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The paper deals with the application of the finite element method for large elasto-plastic defor-
mation analysis. The fundamental system of equations in Bulerian description has been obtained
from the very general variational theorem. The geometric stiffness matrices have been derived for
geometric nonlinear, one- and two-dimensional problems. The computer program, which have
been based on the ASKA program package, has also been discussed. The paper is itlustrated by the
numerical examples. '

1. INTRODUCTION

The analysis of various structural problems in the both geometrically and physi-
<cally nonlinear range of deformations has been a subject of considerable interest
for almost a decade starting with papers of FeLIPPA [1], LEVINE et al. [6], MARCAL
2], STRICKLIN et al. [5], Yacuami [3], Haseitr et al. [4]. All these papers, as well
as almost all of many others which have appeared later, were based on the finite
element method reducing the solution of a problem to that of tracing a nonlinear
load-displacement path by solving a system of nonlinear algebraic equations.

With the variety of numerical procedures naturally comes the question of which
technique is best suited for a particular application. At present we witness the sito-
ation that while there exist very many procedures to solve nonlinear problems
within the finite element concept, there is only small experience suggesting which
of them are to be used for a specific applicaiion. This is why all numerical procedures
and comparisons involving the both nonlinearity sources are likely to be very useful
for further development of the method.

The present paper explores the problem formulation (via a variational principle
of the one-field type) for large elastic-plastic deformation analysis. The approach
is demonstrated by determining geometric stiffness matrices for truss and triangular
plane stress elements. The comparison of the geometric stiffness matrix for simple
truss member with that derived in [8) within the “natural” disgretized approach
shows the strict equivalence of the two formulations. In the paper solutions are
presented for highly nounlinear truss and plane stress problem.

(* DAAD (K. Dems) and Humboldt Foundation (M. Kleiber) scholars on leave of absence
from the Technical University, £.0dzZ, Poland (K. D.) and the Institute of Fundamental Technological
Research, Polish Academy of Sciences, Warsaw, Poland (M.K.).
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Basically, two different approaches have been pursued in incremental nonlinear
finite element analysis. In the first, static and kinematic variables are referred to
an updated configuration in each load step. This procedure is generally called Eu~
lerian, moving coordinates or updated formulation. In the second approach, which
is generally called the Lagrangian formulation, all static and kinematic variables

“are referred to the initial configuration.

It is believed that in the case of significant nonlineariiies which exist usually
in structures made of pinjointed bars the Eulerian method is more efficient. More-
ever, as plasticity relations are normally written using the actual (true) quantities,
the updated formulation has been chosen to analyse the elastic-plastic behaviour
of structures.

2. BASIC EQUATIONS

The fundamental system of equations we shall obtain from the very general
contimuum mechanics variational theorem which, for the incremental deformation.
process described with regard to the actual configuration, can be stated as follows.
[71: At a given time ¢, when the state of the elastic-plastic continuum is described
by the field of displacement u;, the Cauchy stress o;; and the strain-rate potential
coefficients L, (that can depend on u;, oy; as well as on the entire strain history
if the material went previously plastic), the rate of displacement (the velocity) »;
due to the rate of dead surface loads {; is such that the following functional vanishes.
for any kinematically admissible variations of v, )

| .
(21) J(vi) = f [ :jkl di_} dkl O-u U,,, ir"}m, ]dﬂ: - f tﬂ) dQ
Ir

where the comma denotes the spatial differentiation symbol and we assume the coeffi-
cient L;y; to be derived from the strain-rate potential W as

v aW . 1 1
gip= c?d W= 5 w Ly dy,  dy= (“'—’1 itu ),
u:
v .
Gij™—0ij + Tij ‘vk, ET 0',-,,!‘2.’1’ m— Tmj 7”1’,, "
Y
where oy; denotes the Truesdeil’s stress rate.

The components of the given load rates 7, are measured with respect to the unit
of a deformed area and the integrals in (2.1) are taken over the current volume
and the current area {2, respectively.

iIf we now introduce the discretization assumption as(*)

vi (xk: t)z Vu (E) (pci{(xlr) 3 x= 17 27- "':N’

(*) We use the current coordinates as the position variables in accord with our Euleriam
development,
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where N is number of freedom degrees of the element considered and where ¢f is
a set of interpolation functions associated with nodal points and ¥, is a set of the:
nodal velocities, we arrive at

2.2) k8 k2 ¥, —R*=0.

