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INVESTIGATION OF THE RABOTNOV-SHESTERIKOV CREEP STABILITY
UNDER GENERAL LOADING PROGRAMS

A TROINACKIand M. ZY CZ K O W8 K I (KRAKOW)

The purpose of the present paper is to analyse the critical state of a creeping column, for an
arbitrary loading process prescribed either by stresses or by strains. Creep stability in the conditions
of pure relaxation is investigated. Some numerical calculations of the critical time for the parti-
cular processes are presented. The concept of the boundary process and of the process with safety
factors constant in time is introduced. Finally, some remarks concerning the influence of the loading
history on the critical time are given.

1. INTRODUCTION

The first theories of creep buckling considered quasi-static motion of imperfect
columns (A. M. FREUDENTHAL, A. D. Ross, A. R. RZHANITSYN, 1946). The theory
of créep stability of perfect columus was initiated by F. R. SHANLEY [127 in 1952,
His-suggestion results in the replacement of £ in Buler’s formula by tangent modulus
do/de at t=const, calculated for given constant stress o (slope of the isochronous
curve). So the critical state is determined by a certain relation between time and
stress (critical time for a given stress or critical stress for a given time). Another
approach, proposed by G. GERARD [3] in 1956, uses the secant modulus {concept
of constant critical strain); such a proposal for elastic-plastic buckling was sug-
gested earlier by M. Broszko [1]. Those hypotheses, however, are not sufficiently
justified and lead to upper bounds of exact solutions.

The most rigotous theory of creep stability of perfect columns — including dy-
namic eriterion of stability — was published by Yu. N. Ragor~ov and S. A. SHESTE-
RTEOV [9] in 1957. For conservative behaviour of the force it leads te the replacement
of E by another tangent modulus, namely do/de at constant creep strain rate. The
differences with respect to the SHANLEY theory are small for large strain-hardening
of the material; however, they increase with decreasing strain-hardening and are
particularly essential for steady creep — the SHANLEY theory gives here a certain
finite critical time, whereas the RABOTNOV-SHESTERIKOV theory yields f,=0. A de-
tailed comparison of the basic theories of creep stability of perfect columns was
given by N. J. Horr [4] and W. E. JausMaN and F, A. Fierp [6, 7).

The fundamental concept of the RABOTNOV-SHESTERIKOY theory was developed
in many papers. N. J. Horr [5] and Y. YAMAMOTO [15] investigated the compo-
nents of the vibrating motion of the column. S. A. SHESTERIKOV [13, 14] conside-
red the influence of the initial conditions and the change of the tangent modulus
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in time. A. R. RzuaNirsyn [10] and 1. N. DisTéFANO and J. L. SACKMAN [2] derived
the stability criterion for the materials the theological behaviour of which is descri-
bed by an integral equation. 0. N. Savmvov [11] and W. E. JausMAN [8] investigated
the stability of an imperfect column. M. Zyczkowskl and R. WOIDANOWSKA-
ZAa14c [18] used the RABOTNOV-SHESTERIKOV theory to determine the optimal shape -
of a cclumn subject fo creep buckling.

' Although RapoTNov and SHESTERIKOV deuved then crlteuon of siabihty for
arbitrary behaviour of the force in time, it was used almost exclusively for the case
of a constant force (described by a Heaviside function}. The purpose of the present
paper is to analyse the critical state of the column for an arbitrary process, pres-
cribed either by stresses or by strains. Creep buckling in the condifions of pure
relaxation is investigated. The concept of the boundary process and of the processes
with constant safety factors*is introduced. Finally, some  temarks concerning
the influence of the loading history on the critical time are given. '

2. THE RABOTNOV-SHESTERIKOV CRITERION OF STABILITY

RaBoTNOV and SHESTERIKOV [9] investiga{é the stability of a column, the ma-
terial of which is subject to the non-linear creep law
@.1) o =0,
where p sc—s a/E denotes the melastxc (creep) str ain. Small vauatlons of stress
and strain, superposed on the basic {pure compressmn) statc are governed by the
rela’uon ‘ ‘ _
2.2) S - AF éa-l—y* §p+v* Ap =0

in which 1*=g®/ds, u*=0®dp, v* —3@/819 The Bembuﬂi asso_mption de—=
fzércmrcz (since the lmtlal curvature rcOAO) and the mtoglation of (2.2) multiplied
by z over the cross-sectional area gives the moment curvatule relatlon

(2.3) (El*m,u*)M v*MJrEI(,u K+vEE)=0.

