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WAVE PROPAGATION IN A PRE-STRESSED REINFORCED COMPOSITE

HIEMI DEMIRAY (ISTAMBUL)

In this study, a small time dependent displacement field is superiimposed on an initial large static
deformation, for a reinforced composite, and the linearized field equations and associated boundary
conditions are obtained. Propagation of harmonic waves in such a composite medium is studied and
various special cases are discussed, From the condition of propagation some criteria for the stability
of equlibrium configuration are deduce.

1. INTRODUCTION

Finite or small deformation theories of reinforced composite materials have
been studied by many researchers in mechanics (cf. Rivin [1], Aprins {2], and
many others). As might easily be seen, the finite deformation theory leads us to
highly non-linear differential equations which could only be solved for some spe-
cial cases. The method of solutions is similar to that of finite elasticity theory. The
main problem of such elastic bodies subjected to a finite deformation is the question
of stability of equilibrium. To our knowledge, this problem has not yet been in-
vestigated for the reinforced composite materials. Moreover; the propagation of
elastic waves in reinforced composites, to which the continuwm theory is applicable,
is not yet a well studied subject. In this regard we refer the reader to studies by
Demmray [3], WRITSMAN and BENVERSTE [4], and Bosg and MArLL [5].

In this paper we study the propagation of small amplitude harmonic waves in
a composite reinforced by a family of inextensible fibers and subjected to a large
initial static deformation. For this purpose, we superimpose a small time dependent
displacement field on a given large static deformation, and obtain the linearized
field equations, governing this small digplacement, and associated boundary con-
ditions. These are given in Section 3. In the last section of the paper the propaga-
tion of harmonic waves in such a pre-stressed medium is studied and various gpe~
cial cases are discussed. From the propagation condition, we also obfained some
criteria about the stability of initial equilibrium configuration.

2. THEORETICAL PRELIMINARIES

Consider an elastic body B, reinforced with a family of continuous and inexten-
sible fibers which are the envelop of the unit vector field A (X). We assume that
this vector fleld is at least piece-wise continucus in the domain of the body B,.
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Upon application of the external forces, the body occupies a new configuration
denoted by B. Let X (Xy, K=1,2,3) eB, and x (x,, k=12, 3) 4, respectively,
be the material and space coordinates of a material point in the body. Thus the
motion of the body is characterized by

Q.0 x=x(X, 1).

Let a (x) be the image of the vector field A (x) in the deformed conﬁguratmn
Then the inextensibility of material in the direction of fibers may be stated as
(cf. SPENCER [7]):

(2.2) CxrAxAr=1, or cuaa=1,
aXy

 dx :
Xy x E-‘:ﬁ,ﬂ;) , Cu=Xg Xk, (Xxk 2—5;) are respectively

the Green and Cauchy deformation tensors. For this and other details of the
subject, the reader is referred to ERINGEN {6].

The deformation so introduced must be the solution of Cauchy equations of
equilibrium '

where Cyxr=Xy kX L, (

(2.3 Txx, x+p0 f=0
and associated boundary conditions
24 T Ng=T,

where po, fi» Tas Thr and Ny are respectively the initial mass density, body force,
Piola-Kirchhoff stress tensor, surface traction measurcd on undeformed body,
and exterior unit normal vector of the material surface of the body.

The constitutive equations of a composite reinforced with a single family of
continuous and inextensible fibers are given by (cf. SPENCER [7])

(2.5) Tra=(I2) "2 [SAg ay + PXg i+ Pxie, x+ ¥ (I Xk, x— Cre Xe, 1)+
+ H(Ag Cagn An X, s+ Croar Ans Ax 3 001

where S is a scalar quantity known as “fibers reaction” force and must be deter-
mined through the field equations and boundary conditions. Other quantities
. appearing in (2.5) are defined by

or o
D=2, W2V,
eI,

al,
(2.6} _
P 2 ax o (r1 ax
=2([3) 513, - H= (3) 81—45
with
1 2 2
@ L=trC, IZEE [(ir C)? —tr C*1,

L=detC, L=tr(AATCY, L=it(AATC)=1,

where X is the strain energy density function of elastic composite mediun.
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Equations (2.3)-(2.7) are sufficient to determine the mechanical field completely.
Assuming an initial large static deformation is given, the equations of motion and
the constitutive equations for small deformations superimposed on this imtial de-
formation are presented in the following section.