The small deformation elasto-plasticity stiffness matrix &% is given by
af 1 o i3
k :'? f Li i @, 1 P, [ch s
the so-called geometric stiffness matrix (also referred to as “initial stress” matrix) by
af 1 ’ a "
kG = _?2,7 f Gy gpm, i @,,,,j dn
T

and the generalized load rate by

Re= [ iig7de.
2

To be more precise we write the matrix &% as
wff __ Jaf aff
kP =k kg

where k¥ is the classical stiffness matrix of elasticity and k2 is its correction (effec—
tively with “minus” sign) due to plasticity effects. Without trying to characterize
the solution. procedures developed to date we present shortly the procedure applied.
in the paper rewriting (2.2) in a somewhat different form by replacing the velocity'
by the difference between the current displacement and that after the time At (*);.

moreover, Eq. (2.2) is referred to a system level rather than element level as
(K + K+ KF14Uy = 4P

which can be put into the following form

@2.3) (K 4 KL AU, = AF“+J°,  Ji= —K% AU,

where AUy is a set of the nodal displacements increments and 4F* is a set of the nodal
force imcrements. '

In Eg. (2.3) the so-called additional nodal forces J* are defined as unbalanced
_ forces appearing at each load step due to the difference between purely elastic and
elasto-plastic behaviour. The formula (2.3) is now implemented by the following
iteration procedure repeated at each load step

K+ K| AUP = AF* 4Ty, T5=0, o

2.4) [KF + K] AU = AFt Ty, Jiy= — K AUP,

' @-1)
(K KSTAUD = AFe I8y, Joy=—KaUup=Y

(*) Since the loads are applied quasistatically, inertia forces may be neglected and arbitrary
time scale may be ¢hasen so that the velocities and displacement increments have the same values.
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‘which, if converges, must be continued unti} the nodal forces atfain constant (true}
value. We stress the fact, that the current total stiffness K& + Ki' of the system must
be inverted at each load step resulting in highly time-consuming calculations. In
spite of that we have found this method to be profitable in the case of significant
nonlinearities.

- Now we are to specify the above theory to the cases of truss and plane siress
triangular elements,

Truss element, We define a truss as a structure which consists of a given con-
figuration of bars connected to each other and to fixed or movable supports with
perfectly hinged joints, and subjected fo loads only at the connections. Bach bar

is of uniform cross-section and uniform properties along its length, but may differ
" arbitrary from other bars. The definition given above includes both the typical
truss-type structures with members subjected to both extensicn and compression
as well as prestressed networks of cables like tent roofs. The application of the pres-
ent algorithm to the former case is, however, to some extent limited as the analy-
sis of local instabilities in compression is so far not included in computer program.

ryz)
@ fjgrth
~
N
\\
58— B @
FiG. 1.

Fig. 1 introduces the notation. We confine ourselves to the considerations con-
cerning one element only since the global stiffness matrix is built from the clemental
stiffness matrices in a standard fashion.

The position of a member element in space is represented by a column vector

x={x%y% 2% x0, y*, 2} in which  {x% % z?} and {x% )" 2"}

are the Cartesian coordinates of the nodal points « and b, respectively. The dis-
placement vector of the member and ifs increment are given by

Pox 1= 0% P P3P P P2y = {07 0"}
po 1= (9% B3 P50 B 3, P} =167 6%
‘while the coresponding force vector and ifs increment by
Rox1={R}, R}, R, R, R}, Ri}={R*R'},
Rox:= (RS, R, RE, RY RS, R ={R* R}
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with the analogous meaning of the particular components. Direction of the member
. is characterized by

Cy 1 xP—xt

— w— b a
Cywt1 ™3 Cp | i y—y
¢, zb—z°

We note the following ‘group of formulae to be hold

b - Tt *b - M “a
Ppar [C ¢ ] [ . Pfaur% Ppar __L Tr*s e
poae = leeT] o7 B ! - te"— e
par ?
°p T ob * -
“Porth — [13 —ce ]P ? . Pzrthg pgr h 1 . .
P, n:—“'% :T (13—ccT) { Pb— Pa} ’

Pnrlh [13 ]éaa
(2.5) p - p —['"'Isls]{;,

. 1 .
P, n =" l ) [_ ccchT} <X

R=[-¢TcT|R,.
We now specify the functional (2.1) for one-dimensional case of a bar element
performing the calculation in a convective set of ccordinates rather than in a fixed
one. We get from Egs. (2.1} and (2.5)