RaporNoy and SHESTERIKOV mvestxgatcd the Vlbratlons of a s;mply Supported
column and derived the only. condition of stability :
"EA*P_I'_ AL 7'0
A ok >0,
Po—P T PP

(2'.4.)'

where Py stands for thé' Eiler force. This criterion correspotds fo the 'Vanis'hiﬁg
frequency of vnbratlons so’ it” coincides with the purely static approach '

The derivatives A%, p* and v* are to be cvaluated from (2. 1) 1ntegrated for the
case of pure compressmn Here We conﬁne ourselves to the partlcular form of (2.1),
namely :

e» . . eeprke=0
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confaining three material comstanis, k, h, and o (£ being the fourth constant).
Calculating the corresponding derivatives and substituling into (2.4), we obtain the
stability condition )

(2.6)  —Fkna" 4 apptt (o—0)=p*6 >0,

where o denotes the Buler stress. This form is valid for op>0, but in the opposite
case the straight column cannot be stable at all. The compressive stresses and strains
arc here assumed to be positive; our analysis will be restricted to compressive
stresses and strains only. Now, we are going to the detailed investigation of the
stability condition (2.6). .

3. STRESS AS THE “‘CONTROL FUNCTION”

The loading program, or the history of loading, may be prescribed by means
of various quantities (“control functions”, “exertion factors” [I9}), but two such
quantities are the most typical: stress and strain. The loading program prescribed
in stresses is considered as classical, whereas the program in strams is easier to be
realized at most testing machines.

If the program is prescribed in stresses, the stability condition in ifs general
form (2.6) may be eflectively expressed without difficulties. Tntegrating (2.5), we
obtain at first '

. . i . .
@n . . p“+1.=lc(ot+1)f o (&) dE
S o . 5 _
(since p=0 for r=0), and hence we find the general formula for the strain
T atl t .
(3.2) - SZE+. l/k(a+1)éfo"(§) di.
The symbol ¢ stands here for the variable of integration (time during the loading

history).

Substitution of (3.1) or (3.2) into (2.6) gives the general form of the stability
condition expressed in stresses. To present it i the most compact manner we intro-
duce the dimensionless quantities: stress s and time 7z, defined as follows

T 12 FERTIS ’ g2 \r-a—1
(3.3 s='“‘g: 25 % T:k(?) agt=kE”(lz) t,

where A=//i denotes’ the slenderness ratio of the column. These substitutions are
very convenient, since they eliminate two material constants, £ and k; and the
slenderness ratio A from. the equations. Using (3.3) we express the condition (2.6)
in the form of the following integro-differential inequality

G4 §< > loc (1— s)—nwl/ (o:+1)ft-s"(é)d§]'.

(Ot+1) f s"(0) dé
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The dot denotes here differentiation with respect to the dimensionless time 7, and
& is now dimensionless variable of integration. The fundamental question arises,
‘whether the loading represented by a Heaviside function P=P, H (t) or s=5, H (1)
is admissible in view of the condition (3.4); such a loading program is assumed by
almost all investigators. It turns out, however, that starting from =0 and s=0
and analysing the symbol 0/0 in (3.4) we find § <0, s0 the infinite derivative in the _
Heaviside function may be considered as lying at the boundary of the admissible
tegion up to s=1. Other initial conditions do not admit infinite value of the stress
rate; so other Heaviside functions would cause the instability of the column. The
behaviour of (3.4) in the vicinity of s=0 and v=0 will be discussed later (Sect. 5,
the cases w,=1 and w,=1). ' ‘

As an example of application of the general formula (3.4) let us consider the
following loading program:

