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SLIP-LINE SOLUTIONS OF SOME AXI-SYMMETRIC PROBLEMS
OF PLASTIC COMPRESSION OF CYLINDERS AND RINGS

M. GRZYMKOWSKI and Z. MRO Z {WARSZAWA)

Two axi-symmeiric problems are {reated for a perfecily plastic model: indentation of cylindrical
punches into a ¢ircular plate and compression of rings between rigid plates. Static and kinematic
fields are determined by integrating numerlcally characteristic equations for stress and Veloclty
Bounds on limit indentation and compression pressures are compuied and compared w1th experi-
mentally determined pressures.

1. BASIC ASSUMPTIONS AND BQUATIONS

 The present paper is devoted to the analysis of plastic flow occﬁring during
indentation of two rigid punches into a cylinder and compression of rings between
two rigid platens. These two cases occur frequently in forging operations but their
theoretical analysts is still insufficient. The present work complements the previous
investigation on compression of short cylinders of Tresca and Coulomb materials
3, 4, 51.

Our analysis will be based on the assumption of a perfectly plastic material model
satisfying Tresca yield condition and such corner stress regimes will be used for
which the Haar-Karman hypothesis is valid. A detailed discussion of field equations
can be found in [1, 2] but here we quote only fundamenial relations which will be
used throughout the paper.

In the case of axial symmetry, the equilibrium eguations take the form

do, Ot, OG.—0,

or oz r 0,

(1.1)

07,5 + do, + Tps
or oz F

‘where oy, 03, 7,; are stresses acting in the axial plane, referred to the cylindrical polar
coordinate system r, 6, z and o, is the circumferential stress, Here, we consider such
corner tegimes of the Tresca yield condition for which o, equals ¢, or g, in the
axial plane, where oy, 0, (0(>0,) are tWo principal stresses in this plane. Thus
‘the yield condition takes the form

"(1.2) Co 0'1—0'2'=2k, gg=a, OF Oy .
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The set of equilibrium equations (1.1) together with the yield condition is hyperbolic
and the stress characteristics («, f-lines) follow the lines of maximum shearing stress.
in the axial plane. The characteristic relations are :

dz, k
a-line: =igd, dp—2kdd= " (dz,+ dr,),

dr,

(1.3) *
. dzg k -
f-line: P ctg®, dp+2kdi=— " (dzp T drs) s

[ f'ﬁ
where p=—(o,+0,);2 and dr,, dz,, diy, dz are projections of the length elements:
dsy, dsg of a~ and f-lines on the z- and r-axes.

The velocity characteristics coincide with the « and f-lines and the characteristic

relations are

iz,

dr,

- 2
o-line: =tgd, do,cos 8+ duv, sin 8= — ?; (drycos S+ dz, 8in ) ,

(1.4)

dz : v,
B-line: ?ﬁ = —ctgd, dv,sin§—do,cos 9= (dz; cos §—drysin 9),
i

where @, and o, are velocity components along the r and z-axes.

_ If a hne of discontmulty in the velocity field occurs in the axial plane, it corresponds.
toa Jump 111 the velocity component tangeatial to this line and must therefore coin-
cide with otie ot the slip lines. Consider, for instance, the case when the discontinuity

in w, propaga.tges along the o-line and the jump dv,=v; —v, equals the difference
of velocities across this line. The first equation (1.4) now furnishes the relation

s o=

where o2, r, denote the value of velocity jump and the radius of some reference
point A. The jump in tangential velocity changes along the line of discontinuity
according to (1.5), increasing when approaching the symmetry axis. From (1.5) it
follows that the line of discontinuity cannot intersect with this axis.

When g, is equal to the greater principal stress ¢, it follows from the flow rule
that the principal strain rates satisfy the inequalities

2,
(1.6) £<0, &>0, &=—3>0,

and v,20, ie., the radial velocity is positive. On the other hand, when op=0,,
o, <oy, there is '

.7 8,50, &<0, f=—=0,

and flow occurs with negative radial velocity. It will turn out that the inequalities
(1.6) and (1.7) will not be satisfied in some regions of plastic domain. The constructed
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velocity field is then kinematically admissible, although it violates the corner flow
rule. It nevertheless can be used in determining the upper ‘bound on the limit load
Pp; by using the relation - - s

(1.8) ' fm%g%;f%@ﬂmjkm%@,

where the right-hand terms represent the rate of dissipation within the plastic volume
and on the discontinuity lines /,, whereas the left-hand expression represents the rate
of external work of a rigid tool moving with the prescribed velocity , on the surface
portion S,. - '