1
{2'6) = A'r[kl\’l IPH’ nl +O',t u([ Prr ni + ] Pm "52)] TR ¥

where A is the cioss—sectlon and /-— the lenpgth of a bar, dnd where o, stands for
the only component of the stress state and ky, is the natural styﬁ'ness of the element’
to be specified. We assume further the stress component o, to ibe negligible in com-
parison to the siffness ky, (what is the case for metals). i

The functional (2.6) takes the form

L1 . Lo
J(P):?Ai[kh’l IPTT,J)I2+UIT)‘1 ] Pm, ﬂ]-’]_ pTR
o1, on using (2.5), the form
Lo 1A e
2.7 J(p)m; ——{p [—ec cc’}TkNI[ cc”ee ot
+ PT[_(ISﬁcc )13—(“‘:1-] Ghn [H(I37CCT)I3'—FCT]é}"~ éTR

”

ar .
If we now minimize the functional (2.7) by considering 3 = dp=0 we shall
arrive at ' e '

Akyy [T —ee”], R, ] Li—ec? —(l;—ceT)], .
e p=R

1 —ce? ee” —(X; —ce”) i —

8 — Rozprawy Iniynierskie
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or, shorter, at
(2.8) [kz_» 1 +kq 1] p:R )
in which the elasto-plastic stiffness matrix %k p, L is seen to bé

fey, A [ cc” —cc?]

kp.p 1= /

—cc? ccT
while the geometric stiffress mairix kg ¢

R,-,[ 1;—cc” —(Ia—ccT)]
Ke,1 =7 —(I;—ce”) Iy—ce” |

From (2.8) the total stiffness matrix can be assambled in a common manner.
We note that the incremental stiffness matrices presented herein are equivalent.
to those derived for elastic trusses in [8].

Triangular plane stress element. In the development of a triangular plane stress
clement it is assumed that the element lies in the x-y plane as shown in Fig. 2. The-
element (a)-(b)-(c) of arbitrary triangular shape is located arbitrarily in relation.

FiG. 2.

to a rectangular coordinate system (x, ¥). The velocites (the displacement increments)
of an arbitrary point are denoted by #,, v, (du,, Au,) and the nodal velocites g, 9,
are indexed according to the nodal description.

The following presentation of the conventional matrix is to a large extent in
accordance with the classical development of [9] and it is why the geometric stiffness
matrix only will be described here in some details.

- If we express v, and o, as the first degree polynomials in x and p, then we get

| 1
Uy (JC, J’) =—2}§“ [UJ’] Avxa Uy (x5 y) :E [1%}’] AVV ’
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where €2 is the area of the triangle and

pe I
V.= t P V]'= ,ﬁs s
24 oy
' Al XpVe— X Ve KeVa— Xale KXo Yo— Xy Va
A=Az =] »=de = VeV Ya= Ve
A; Xo— Xy Xg—X, Xp— X,

- We have also
'Ux,x:ASle: t’_3!,:!1::142‘71’:
'Z)x‘ymAan, ‘Uy,},=A3V}‘,.

The functional (.2.1)‘ for the plane stress case takes the form

. 1 1 ,
(2.9) IW= f (zjzmdaH dw+?aﬂw§,aw?,ﬁ) d2-RTV,
2
where
. R’ R
R A
¥ ¥ Ri R';

The first part of (2.9) gives rise to the classical Cartesian stiffness matrix of the
infinitesimal deformation problem and therefore will not be further written out in.
full. '

If we denote
V,.=A,V, V,=A,¥V,
A, =1 0;]. D, =10;15],
the functional (2.9) can be rewritten as

~

1 - 1 .
(2.10) J(V)=7fVTkEﬁP,-2VdQ+E—J VTkg , VdQ- RTV,
o

2

where the geometric stiffness matri}_( kg, » is given by
' Kea=01, (ATATA A+ AT AL A A) oy, (ATATA, A, + ATAT A, D)+
‘ +022 (DTATA, A+ ATATAL A
On minimizing the functional (2.10) with respect to the velocity field we get
L [—kE—P,z“I”kG,Z]V:R'

As before, referring to the standard procedures for assembling the strocture
matrices, there is no need to consider the derivation of the matrices for more than
one single element,
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3. DESCRIPTION OF THE COMPUTER PROGRAM

The calculations have been based on the subroutines of the ASKA program
package available at the Institut fiir Statik u. Dynamik der Luft-u. Raumfahrt-
konstruktionen, The computational steps and other important features of the pro-

- gram as adapted by the authors are as follows, cf. Fig. 3:

1. Reading input data which comsist of parameters defining the type problem
to be solved, such as the type of element TRIM 3 -— constant strain triangle for
plane stress analysis, FLA 2 — one-dimensional truss element in three-dimensional
space, material data (elasticity or elasto-plasticity), nodal point coordinates, boun-
dary conditions, i.c., prescribed forces and/or prescribed displacements, total value

" of the generalized loading, number of the load steps in the incremental analysis
and their magnitude, parameters of the iteration procedure, output requirements.

