= 7, dx [Cll(J’)ezir‘l‘Cu(y)e 24280, (0]

Substituting (3.15) and (3.16) in (3.5) and (3.6) and comparing the coefficients of
exp (2ir) and terms independent of it, we obiain

- " . P[’ ’ r
317 - 0, —2iPrf, =7({G o—6:00),
» Pr ., S o,
(3.18) 9, =T(0° Lo~Lotly—Coblo+00Ly),
I B ’ 1 12 ’H
(3.19) CLl (777'2+2I)€11=_011+?(€0 ‘Cogg)s
(3.20) §l—m? {p= =0y, s xe (Co Lo +8oly),

with the boundary conditions:

dT,
911(0):&1(0):6’[-[ (0)=C12(0)=CJ11(0)20, Ty

0 O=A (),

(3.21)

(911(00)2912(00):{11(00):0, Clz(oe) B(x).

Jll d
Now solving the equations (3.17)—(3.20) with the help of (3.21) we have

1 i e~ B )
= ) o=V 2Eay S —Esy
" ES(E%-1‘PI+2ELE3 Pr) +E5(Pr E* iPryoE, By 1€ 7

9 :__i__[ie—ljiPrj’ ___.,..;:D_f e(£;+£:,))]+
v AP RwAL
1 I' —_ E4_ PI‘ N
NI P 7% —]/ZPl'y_I____{ —(E FEDY . : —E4y}]+
4(EZiPD) ["’ vty A v

12 — Rozprawy Inzyanierskie
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+_—1_'[€—E;y ﬁj E-—]f'EPryw%wErJ!_;_P_}' e_(Ez+Ea)l’_ie—E3.\=}]+
4(E3+iPr) 2 Ey W(E,+Es)?

+ _L_M_ [_1._ e F2ery Pr e(E1+E4)y]
4(ET—iPr) ’
C122E12+E136-E“3‘+Eﬁ 6“'[/-2-1-733’ _,ETE—Ea)’+(E.lD_E8)e*(El+Es)J’+E9 o E1¥

and

Eqy Pr
glzz"Easg—(l—eﬁ”w)"}“'—“ [Epe-V2Py—FE e (E“‘+E3)P+

+E16 @—E"’y +L4 e_(E”LE“)”-l-Elg ¢ EVj—E,ge-V2Pry £
+E206_(53+E2))’+E21 g—(Ex“f'Ed)y_iEzz eﬁ(E1+E2)r+E23eﬁssy_‘_EMe_'El,,_i_Ezs pmEa7

where

. | Pr Pr
E§=(m2+1)> Eg':(?ﬂ-z_i)3 ES:(I'E'I) 7: E4=(l—l) 7:

g Pr(E, —Es) . iEs(F2+2E Es)
STE(ERCIR)Y 0 T 2EPrIET+(1-2PD) ] (B 25, E) T
e 2F, Es (E}—iPr)* +iPr(E, —E3)

T 2iE By Pr(E —iPr)? [—Ei+i(Pr— 11’

Es
E =
Y (E\4E)(E?4+2E, Ey—iPr)[2E, E;—i(Pr—1)}°
= (B, —Es)
? 2E Es(E?—iPr)?’
—(F, — Eg)?
E,o— (E1—Es)

2B, Ey (BT —iPr)* (B + Ey) (B3 +2E Fy—1)’
1 =(E7+DV2,  E,=E ,—Es+E;+E;—Es—Eq,
B, = [Wﬁ E, { 1 N E;+2E E; } .
(B2 42F E,—iPr) | 2E, E5+i(Pr—1)  iPr(E]+i(1—2Pr))
o E, —F; S iEs N
2F, {—ET+i(Pr— )} (Ey—iPr)* Pr{—E;+i(Pr—1)}
E,—Ey (B, +E5)? s ]

+ — :
i, (E2_iDr)? | 2B, E, {2F; Es+i(Pr— D}(E? —iiP2[(E; +1)'/*

B = 1 ( 1—i N 134 )
1‘*—2;/33"Pr3f2(2pr—~mZ) E24iPr  E:-iPr ]’
—E;5

B (EZ+iPr)(E, +E3)3 (iPr+2E, Eo—i)

Eis=
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o (—E, —iEy) - (Es+iEy)
Y E EPr(Ei—iPr)(mP—iPr)  E E Pr(iPr+m?)[m*+((@Pr—1)2]’
E E4*.E1
Y EAER~iPO(E -+ E) (i—iPr+2E, E,) °
E. = (—E;+iE,)
8 R, EyPr{(EZ+iPr)(iPr—m?) ’
1
Ero 2y 2Pr 2Pr—m®) [m* + (Pr—1)*]°
o= (E, —E3)*
* 4E,Es[m*+ (Pr—1)?][(E, +E5) (Pr—i+2E, E3)]
Eo— (B —E.)*
B 4B E [mt A (Py— DB HE) (—iPr+2E, )] T
[ (B —Ey)?
#2 AE, By [m* + (Pr— 1)’ {(E + Eo) (m* + 2E, Ep)] °
- (B3 +iE,)
23 AR, By [m*+ (Pr— D2 (i Pr—m?)
E, E
E, E,
Fau= 4E, [m*+(Pr— 1P iPr+m?
E, E,
By Ey
By =