2. INDENTATION OF TWO PUNCHES INTO A CIRCULAR PLATE

Figure 1 illustrates the problem: two rigid cylindrical punches of radii r, are
indented into a circular plate of radius Fa>ry and thickness 24. It turns out that
the static solution for some ratios #,/4 can be constructed by decomposing it into
two separvate problems: i) expansion of an annular disk rsSr<n, by the radial
pressure o,~=—g¢ acting on the boundary defined by 04, if) compression of
a cylinder 0<r<r, by two punches and the lateral pressure o,=—g on OA. The
static field for the disk problem can be determined analytically, whereas the
slip-line solution will be determined for the cylinder problen.

Let us first discuss the solution within

the external ring. For the Tresca yield '""““‘}“""“—‘
condition, we have o,=0, 6,—a, =2k and I o~ Punch
the equilibrium equation (1.1) furnishes ’ , 0
[y
Fp - —_q_-__-u_L CEIJ
g.= _ZklnT’ rsgr*{\]‘p: -
fyfzhder
2.1 P ctreutlar
{2.1) 0'6=2k(1_111]—f,), . a=g,=0, | plate)
Fp PSPy,
2 -
Hence ‘
- Fig. 1. Indentation of two rigid cylindrical
2.2) q=—0/,., =2kln -, ' punches into a circular plate
5 rs

In writing (2.1) we assume that 5,=0 for r=r,, where r, denotes the radius of the
plastic region. The value of r, follows from the kinematic solution and the velocity
field of Fig. 2 tmplies r,=r,+24 when Fm>7s+2h and rp=r, when r,<r+2h.
Since the stress ¢ should vary within the limits 0<g<2k, Eq. (2.2) provides the
inequality ‘ ‘

r, 2h
@3) = <e=2718.

¥y &
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Now, let us pass to the solution of the stress equations for a cylinder O0<r<r,
Figures 2a, b show the net of stress characteristics for rfh=1.5, 3 and r,>r;+2k
so that r,=r,+2h. Fig. 2c presents the case rh=1.3, ru<r;+2h In view. of the
symmetry of the problem, the solution is presented in the first quadrant of the r,
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Fig. 2. Characteristic meshes and velocity fields for characteristic ratios:

a)  rfh=1.5, prur+2h; by rdh=3, ik ¢y rth=1.5, ryergt2h

z—plane " Within the region OAB the stress state is wniform, g,=0,=—¢, Oy =

= —(2k-+q), p=q-+k, 3=3/4n. The stress statc in the centred fan OBD and the
region BDC is found by integrating stress equations (I. 3) and satisfying proper
boundary conditions. Thus for OBD, the stress staic on OB and the condition at
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the singular point O (p— 2k9=const) provide the solution within the whole domain.
Similarly, the conditions on BD and BC (%=3/4rn) provide the solution within.
DBC. The stress field can be extended beyond ODC into the rigid region OPCG,
Fig. 2a, but the vertical resultant force of indentation can be computed by integrating:
vertical traction along ODC

(2.4) _ P= [ 2nr,(o. dratt.adzy),

where dr,, dz, denote the length elements of the characteristic line ODC, The Eq.
(2.4) provides the lower bound to the limit indentation force. '

The velocity field is constructed by assuming that the portion ODCG moves like
a rigid body with the plate and the discontinuity lines OF and EF occur within the
external region. Thus on ODC there is v, = ~9,, v,=0 and on CBA we have #,=0,
v,>0. Using the characteristic relations (1.4), the velocity field is determined within
ODCBAEF. Near the point C, the analytic expression for velocities can be used [

N

2v, 2z,
(2.5 v,=-—ﬂ—(1—~tg2 w)ii2, vz=,w-n—arccos(tgw) ,

where y is the inclination of the radius vector from C to the r-axis. At E the veloc~

o 2
ity g is decomposed along two discontinuity lines OE and EF: A4v2F meI/z .
VZ

5 and the variation of velocity jumps along OF and EF is determined:

AvEF =wy,

from (1 .5). Figure 3 shows the deformed rectangular net during indentation for ry/h=
=1.5, rp>ry+2h and the velocity hodograph for r,/A=3 is shown in Fig. 4. It turns.
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Fig. 3. Theoretically predicted deformation of an initially squaré mesh for a cylinder rfh==1.5
> b+ 20 :