3, SMALL DEFORMATION SUPERIMPOSED ON INITAL LARGE STATIC DEFORMATIONS

We now superimpose a small time dependent displacement field &u (x, t), where
# is a small parameter, on a given initial static deformation, and obtain the govern-
ing field equations and boundary conditions. Let B’ be the final configuration of
the body and X' =x+eu (X, ?) denotes the space Cartesian coordinates of a material
point at time ¢. Then the equations of motion for this final configuration, in the
absence of body forces, and the boundary conditions are given by

-r

3.1) Tor v =PX2»
{3.2) : Tom=Ts,

where Ty, T, p, and m, are respectively the Piola-Kirchhoff stress tensor and sur-
face traction referred to drea on B, mass density measured at configuration B, and
the exterior unit normal vector to B.

We then write Ty, =1y+eTy, T,=t+&T;, where #, is the Euler stress tensor
of configuration B, #, is associated surface traction measured on B, Tj; and T are
respectively the incremental stress temsor and surface traction of B’ referred to
area on B. Employing these definitions of T}, and T, Tin (3.1) and (3.2), and recalling
the static nature of initial field, we obtain

{3.3) | Tkl,k=p;ls
(34) Tmnk:ﬂ.

In order to proceed further, one must know the explicit form of the tensor 7y,
At this stage it is convenient to work with Piola-Kirchhofl stress tensor Ty, referred
to area on B,. The relation between 7, and T, may be shown to be

3.5 Ta=(I3)""" xk,KT;u .
If we denote the increment in Ty, by &7k, i.e., 17“,:1=TX,+.'91Y"KI, one can show that
{3.6) Tklz(ls)-llzxk,KTKl-

The stress tensor T}, in the final configuration is expressed in terms of the strain
energy function X’ as
. 4 ! t 52'
3. To=U)"2S Apay + 57

—.
dxg x
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Defining §' =S f¢s and noting that
xl:.K = X, K + Ely, JI;I X, K's .
¢8 U2 = (1) (14 om,),

. .
ak = ay. +8uk, nty,

Eq. (3.7) can be expanded into a power series of & around g=0. Performing this
operation and then equating the coefficients of same powers of ¢ in the expansion,,
we obtain s

L L . ax |
(3.9) TK# =_(;3)?"'2 [SA, (H,., Y A a,,) +s5Adg a] + K, o Uy i

axk, K axm, M

In arriving at this result we kept only the zeroth and first order terms of ¢ in the
expansion. Combined (3.7) and (3.9) follow the expression of T},

(3 10) T“-”:E'Hk a, 'i_'Bklmn Uy, 1 s :S':S'f‘ll',..,. 5 3

where the fourth order tensor-By,, is-defined by

2

(3‘11) -Bk[mﬂE(IS)nllz __xn,ka'K‘f;Sﬂkarx(slm‘_

ax!. K erxm, L

This quantity .(if desired) may be expressed as follows

(3 12) Bklmu = tkn étm + C.L'Imn
with
3.13 C 4(1;)-1/2 Fx
. = - — = X X A .
( ) klnn (f3) 3Cx1dCon X, KX LM, m Xn, N

This tensor may be termed as the tensor of elastlclty and has the followmg symmetry '
relations

Ckl‘mn = C!knm: makt

If the matrix material is isotropic and homogeneous, the tensor of elasticity may
be written in terms of the invariants given by equation (2.7), ie,

(14 Cutn =P (2041 Opau— G Sy — O S1) + A1 €5 € + Az Big Byt
+ A33 T3 O St Aug Dia Do+ A 12 (€ B+ B )+ A3 I (63" S+
+ Oyt € Y+ A3 T3 (Big o+ 81 By +A24 (Bt Dun+ Dy Bop) +
+ Aga I (D S+ Do O) + 5{ (2o it —Com Co' =i C )+