3.5 ‘ a=Cr"  or s=Cr",

where m denotes an arbitrary nonnegative constant. The inequality (3.4) yields

here
. 1

C(+1 6(4-1 o+ 1 n mr41
(3.6 EE— i _ my ( ) Crx+1 T a+1 .
(3.6) —— Cm <o (1-Ct™)—n p——"
Replacing the sign of inequality by that of equalily we obtain the equation deter-
mining the critical time in RABOTNOV-SHESTERIKOV scnse for the process under
consideration. In the simplest case m=0, s=C=const, ¢ =C=const, the obtained

equation
1 n 1

3.7 (1= C)—n{at+1)*FL o+ ¢+ =0

may easily be solved with respect to z, namely

e (=)t
(3.8) o Gt Dt O

ool LA
(lz )n—a—l [?(I—C) n Fﬁf
tor= = .

. (@t ) k(CEY — (x+1)ko"

(3.9)
7

This formula for the stress constant in time may be considered as classical.
The second important case of (3.5), namely, m=1 (constant-stress rate), leads

to the equation
i

a41yett ot g 2a+1
n 1_]_.____._.7

(3.10 w7 et .
( ) n+1 ¢ T n+l-

Cr—o=0

‘which, in general, cannot be solved analytically with respect to the critical time
T=T,. Some numerical results are gathered in Table 1. The material constants
for a polyvinyl chioride S-PVC are assumed as follows: n=3.918, a=1.598.
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On the other hand, the condition (3.6), treated as an equation, may be solved
analytically with vespect to 7 for some other values of the exponent m. For example,.
if m=1/(20.+2—n), this equation may be reduced to a quadratic one. Such an exXpo-
nent may appear in practical applications: for a polyethylene with n=11, «=6,
we have m=1/3. The final formula for the critical time, however, is in this case
rather lengthy and will not be quoted here.

Table 1. Critical times for the programs prescribed in stresses

5= C"

m=0 Sm=I1
C { w | C \ Tor
0.1 235.8 0.01 22.9
0.3 1.66 0.1 3,28
0.5 0.0935 1.0 0.443
0.7 0.00664 10.0 0.0556
0.9 7 0.000143 100.0 0.00645

As another example of application of (3.4) we determine critical stress rates
S, after the constant-stress program within a certain interval 0 <r<t,. Substi-
tuting s=const=y, into (3.4), we obtain

’ 1 . 1 1 n
3.11 Sor = ﬁ[o: l—sg)—a{o+ 1)+t g %41 g 2+,
( ) cr (0(.+ 1) To ( 0) ( ) Q 0
S .
0 R\‘:ﬁ - T T
. Crefical teme
for the canstant-siress
~ . process
~
) I
08} ———- ]
0 ————o—. —
0 | ——— , —_
b
Lo ‘
—oo ~3 ~2 -1 a T
(r=0} log T

FiG. 1. Critical stress rates after the constant-stress process.

Rozprawy Iniynierskie — 4
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Infinitely shert precess with the stress rate (3.11), following the constant-siress
program will cause instability of the column, For 1o="Te determined . by (3.8) we
obtain, of course, §.,=0; for larger values of 7, the critical stress rates are negative —
this fesult is purely theotetical, since the. stability will be lost eartier, during the
constant-stress period. S SR :

Numerical results of (3.11) for n=3.918, a=1.598 (for S-PVC) are gathered
in Table 2 and shown in vectorial form in Fig. 1.

Table 2. Critical stress rates after a constant-siress process

To
o e e —
0.001 0.01 01 1.0
0.8 14,089 (—14.126)
0.6 175.450 - TATB (—1.694) ,
0.4 . 330.761 ) 27.614 - 1.436 {—0.178)
0.2 478.612 45.940 4,128 . 0,300

4. STRAIN AS THE “CONTROL FUNCTION”

The considered creep law (2.5) cannot be yeverted with respect to ¢, it means
that for arbitrary function e=g (f) we cannot express the operator Q determining
=10 [e ()] by means of elementary functions and operators: However, this opera-
tor may be defined and realized aumerically, by numerical integration of (2.5).
Introducing dimensionless quantities (3.3) and a new, dimensionless strain

. ' -A
4.1 ) - eT e,
we rewrite (2.5) in the form
L
4. =de— - dv.
4.2) ds de (e—s) T