T 4E, it 1 (Pr-1)7]°

EzG:_]/EPrEL4: Ey=EsE,+Ey), Exa=EigE., Eng=FEy(E +E),
Byo=Eisks, Eyp=Y2PrE,s, Eyp=Ep(EstEy), Bas=Fay Byt B,
Esy=Ey (B +Ey),  Esys=EpnE,, LEig=EukE;, E3;=E\;sE,,

Pr .
Fg =T(E14 —EistE gt E G+ E ) — B g+ B+ By — Lo + 85+ Epy +Eas

and

Pr
Eyp= I (Eys+ LBy —Eyg—Eyo—Esg)+Es —E3, —Ej, ﬁEa‘t""Eas_—Ess —Es3;.

Substituting the values of @, (), 8, () and 6;, () in (3.15) and {15 (), $oo ()
and &y, (¥) it (3.16), we obtain the values of 7, and w, respectively, where #,, ()
and {;; (p) are the complex conjugates of #,, (¥) and ¢, (), respectively.

From (3.15) the steady part of temperature 7' at the plate is given by

b dTL,

(322) Tlstii’=0=§§ ﬂ‘l_-d)_cml
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and from (3.16) the sieady part of velocity w, at latge distance from the plate is
given by ‘

, 1 dT,
(323) . l)":lstl}r:co =

m
500
4, I)ISCUSSIONS

It is seen from the equations (3.15) and (3.16) that the boundary conditions
for Ty and w, are completely satisfied. This fact leads to the conclusion that a steady
velocity field (3.23) is induced at latrge distances from the plate.

Fig. 1 shows the effect of Prandtl number Pr on the temperature field. The real part
of 8 (), what is obvious from (3.12), is independent of the effect of the magnetic
field. Tt is seen from this figure that in a thin liquid layer in the boundary layer

a5k
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Fic. 1. Bffect of Pranétl number on &7 (3) with m=4.0.
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Fig. 2. Bffect of Prandil number on o with m=4.0.




TUX;; A

20+

apl
Fic. 3. Effect

10%af |

40|
30
28
10

o #

-05

I P
20\ NN 60 &0 w00y

of magnetic number on £ (») with Pr=0.6,

Fio. 4. Bffect

10%65 |
400

T

32.0

240

160

80

-4.40

120

20 40 60 80 a0 E

of Prandtl number on 67, (¥) with m=4.0.

m=00

20 46 &0 80 WOy

Frg. 5. Effect of magnetic number on 6;1 () with Pr=0.6.

[843]



x5 4
a0
Z=04
Z5 1
A=08
203
p.~08
15 |-
10 -
a5
1 i 1 | Lo
g 20 40 &0 &g - 100 Y

Fiz. 6. Effect of Prandtl number on {7 (») with m=4.0

‘fozxgr'; |
20 - m=0

10 - m=20

m=40

l i i 1
20 40 6.0\ 0o y
_10 L .

-0

—anl
16, 7. Effect of magnetic number on {r, () with Pr=0.6.

028l &

400}
320
240
160

&g

a

~40 | | i L i_F_
20 40 6o - ag 00 Y

Frc. 8. Effect of Prandtl number on &y, (1) with m=4.0.

[844]



10Px g )

2040
kil
1240
80

40

06 4

Fi. 9. Effect of magnetic number on 8%, () with Pr=0.6.

0%y §
801

B.=04

40—

20+

-a5

Fic. 10. Effect of Prandtl number on {7, (3) with m=4.0." s

. [845]



Table 1. Values of ¢y, for different values of m and Pr=10.6

i??}

KI 0.0 2.0 40 6.0
0.0 0.00000 0.00000 .00000 0.00000
10 | 034827 002269 | 000124 | 000029
2.0 0.79530 0.02681 000202 | 0.00044
30 | 115141 0.02721 0.11225 0.00049

40 1.33324 0.02629 0.00223 0.00048
50 137190 0.02529 000214 0.00046
6.0 1.33884 002462 0.00207 " o00046
7.0 1.29128 0.02420 | 0.00202 0.00043
8.0 1.25672 0.02419 000200 0.00043
9.0 1.24010 0.02421 7 0.00200 0.00043
10.0 1.23619 0.02426 0.00200 0.00043

=== T/Tn
—

-10 -8 -u6  -o4 -0z E az 04

e Ta/Tm

avr —_— T,

-10-08 ~0F ~04 ~02 0 (7 04

Fre. 12. Temperature profiles for different values of = with =%, Pr=038 and t=n.