2. First linear elastic step of the incremental solution needed for some program
organization purposes.

3. Next step of the incremental solution. Updating of the geometry of the for-
mation of the new stiffness mafrix, _

Iteration loop for plasticity based on the “initial load” technique composed
of: a) éstimation of the equivalent plastic strain increment; b) calculation of the
elemental initial load increments; ¢) calculation of the total load increment of the
_ structure; d) calculation of the displacement increment by a forward and back-
substitution on the right-hand side of the fundamental stiffness equation at the
load step considered. The actual stiffness matrix has been decomposed at the begin-
ning of the current load steps; €) calculation of the stress increments and, by ac-
cumulation (hyper-matrix addition), calculation of the current value of stresses;
f) calculation of the equivalent plastic strain increments.

The next iteration step is executed and the cyclic procedure is repeated until
the successive equivalent plastic strain increments become sufficiently close. We
proceed then to the next load increment. _

_In numerical examples, the analysis in the plastic range of deformation has’
been based on the isotropic work-hardening assumptions and stress-strain law
represented in unjaxial case by a modified Ramberg-Osgood relation of the form

3 1'10.1)10 [( T )m ( 1 )m]
T mE W\ Llog, 11/ ]

where 7, is plastic strain, which, for some material parameters E, yield stress oy,
and exponent’ m, properly characterizes the strain hardening of the alluminium
alloy. Other hardening theories have been also tested.

4, ExAMPLES
In order to illustrate the above method for solving elasto-plastic problems in the
geometrically nonlinear range of deformation we start with an example of the analy-
sis of a fruss as shown in Fig. 4. In the first part of the analysis the proportionally
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increasing (from 0 to P,,,) forces were applie‘d to the truss. The analysis was repeated
four times for four different load steps (Table 1), leading to the results given in
Table 2. For some chosen values of the current loading the greatest vertical dis-

_ Fic. 4.

placement (of the node 17) related to the height of the truss is given as well as the -
relative elongation of the bar 37 (¢s,) and the relative -stress in the bar 12 (Opy, 18
initial yield value). For comparison purposes the displacement of the node 17 and
stress in the bar 12 are also given as calculated under the assumptlon of the geo-
metrically linear behaviour of- The truss. - o

B frame 1.

Number of loading path T s I - I v
Number of increments a3 T22 B ¥ 8
First increment S . 276 P ena
Next increments 01724 Peny .03448Ppq 05171 Pena 09050P,na
Final load ‘ : Pona : : :

Time of caleulation 100%, 38% : 509% 429

The results indicate clearly, that up to the displacement of the order of 30%
of the characteristic truss dimension the results obtained as a function of a steps
number differ not more than 19 in the case of the displacements and not more
than 2% in the case of stresses. For the greater displacements of the practically
unrealistic order those differences reach the level of 15%. We note that the smallest
amount of the time was needed for the analysis with 22 increments of load.

The next comparison concerns once more the difference between the solutions
obtained within the geometrically linear and nonlinear thecries, Figs. 5, 6. The
stress distribution shown in Fig. 6 indicates the danger of omilting some important
features of the structure behaviour if the change in geometry is not included — the
unloading phenomenon proved to be only a result of geometric nonlinearities.
Fig. 7 shows additionally the subsequent phases of the process.
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As the next step we attempted to investigate the influence of the load history
on the final state of the truss, This analysis has been flustrated in Table 3 and in
Fig. 9 for the optimal version of the 22 steps-incremental analysis. The history of
the load is shown in Fig. 8.