+ H(a,a, C o +Cr;1 Oy By + Ay Oy €y 'i'c ' am i) »
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where the coefficients 4,; and other quantities appéafing in Eq, (3.14) are defined by

2

1/2 P
(3-15) Ay —-4(13) oI, 3f L

=1,2,3,

-1 _ . o -1 — -1 -1
(3‘16) 'CU = XK.'iXK.Ji' ‘Bﬂ = (Il ckl clun nl ) 4 Dkl = aka"crl +af c.'cr G

In general the tensor By, is a function of the position vecfor X, 1.e., By, =
=By, (X). Thus, by use of Eq. (3.10) in (3.3) and (3.4), we obtain the equations
of motion and the boundary conditions for the superposed deformation field

(317) (Sfa!r aI), k + (Bkrmn um. n), k :p;;t »
(3'18) - *;(a'n) ai.'f'"Bklmn um, ] nk=Tt .

If the initial deformation is such that the tensors By, and a, are constants (this
mostly corresponds to the case of umform deformation), Eq (3.17) is simpli-
fied to :

(319) -;', kG +-Bj'\'fmﬂ Uy, ue :Par

This equation is to be supplemented by inextensibility condition given by

(3.20) . X uk_,aka;=0 .

These cquations will be used for the investigation of small amplitude harmonic
waves propagating in such a composite medium.

.4, PROPAGATION OF HARMONIC WAVES .

We consider an elastic composite medium reinforced with a family of inexten-
sible fibers and subjected to a homogeneous large static deformation. Upon this
initial large deformation we superimpose a time dependent displacement field
eu (x, ) of which the governing equations are given by Egs. (3.18), (3.19) and
(3.20). We now seek a harmonic wave type of solution to the equations, and set

@.1) iy =Us,exp i (k- x—wt)],
(4.2  S=Feexp [i(k-x—f)],

where k, @, Uy; and S, are respectively the wave vector whose magnitude is the
wave number, i.e., k=|k|, the frequency of wave, and the complax amplitudes of

the wave.
Introducing (4.1) and (4.2} into equations (3.19) and (3.20) we obtain

hY
(43) {er!% {Pcz - S(a°v)2] amn] S(]n - qu a! V! am'=0 )

(44) | Uﬂm Dy, ((11 VI) =0,
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where ¢=w/k is the phase velocity, v=Kk/{k| is unit propagation vector, and the
acoustical tensor @, is defined by '

’(45) ' VQmH = I?mtn Vi — S (a'v)z 6mn -

Examination of Eq. (4.4) shows that this equation is automatically satisfied if the
" following conditions hold true.
i) aly (a and v are perpendicular), ‘
ii) Upla (U, and a are perdendicular).
Here we study the implications of these two cases separately. The case (i) wxll be
studied first.
Case (i)

(4.6) : a:v=0.

In this case there exists no wave propagating along the fibers direction, i.e., prop-
agation direction is perpendicular to the orientation of fibers lying in the compos- .
ite. Using this condition in Eq. (4.3) we obtain

'(47) (Qmu ""pcz 6""1) UDH = 0 -

Since Q is a symmetric second order tensor, the characteristic equations obtained
from Eq. (4.7) has in gerieral three real roots. In order that these roots correspornd
to the speed of a real wave, these roots must be positive, as well. This requirement
imposes certain restrictions on initial large deformations, that is to say, it gives
a stability criteria for the equilibrium described by the initial deformation. From
theory of matrices we know that these conditions are satisfied if

{4.8) rQz0, (trQ)?=trQ*, detQz0

holds for a given initial static deformation.

In general it is very difficult to make any progress for the solution unless we
know the specific form of homogeneous deformation. For its convenience, we
select the vectors a and v to be

4.9) ' a=(1,0,0), lv=.(0, 1,0).