Integration of (4.2) determines the operator Q in the expression s=£ le (7)] for
any given fuaction e=e (7). S ‘

The start of the imtegration presents here some difficulties, since for t=0 we
have always s=¢ and the second term at the right-hand side of (4.2) contains
a singularity. The expansion of the solution into a generalized power series 116, 17],
seems to be the most effective in this case. Suppose that the given function e=e (1)
may be expanded into theé series

(43) ‘ e=A, T+ A4, ™ 4.,

where m; are nonnegative constants. Making use of (4.2) we determine at first
the difference e—s. Assuming ‘ :

4.4 . e—s=B ™+,
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and substituting (4.4) and (4.3) into (4.2) we obtain a set of cquatmns determining
B, and ¢;. For the first-term we have .
Ar{ e

By ?

(4.5) Byg tm-i=

and hence both g, and B, may be determined
, ) 1

am, +1 » (A'{)_”‘_“CT ( ot 1 A")m
(4.6) EE g, V1 '

Going back to (4.4) we may now derive the series for the dimensionless stress s.
Three cases may be distinguished:

ay if g, <#,, then the first two terms are
&7 ‘ S=A.1 M — B 14

b) if g, =n1,, then
4.8) | = Ay T (Ay—By) T

c) finally, if g,>>m,, then the first two terms are identical with (4.3)
@9) s= Ay T Ay T

and the difference appears in the third term or even later. So numerical integration
of (4.2) together with the expansions (4.7)-(4.9) determines the operator € [e] in
a quite effective manner. .
Substituting now into (2.6) the dIﬂlﬂ]lSlOﬂIGSS quantities (3.3) and {4.1), ehmi-
nating § from (2.5) and expressing s in the form s =4 [e], we obiain after some simple
1earrangemcnts the fOIIOng condition of stability cxpressed in strains

{2 [l

(4.10) e<m+1

{at+(n—ou—1) Q2 [e]—(n—1) e}.

" The analysis of paﬁicula'r cases of (4.10) is much more difficult than that of
(3.4). However, some simple conclusions may be drawn for the case of pure relaxa-
tion, é=0. The critical time is then determined from

@.11) ' a+(n—a—1) @ [e]—(n—1) e=0.

The dimensionless stress s= [¢] may vary within the interval 0 <s<1, If s=1,
then the instability will occur immediately; as matter of fact (4.11). yields then
e=1, e=gz=mn>/4%. On the other hand, if —in the limiting case — s=0 determines
the critical state, then the corresponding time will be infinitely lafge; this will take
place for e=a/(n—1). So we have determined the limits of &, inside which the
instability under pure relaxation may occur

a n? n?

n—1 m:l_zu<8<72—'

(4.12)
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For lower ¢ the column is always stable, for higher ones — unstable from the begin-
ning. For the material described in Sect. 3, we have 0.5476<e<l. Numerical
resulis for e=const and e=Ct are gathered in Table 3.

Table 3. Critical times for the programs prescribed in strains

e=Ct"
m=0 m=1

C | Tor c l Tee
0.55 > 1000 0.061 222
.63 4.64 0.1 5.04
0.75 0.238 1.0 0.588
0.85 0.0177 10.0 0.0641
0.95 0.000389 160.0 0.00697

To the authors” knowledge, creep buckling in the case of pure relaxafion has
not yet been observed in experiments; however, it is predicted by the theory within
the limits (4.12). '

5. LOADING PROGRAMS CORRESPONDING TO CONSTANT SAFETY FACTORS AGAINST
CREEP BUCKLING

Replacing in (3.4) or in (4.10) the sigus of inequality by those of equality, we
obtain the integro-differential equations of the boundary process: for every 7 the
column is then at the boundary of stability. These equations seem to be without
- practical meaning, since the instability will then oceur at once, from the beginning;
however, such an approach makes it possible to determine the processes with
safety factors constant in time, and such processes may be interesting from the
engineering point of view.

We introduce two safety factors: y, for stresses and w, for strains. As a process
with constant safety factor for stresses we understand the process desciibed by
(3.4) as an equality with s replaced by v, s. After some simple rearrangernents
we write its equation in the form

n a+1

G (@D, s [ (Qdi=s" [au—w, H—np "t Y @+b) | s"(é)dé].
. (1] o .