As the next example of large deformation, elasto-plastic analysis the plane
stress problem of a perforated plate with a ratio of hole diameter to plate width
of 1/2 was considered. The plate was subjected to uniformly distributed loading
of intensity o.. The plate, its dimensions and properties are shown in Fig. 10,
The next Fig. 11 presents the finite element mesh and the boundary conditions for
the quarter of the plate which was analysed. The 20 loading steps were applied.
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The plastic zones for various loads are shown in Fig. 12. That figure and all others
are scaled with regard to the yield stress o, . The first element went plastic at value
of the external stress equal to 0.70,, . A plot of the longitudinal stress distribution
o, at the smallest cross-section of the plate for oo /oy, =1.0 and /o, =07 is
shown in Fig. 13. The next figure shows the relation stress against the relative dis-
placement of the point 4’ during the deformation process. It has been observed that
for the value of g, /o, =1.17 the peak load occurs as the resulting set of equations
becomes unstable. The analysis could be then continucd only under geometric
external loading but that was not attempted by the authors. Such a furtherance of
the analysis, however, would be every interesting. The plastic region continued to
grow until almost all of the quadrant has yiclded except for a small region located
above the void, cf. Fig. 15. No unloading regions have been observed. The analysis
had been terminated at the significant geomefry. changes (Fig. .14), which sug-
gests that the geometrically linear analysis would be insufficient. In fact, cf. Fig. 14,
the stress-elongation curve for such a case differs significantly from that for geo-
metrically nonlinear analysis and, basides, the peak load has not been cbserved.

5. CONCLUSIONS

The approach to the derivations of the fundamental equations of the finite
clement method via the varitional pnnclple presented above makes it posmble to
get all the matrices of the problem in a clear and elegant form.

The methods enables the geometrically nonlmear plohlems to be solved usmg
the ASKA progam package for physically nonlinear analysis without an interference
with its internal structure. The algorithm has been built basing upon the updating
of the geometry and adding the geometric stiffiness matrices at each load step and
solving the resulting elasto-plastic problem by means of the standard iterative pro-
cedure,

Within the class of the problems considered that is apart from the stability
analysis, the number of the “geometry corrections™ has not significantly influenced
the final results. However, the differences in the computer time as well as the differ-
ences between the geometrically linear and nonlingar approach can be of a great
significance. The optimal number of the load increments should be always care-
fully sought but care must also be taken as that number is strongly dependent on
the algorithm to be used in calculations. «

The analysis could be much more effective if the calculations were pelformed
within the system designed specially from the very beginning as the system fo ac-
count for geometrically nonlinear effects,
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STRESZCZENIE

ANALIZA GEOMETRYCZNIE I FIZYCZNIE NIELINIOWYCH KONSTRUKCIT METODA.
JEDNO I DWUWYMIAROWYCH ELEMENTOW SKONCZONYCH

W pracy rozpatrzono rozwiazanie problemn duzych odkszialcen elasto-plastycznych meteda
elementéw skoiiczonych, Na podstawie twierdzenia wariacyjnego wyprowadzono podstawowe
réwnania metody przyrostowej we wspdirzednych Eulera oraz omowiono szczegdtowo wyznaczanie
_geometrycznej macierzy sztywnosci dla geometrycznie nieliniowych, jedno- I dwuwymiarowych
zagadnied. Omowiono ponadto zastosowany program obliczest, oparty na systemie ASKA. Prace
zilustrowano przyktadami numerycznymi.

Pe3zwMe

AHAJIM3 TEOMETPHYECKUAI M OU3HYECKHUNM HEIWHEVHBIX KOHCTPYKIIHA
METOOM OJIHO- U IBVXMEPHBIX KOHEYHBIX DJIEMEHTOB

" B paGore paccMOTPEHO DEILeHNe 337a9d GONDIIEX YOPYrO-IIACTHYECKAR AS(HODPMAI Me-
TOEOM KOHSUHBIX 3NEMERTOB. Onmpasick Ha BAPHALMOHHYIO TEOPEMY BLIBE[SHBI OCHOBHBIC ¥pas-
HeHRS METOZd B IPHPOCTaX B DHACPOREX KOOPAEHATAX, A4 Takke oboywmeno _ﬁO,ILpOGHO orpe~
TETIEHTe TEOMETPITIECKOE MATPHELL XECTROCTH AV TEOMETPHYECKH HEHMHCHHBIX OaHO- M JIBYX-
Mepisix 3amay. Kpome sToro ofcymmesa IpAMeHAeMad TPOTPEMMA PACTeTOB, OMMPATOMAACK
ma cucTemy ACKA. PaGoTy UTIOCTPHPYIOT YHCIIGHHBIS NPHMEDLL
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