[346]
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6% (¥) decreases as Pr increases. An opposite effect is observed outside this layer.
Beyond a thin liquid layer near the plate, the value of 0, () becomes negative and
then assymptotically tends fo zero as y—oo,

Fig. 2. illustrates the effect of Pr on the value of {% (). This figure shows that
{5 (v) decreases in the boundary layer as the Prandtl number increases.

Fig. 3. shows that I} (¥) decreases as the magnetic number increases. This
seems physically plausible. Beyond a thin liquid Jayer near the plate the value of
(% (¥) becomes negative.

Fig. 4 shows that in a thin liquid layer near the plate #7, increases as the Prandtl
number increases, In this layer, for smaller valus of the Prandt! number, €7, is nega-
tive. The maximum points of the curves for 6%, for different values of Pr move nearer
to the wall as the Prandt! number Pr increases.

An examination of Fig. 5 shows that in a liquid layer near the plate the effect
of m consists in decreasing 67, but beyond this layer an opposite effect is observed.
At a large distance from the plate &), asymptotically tends to zero.

Fig. 6 shows that i a thin liquid layer near the plate the effect of Pr consists
increasing {7, whereas, beyond this layver, an opposite effect is observed. For smallér
values of Pr, £, becomes negative near the plate.

Fig. 7 shows that {7, {y} decreases as the magnetic number increases.

Fig. 8 shows that 87, (¥} decreases in a thin liquid layer in the boundary layer
as Prandtl number increases. Beyond this liquid layer, however, an opposite effect
is observed. Furthermore, beyond a thin liquid layer, 87, () is negative,

Fig. 9 shows that ], {¥) gradually decreases as the magnetic numbre increases.
For smaller values of the magnetic number, 67, (y) becomes negative towards the
edge of the boundary layer.

Fig. 10 shows that {7, (¥) decreases as the Prandtl number increases.

From Table 1 it is seen that {7, () decreases as the magnetic number at the plate
increases. :

0 -

e T/l

~-10

Fig. 13. Temperature profiles for different values of # with =1, Pr=0.8 and m=6.0.
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Figs. 11, 12 and 13 illustrate the effect of non-linear terms on the fluid tempera-
ture distribution when ¢=1/2 and T,, (x)=x. These figures show the effect of Prandtl
number, magnetic number and time, respectively, on the temperature profile. It is
seen that the non-linear terms significantly modify the temperature profile.
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STRESZCZENIE

MAGNETOHYDRODYNAMICZNA OSCYLACYINA KONWEKCIA SWOBODNA
Z PIONOWEJ PLYTY

Rozwazono problem oscylacyinego, swobodnego konwekcyjnego przeplywu warstwy granicznej
2 polnieskonczonej plyty plaskiej w poloZeniu pionowym przy zaloZeniu, Ze Srednia temperatura
powierzchniowa jest funkejg odleglosci od krawedzi plyty, ktora jest ponadto poddana dzialaniu
poprzecznego pola magnetycznego, Pominigto w rozwazaniach wplyw indukowanego pola ma-
gnetycznego 1 czlonu odpowiedzialnego za lepka dysypacje. Badania przepiywu oscylacyinego
ograniczono do przypadku malych amplitud.

Pesmwowme

MATHUTOTHUAPOJIMHAMWYECKAS OCUHUINATIMOHHAS CBOBOAHAS
KOHBEKHIMS M3 BEPTUKAALHOW TIAWThI

Paccmorpera npofrema OCUMIIAUHOHHOTO, ¢BOOOIHD KOHBEKUMOHKOIO Te¥EHWH NOTPARHY-
HOTO CROs M3 IeNyGeckonedHol [NOoCKOH OANTH B BEPTHKAABHOM HOJGKEHWM, NPH NPEeAIoNo-
JKEHHH, UTO CPE/IHAA HOBEPXHOCTHAN TEMAEPATYPA ABIAETCA (YHKIUHEH PARCCTOAHHS OT IIMTHL,
KOTCpAaf KPOME 2TOTO HOABSPTHYTA JSHCTBUIO HOMEHETHOro MATHHTHOTO TGO, B paccysaenumx
npeuefpeTaeTcs BIMANMEM MAZYUEPOBAHHCTO MATHETHORG NOJSA M 4JIEHOM, OTBCTCTECHHEIM 3a
BA3KYIO pECcCMnaumio, Mccrepopamnsa OCIHHAAAIAOMHOTO TEYCHHS OTPAHHYEHB! CIYMAeM MAabIX
AMITHTY . '
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