The corresponding function g=¢ (f) or e=e (7) may be found from (3.2).

- "If all the physical relations had been linear, then the constant safety factor for
‘'stresses would have also imposed constant safety for strains. This is not the case,
"and the process with constant safety factor for strains will be defined separately.
We understand here the process described by (4.10) as an equality with ¢ replaced
by y. e

5.2 v.é{y.e—RMy, el = {Q[p. el} (ot r—a—1) 2y, €] (n—Dy. e
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The operator £ in the equation §=£0 [y, ¢] is consequently defined by (4.2) with
substituted y, ¢ instead of e :

S.H
_._d .
(Wee—5r "

(5.3) di=y, de—

bowever, ihis equation for § is only of auxiliary character, and the stresses s corres-
ponding te (5.2) should be calculated separately from the original equation (4.2).

The Egs. (5.1}, (5.2) and (5.3) were integrated numerically. The only difficulty
was congnected with the singularity for v=0; so in the vicinity of 7=0 generalized
power series were used,

Consider, at first, the process with constant safety factor w,. For 7=0 the
infinitely large stress rate is admissible up to s=1/y,, so we assume the expansion
of (5.1) in the form

1

(5.4) s=-—tD, ...

a

Substituting (5.4) into (5.1) and taking just the first (basic) terms into consideration
we arrive at the equation

1 1
(5.5 (c+ Dyl " mD, "= —aypl ™" D " —my " (a4 1)L go L
and hence
_ 1 n
(5.6) _ m= R D= —_—
We(at+ 1)+

.1 . n —

5.7 5= ” [1 -t +}
. : z (0’,+1)m+1

The corresponding expansion for strains may be found from (3.2). Performing
appropriate operations, we obtain

Reg—1

1 m//o- e+1 OLI-{—I I
(5.8) e=—=m D) o +

R o

ZASENCES T :

It may be seen that the safety factor y, reduces the stresses proportionally (as it
was assumed), whereas the strains are not subject to proportionai‘ reduction.

The expansion of (5.2) and (5.3) is somewhat more complicated. We assume
the expansions for the strains and for the auxiliary (non-reduced) stresses § in the
form similar to (5.8), namely

. 1 o L
(5.9) e=——+Ar “ttq ., F=14Br*ti 4 ..

E
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Substituting these expressions into. (5.2) and (5.3) we prove that the exponents are
suitably chosen and obtain the following non-linear cquations

(AWE*B)GH‘I =ao+l 3

(5.10) _
Ay, (A — BY = (a4 D [(n— = ) B— (=D Ay].

They may easily be reduced to lipear ones, and finally -

: n—o—1 n :
5.1) g e,
WE(OQ-I—].V)Q-'-I (0{+1)u+1
1 n—o—1
(5.12) e= [1— — +]
' We (m_l_l)nhtl

The corresponding expansion for stresses may be found from (4.6). Since in the
considered case ¢, =1/(a+ 1)=m,, we apply the formula (4.8) and obtain

n—g- £

i (n—a—1)w, ““—-l-.(cka[) 'JT
> - T4

(5.13) 5=

n x

I]l:+1 (m+1)a+l

Tn this case the strains are reduced proportionally whereas the stresses are not.

For w,=,=1 the expansions (5.7) and (5.13) as well as (5.8) and (5.12) coincide.
For larger safety factors they may differ considerably; if the process is controlled
by stresses, then (5.1), (5.7) and (5.8) should be used, and if by sirains — the equa-
tions (5.2), (5.12) and (5.13) are justified.

.
o

-7/3%—————

prb— ]

o

- -5 -4

(1=0)

Fig. 2. Processes with constant safety factors (stresses versus time).
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F1G. 3. Processes with constant safety factors (strains vers_‘us‘ time).