Furthermore, in order to be able to obtain a simple form for the tensor Q, among
other alternatives, we should have the principal direction of the deformation as
our space coordinate system. Thus the homogencous deformation may be given by

4.10) Xp=hXy, X=X, xi=i3X;

where 1 are the stretch ratio in the direction of principal axis. Inextensibility of
the composite under consideration, in the direction of a, (or xy) imposes further
restrictions on the deformation. It requires that 4, =1; so that we are lefi with only
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two deformation parameters 2., 4, and one parameter S resulting from the constraint
imposed on the elastic body.

If one uses this given deformation in equation (3.16), and then in (4.5), the
nonvanishing components of Q;; are found to be

Q=P+ PLAZH,

Qo2=P+25 @+ (142D P+A3 A4, +24(1 + A2 Ay + A3 A5 Ay +

(4.11
@10 FOAE (L AD) Ay + 24832 A+ 222 22 (1 +3D) Ay

Q=P+ +12 7,
‘Thus the speeds of longitudinal and transverse waves are given by

CL=[P+ 3P+ (L+ A W+ A A+ A5 (M4 A3 Aap+ A5 dya+
425 (1 AD) Ay, + 24222 A, 5+ 233 23 (1+22) A3 )p2 0,

Cl=(P+ 20+ 22 P+ A2 H)p=0,

Cl,=(P+I20+ 2 ¥)p>0.

{4.12)

In order that this equilibrium configuration, corresponding to this large initial

deformation, be stable, the expressions given by Eq. (4.12) must be positive, These
conditions impose certain restrictions on the material constants and given large
~deformation. It is interesting to note that these wave speeds are independent of
fibers reaction force S. The conditions given by Eq. (4.12) should be independent of
the magnitude of the deformation, that is they must even be valid at the natural
state. Setting 21=/12=13=1 in Eq. (4.12) we obtain the following restrictions

(Po+ Po4-2Wo + A7, +245, + AS, +4A49,+24°, +448 3pe=0,
{4.13) (Po+@o+ o+ Ho)lpo =0,
(Po+ Do+ ¥ol{poz 0,

where Pg, @g, ¥, and A° are the values of P, @, ¥, and 4,; evaluated at the natural
state. In fact, these quantities correspond to the real material constants of the
composite body.

Thus far we have not used specific form for the strain energy function. The
simplest and commonly used strain energy density is a linear functlon of strain
invariants, This may be expressed by

(4.14) T a(l, =3+ B =3+ 7Ty — Dtre(ly—1).

Here a, f, y, and x are elastic constants, which must be determined throngh experi-
mental means. In this case we have

(4.15)  P=2y(L,Y'*, @®=2a(L)~1?, W=28(I;)"'"*, H=2k(l) '
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and all the 4;; are zero. For this particular composites, the speeds of wave are
given by

. : ) As
Ci= [2(ﬁ+ Nz hs+2{a+ph) *j;]/p>0,
v AZ
(4.16) Ch= [2(ﬁ+}’)12}~3+.2(“+7c)"r] /P>0,
. ) 3 .

: A
Cha= [2)?/12 Ay +2(0+f) Ez_] /P>0 .
3 N
These inequalities should also be valid when 4,=4,= A;=1. Thus we get

4.17) ot f+y+r>0, a+28+x>0, oftf+y>0.

This is sotne of the ‘reétrictior_ls that the material vonstants mus{ obéy.
Case (ii) ' :

{4.18) Uy a=0.

In this case, by multiplying Eq. (4.3) by a,, and making use of the condition (4.18), .
we get

(4.19) ) i%COSQ=QIJUQJG[
with ' C

‘ } Ccos@=asy. '
Resubstitutioﬁ of (4.19) in (4.3) yields the following equation
@20 Q=19 - S +9) e} Uon=0,
where the tensor @), is defimed to be
@21) C 0h=0wCuaa.

It is casj_i/ly seen that this matrix has the following property

(422) Q:m an = an ay— Qfm ai == 0 .

Since the vector a0, the above relation is only possible if, and only if, the matrix
is singular, i.e., det Q*=0. As we see later, this fact greatly simplifies our calcu-
lations.- ] . ' ' :

In.order to obtain a nonzero solution to U,, we must have the determinant of
the coefficient matrix equal to zero. Using the singular property of the matrix Q¥,
the characteristic equation may be given as follows:

(4.22) (peg)? —Iye peg+1ya=0.