-out that inequalities (1.6) are violated within AOB and the velocity field provides.
only an upper bound on the indentation force-since it does not correspond to the .
exact solution for the Tresca material. Using (1.8), the upper bound can be deter-
mined numerically once the velocity field has been constructed. Figure 5 presents.
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Fig. 4, Hodograph for the cylinder of height A= 35 mm, r/h=3
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Fig. 5. Upper and lower bounds to indenfation pressures predicted by the method of charac-
teristics
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‘both upper and lower bounds to the limit punch pressure. It is seen ‘that bounds
ar¢ fairly close thus indicating that the velocity and stress ﬁelds are good
approxnmat:ons to- the complete solutlon :
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Fig. 6. The required coefficient of friction at the contact
* .. linterface between punch and cylinder -

The static solution is valid provided sufficient friction coefficient exists between
the cylinder and the punch. Evaluating this coefficient at 0; we obtain the diagram
shown in Fig. 6. Thus for smaller friction coefficients, the limit characteristic ODC
would form a greater angle with OG and the plastic region would be extended above
ODC. This type of solution was discussed in [3]. '

3. COMPRESSION OF RINGS BETWEEN RIGID PLATES

Figure 7 presents the ring dimensions and the loading plate. This type of test
is often used to determine the coefficient of friction by measuring the radius sepa-
tating the inner zone moving toward the symmetry axis from the external zone
moving outwards, Simplified. analyses

of this problem can be found in [6, 7], : Plate
where equilibriuin conditions were [/ / - / /
;sgtl‘sﬁed only globally for thin slices In Ring AN B S
which the stress state was assumed as =~ — SN +
uniform along VBI‘U(EB.] direction. ﬂere, Blate
‘the stress field will be determined /
asing ‘the stress characteristics, but the A

solution will not be complete, since it 21y

is not shown that the stress field can Fig. 7. Compression of rings between two rigid
be continued- into the trigid region. plates
- Moreover, we will not discuss different ‘
friction conditions at the interface, restricting our analysis to sufficiently high
friction coefficients for whick the presented solution is valid.

Figure 8 presents the slip line fields with velocity vectors. Now, in the region
BKG there is 0,=0, and v, <0, whereas within the region DCFGE there is g,=0, and
©,>0. At G there should be continuity of o, although o, may vary discontinyously,

Rozprawy InZynierskie — 12
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This continuity condition provides the position of point G and completes the static
solution. We start from the boundaries BK and CD by determining the solution
within BKJ and CDE and next in the centred fans EFC and BHJ. The angles of
cenired fans are governed by the continuity conditions at G. The velocity field
is constructed by assuming that BGC moves vertically with the plate and both GFC

'
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Fig. 8. Characteristic meshes and velocity fields for rings of constant radii s, r, but varying
thickness #

and BHG are discontinuity lines. It turns out that the inequalities (1.6) and (1.7)
are viclated within BKJ and DCE. Hence the constructed velocity field is kinemati-
cally admissible and can be used to provide an upper bound to the plate pressure.
Figure 9 presents bounds to this pressure derived from the velocity and stress fields.
Whereas the velocity field provides an upper bound, the stress field provides an
estimate which should not necessarily represent a lower bound, since continuation
of the stress field into the rigid region may not exist. It is seen that bounds are fairly
close, diverging for increasing ratios r,/h and r,/r,. The value of a neuiral radius
r, defining separation of zones of plastic flow toward the symmetry axis and in the
outward direction can also be determined from the static solution.
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Similarly as previously, the static solutions are valid provided a proper coefficient
of friction exists between the plate and the ring. Figure 10 shows the required values
of y evaluated at B and C. Thus is order to satisfy the validity of these solutions,
a sufficiently large friction coefficient at the interface BC should be assured.

o
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Coefficient of Friction =Ty, /&,

=]

Fig. 10. The required coefficient of friction at the contact interface
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{of ring and plates) evaluated at B and C

- 4. EXPERIMENTAI, RESULTS

Compression tests were carried out using lead disks and rings. The conventional
yield limit was assumed as that value of stress which corresponds to e=0.1 per
cent of the offset strain, This value of stress corresponds also to the point of maximum
curvature of the stress-strain curve.
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Fig. 11. Theoretical tounds and experimental results for indentation test of rigid punches into
¢ the cylinder:

experimental curve, — -— — upper bound, —«—»—»—lower bound
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Fig. 12. Theoretical bounds and experimentally determined pressures for the case of compres-
sion of rings:

experimental curve, — — — upper bound, — «+ -+ lower bound
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~ 'Tests were carried out using a special experimental rig connected with a hydraulic
testing machine allowing for the exact measurement of load and. displacement of
compressing plates, The conventional limit pressure was defermined for different
values of mean plastic strain g, =Ah/h. Figures 11 and 12 show experimental data
plotted for compression of cylinders and rings corresponding to the mean plastic
strain &, =0.1 per cent. It is seen ‘that a.fairly good correlation exists between
experimentally determined pressures and theoretical bounds, although for the case