The results of numerical integraition are shown in Figs. 2 add 3 for w,=1, 1.5,

and 3, w.=1, 1.5, and 3. For the pmcesses with t,ff,,>1 or > 1 the critical tlme is,
of course, infinitely large,

6. INFLUENCE OF THE LOADING HISTORY ON THE CRITICAL TIME

The loading history, for example described by s=s (1), has an essential influence
on the critical time even if final stress s* is assumed the same. To show the differences
we compare the critical times for four various loading programs: s=const==s*,
§=Cy 1, e=const=C, and e=C, 7. The constants C, C, and C, were' chosen in

5
10
i
e
k%@g | N
S=const=s* — B e ——
2636 ﬁ 777777 .—:__—;1-—-?____
oo l T | 1
(I i :
P! I |
I {
a4 1 1 |
AR ! |
Gy S P i |
d//4 P | L
0.2 — T i
P ! |
] |
}3) .’f)gm #* ao2 sz) a03
o . Ter tr 2 Ter - 1 P -"7_- )

Fig. 4. Critical times for various loading histories and the same final siress.
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such a way as to obtain the same stress, s=s%, at the critical time. The results are
shown in Fig. 4 for s*=0.636 and the material constants as above; the boundary
process (5.1) for y,=1 is shown as well : :

The diagrams in Fig. 4 lead to interesting conclusions. One may suspect that
for the loading varying in time, the critical time might depend on the stress impulse

6.1) == fs(r)d-c.

Such a statement is quite false, since the stress impulses for the processes shown in
Fig. 4 are entirely different from each other. On the contrary, the stress rate § is
much more important than the impulse: a negative stress vate has a stabilizing
effect, and a positive stress rate — destabilizing one. '

7. FINAL REMARKS

The general analysis, given in the paper, is based on the sirain-hardening creep
law (2.5). However, the results are very sensitive to the form of the creep law and
any application of the theory must be preceded by careful examination of the actual
behaviour of the material. Further, the considerations are based on the classical
RABOTNOV-SHESTERIKOV assumption of the constancy of the derivatives A¥, u* and
v¥ during the perturbed motion; SHESTERIKOV [14] proved that such an assumption
may lead only to a certain undercstimation of the critical time, so the obtained
results remain on the safe side.
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STRESZCZENIE

BADANIE STATECZNOSCI PELZANIA RABOTNOWA-SZESTERIKOWA
PRZY OGOLNYCH PROGRAMACH OBCIAZENIA

Celem niniejszej pracy jest analiza stanu krytycznego pelzajacego preta, w ogdlnym przypadku
procesu obciazania, danego w naprezeniach lub odksztalceniach., Przeanalizowano wyboczenie
pelzajace w przypadku relaksacyi. Przyloczono réwniez liczbowe wartodci czaséw krytycznych dla
pewnych procesdow obcigZzania. Wprowadzone zostalo pojecie procesu granicznego i procesu o
stalym w czasic wspolezynniku bezpieczenstwa. W zakotczeniu sa przedstawione sposirzeZenia
dotyczace wplywi historii obciazenia na czas krytyczny.

Pesiome

HUCCIEAOBAHWE YCTOWYMBOCTH TIPH TIOJ3VUECTH
PABOTHOBA-IHECTEPHUKOBA NPH OBIWUX MPOI'PAMMAX HATPYXEHWA

Hennto mHacTosed paGoOTH ABIIAETCH AHAAM3 KPATHMECKOTO COCTOAHMA CHKATOTO CTEPIKHS
B YCHOBHSX OON3YYecTH, A1 ofHIero Iponecca HATPYXSHHS, 3aJAHHOTC B HAMPSMCHHAK HIH
nedopMaruay, PaccMatpuBaeTcs yCTOHIHBOCTE B YCROBHAX pelaKcaIlid, IIpuBelicHBl HHCICHHLIE
3HAYCHHA KPHTHYCCKOTO BPEMEHW 18 HEKOTODPBIX HpDHéCCOB HarpyxCcHHA. BBO,[[!ITCS{ HOHATHUE
TPARHUMHOTO HpOHecca H Opollecca O NOCTOSHHOM BO BpeMend kosgubuupenTe Oe3omacHOCTH.
B 3aKIIOYelHY NMOJAHSI 3AMCYAHHES XACRIOLIHECH BIWSIHHA HCTOPHE HAIDYNEHHMS DA KPHTHHECKOT
BpEMA. )
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