Here we have defined

. 1
(423)  pet=pci+S(a-vy?, Ip=trQ*, Ige=, FrQ¥)*~trQ*].
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The roots of bi-quadratic equation (4.22) are given by
1
@2 ) Uy F UG~ 4 )

‘We note that ¢, corresponds to the speed of wave when the fibers reaction equi-
librivm force § vanishes. If this configuration is stab]e we must have

@25). . IQ*zo,-,. 2 2(IL,)1 .

From th:s and expressmn (4.23), we can dedtice some interesting results: (i) If
the configuration corresponding to §=0 is stable, i.e., ¢g>0, the fibers with tensile
reaction forces increase the speed of propagation, while the fibers with compressive
teaction forces reduce the speed of wave. In the latter case there is a critical value
for S, beyond which no real wave can propagate.in the medium. From (Eq. (4.23),
this critical value of S is found to be
o L pe .

_e(4.26) , ' S“" == M(;_v)_z (compresswe) ,

so that, when S 8., the configuration is stable while for S§<S,, it is unstable,
i.e., there is no real wave. This result is no be expected from physical considerations -
(ii) If the configuration corresponding to S=0 is unstable, i.e., c2<0, the fibers
with compressive reaction forces speed up the process of failure, while the fibers
with tensile forces may provide additional supports for the system; and as a result
of this, initially unstable system may turn out to be stable. The latter case may be
used to strengthen the weak systems in the sense of stability. From Eq. (4.32), this

critical value of § is given to be
2

FCo
(a-v)* .
Here we note that ¢} is a negative quantity. Again, when 8> S,,, the system is stable
but fot 5<§,, it is unstable.

If desired, the components of matrix Qu can be expressed in terms of given
homogeneous deformation. Since it has no practical value, we do not list them here.
However, it should be noted that the forms of acoustic tensors and the expressions
of wave speeds found in the present study and singular surfaces are the same {cf.
Demiray [3)). It is true that this coincidence is only vailid when initial deformation
is homogeneous.

4.27) ‘ S, =— (tensile).
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STRESZCZENIE

ROZPRZESTRZEMIANIE SIE FAL WE WSTEPNIE SPREZONYM ZBROJONYM
KOMPOZYCIE

W niniejszej pracy bada si¢ nalozenie pola infinitezymalnych, zaleznych od czasu przemieszczef
na duze poczatkowe odksztalcenia statyczne w sbrojnym kompozycie. Wyprowadzono zlineary~—
zowane rownania pola i odpowiadajgce im warunki brzegowe. Zbadano rozprzestrzenianic si¢ fab
harmonicznych w takim orodku kompozytowym i przedyskutowano rozne przypadki szezegdlne.
7 warunku propagacii wyprowadzono pewne kryteria stabilnodci konfiguracii rownowagt.

Pezwome

PACIPOCTPAHEHME BOJIH B ITPEJIBAPUTEIBHO HATIPDKEHHOM APMHUPOBAH-
HOM KOMITIO3UTE

B Hactosmel paboTe Hecae/yeTcH HANOMKCHHE IONA AHOHHHTEIMMAIBHEIX, 33BUCHEHAX OT
BpeMERM, IepeMeHIeHH! Ha OoNblDHe HAadYAIbHBIE CTATHYCCKHC pedopManMy B apMHUPOBAHHOM
KOMTIO3HTE. BRIBe/ICHEI IHHEAPHIOBAHNEE YPABHEHAS TONA H OTBEIRICIHC HM TPAHUYARIC YORQ-

B, FICC/ie/IoBaHO PACHPOCTPARCHHE FAPMOHHICCKHX BOJIH B Takol KOMIO3HTHOH cpefe B oOCyX—
ZICHEl PAZHEIE WACTHRIE CHYYAH. VI3 yCOBHM DACHPOCTpaHEHUS BERIBSNCHRL-HEKOTOPHIE KPHTEPUM
cTaBUNBHOCTH KOHQHTYDAIWMHA paBiOBEecHs. ' :
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