Fig. 13, Deformation of an initially square mesh on the cvlinder rfh=1, r,>r,+2k

Fig. 14. Deformation of rings corresponding to mean strain e,=0.35
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of rings this agreement is poorer for larger ratios r,/h, However, the experimental
curves lie hetween static and kinematic bounds.

The mode of flow was observed by splitting the cylinders along the diameter
plane and inserting a square grid on one portion of the cut. Figure 13 shows the
deformation of an initially square grid for r,/r,>3. Although a quantitative com-
parison between theoretical and experimental velocity was not carried out, the
observed deformation mode agrees qualitatively with the theoretical velocity field.
In particular, the theoretically predicted rigid regions I and 5 and zones of intensive
shear 2, 6, 7 can be identified when studying the grid deformation. Figure 14 shows
a set of split rings after the compression test. It is seen that the neutral radius sepa-
rates the zones of concentric and outward flow. Moreover, material portions adhering
to rigid plates behave essentially as rigid and move vertically with. the plates during
compressioni '

5. CONCLUDING REMARKS

Although more accurate analysis would require incremental solution of boundary-
-value problems with account for elastic strains and hardening effects, the method
of characteristics can be used in numerous cases in order to predict limit loads
and modes of flow even if the complete solutions cannot be found. Thus the presented
analysis of two problems seems to be more accurate thdan approximate engineering
freatments using SCHROEDER and WEBSTER [6] simplified approach. Whereas the
latter approach neglected all details of plastic flow concentrated on discontinuity
lines and provided only rough estimate of limit Ioads, the present approach pro-
vides also useful information on the velocity field. Comparison of these two ap-
proaches was discussed in [3, 4].
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STRESZCZENIE

ROZWIAZANIA METODA CHARAKTERYSTYK PEWNYCH OSIOWO-SYMETRYCZ-
NYCH ZAGADNIEN PLASTYCZNEGO SCISKANIA WALCOW I PIERSCIENI

W pracy rozpairzeno dwa zagadnienia: weiskania sztywnych stempli cylindrycznych w kolowa
plytg oraz éciskanie pierfcieni pomigdzy szitywnymi plytami. Rozwiazania skonsiruowano dla
idealnie plastycznego materiaty, calkujac numerycznie rownania charakterystyczne dla naprezen
i predkosei. Przeprowadzone badania doswiadczalne mialy na celu weryfikacje wynikow teoretycz-
nych zaréwno jesli chodzi o warto$¢ granicznego nacisku jak i mechanizmu plyniecia. Uzyskano
dosé dobra zgodno$é pomiedzy wynikami teoretyczaymi i do$wiadczalnymi,

Peswme

PEBIEHHAA METOAOM XAPAKTEPUCTHUK HEKATOPEIX OCECUMMETPHYECKHX
3AOAY MMNACTUYECKOI'G CHATHA LHHIMHAPOB ¥ KOJNEL]

B paboTe pacCMOTPEHBI ABa BOGPOCA: BIABIHBAHKG JKECTKMX NHIHHAOPHYECKHX INTAMIIOB
B XKPYTOBYIO HIATY, 2 TAKXKE CXATHE KOJIED MEEIY XKCCTKAME NNETAMu. Peuwenus mocTpoeHB! ATA
BIeanbHO0 HAACTHYECKOrO MaTepHANd, WHTEIPEPYA YHCHCHHO XapakTePHCTHUECKUE YVPaDHCHHA
NI HanpsKesdil ® cxopocrelt. TIposenetuyie SKCISPHMEHTANBHEIC ACCICAOBAHAS WMEIH CcBOCH
LENLI NPOBEPKY TEOPSTHHCCKHX PE3YNLTATOB, TAK €CHH PACCMATPHBACTCA HOpeHellbHOS IHAYCHUE
HaXAMA, K4K ¥ MeXaEu3M TedeAnd. IlonyIeHe MOBONBLEO XOPOINEE COBOROCHAC MEXIY TEOPETH-
qECKEMH H SKCNEPHAMEHTANLHLIME De3ylLTATAME.
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