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INFLUENCE OF TRANSVERSE SHEARING AND ROTARY INERTIA
ON VIBRATIONS OF A FIBROUS COMPOSITE BEAMS
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University of Technology and Life Sciences in Bydgoszcz
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The aim of the paper was determination of the influence of transverse shear deformation
and rotary inertia on the natural frequencies and on the values of displacements of beams made
of fibrous composites reinforced with layers of long fibres. It was assumed that the matrix of
the composite beam possesses linear elastic and transversally isotropic properties. Moreover, a
reinforcement in the form of layers composed of long fibres symmetrically located in the cross-
section was considered. In order to describe the displacement and strain state of the matrix,
the Timoshenko theory was applied. Using the complete analytical solutions obtained in the
paper, the accuracy analysis of the results was performed and compared with the theory of
Bernoulli beams.
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1. Introduction

Fibrous composites are playing an increasing role as construction materials
in a wide variety of applications. They are used in civil engineering and chemical,
aerospace and shipbuilding industries. The composites composed of the matrix
reinforced with long fibres (see Fig. 1), are characterized by high strength capa-
bility, lightness and significant transversal non-homogeneity.

Technical application of fibrous composite materials requires to take into
considerations their shear deformation vulnerability in order to carry out the
strength calculations [1–6]. Theoretical and experimental investigations show
that the use of the classical assumption about the non-deformability of the nor-
mal section makes the values of the calculated displacements (deflections) lower.
On the other hand, it increases both the critical loads and the natural frequen-
cies [3]. The errors connected with neglecting the influence of shear deformation
on the vibrations of fibrous composite beam follow not only from the relation
h/l and the load type but also from the relation Er/E (Young’s modulus of
the fibres to Young’s modulus of the matrix) and from the fibre density and its
location in the cross-section [4, 5].
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Fig. 1. Construction element reinforced with the layers of long fibres.

The aim of this study is to determine the influence of the transverse shear de-
formations and rotary inertia on the natural frequencies and on the displacement
field of beams made of fibrous composites reinforced by layers of long fibres.

The composite can be defined as a material consisting of at least two compo-
nents. The first component constitutes the main phase (matrix). The second one,
immersed in the matrix, constitutes the fibrous phase (2-nd phase). The fibrous
phase consists of any amount of families. The family is a group of long fibres
lying in the planes parallel to the neutral axis of the beam. The fibres belonging
to the family are thin, straight and so densely packed that a continuous model
can be assumed. We assume that the two phases meet the continuity criteria
both in the sense of displacements and strains. As a consequence of the above
assumptions, we can take into consideration a theoretical model in the form of a
continuous double-phase medium. In such model the continuum of the 1-st phase
is immersed in the continuum of the 2-nd phase. The idea of the model presented
herein was taken from the papers by Holnicki-Szulc [7] and Świtka [8].

The dynamic problem of beams and plates made of transversally isotropic
material has been investigated by a number of authors, e.g. Nowacki [9],
Kączkowski [10], Szcześniak [11, 12], Jemielita [13]. For a wide literature
review of the problem see [10, 12, 13].

2. Formulation of the problem

Let us analyse the transverse vibration problem of a fibrous composite pris-
matic beam (cross-section b × h) in xz-plane (see Fig. 2). Applying the Timo-
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shenko theory, displacements of any point of the cross-section can be described
using the equations

(2.1)
ux (x, z, t) = u (x, t) + zψ (x, t) ;

uy (x, z, t) = 0; uz (x, z, t) = w (x, t) ;

where u and w denote respectively horizontal and vertical components of the
displacement vector for points lying on the neutral axis. The ψ is the angle of
rotation of the cross-section.

Fig. 2. Simply supported beam loaded by transverse load p(x, t) and by axial load S(t):
a) model, b) example of the symmetric reinforcement of the cross-section with two pairs

of long fibre families.

The strains of the beam are given by

(2.2) εx =
∂ux
∂x

=
∂u

∂x
+ z

∂ψ

∂x
; γxz =

∂ux
∂z

+
∂uz
∂x

= ψ +
∂w

∂x
.

In this work we assume that the matrix is made of the transversally isotropic
perfectly elastic material obeying Hooke’s relations

(2.3) σx = Eεx; τxz = G′γxz.

The fibre phase (reinforcement) consists of symmetrically located vertical lay-
ers of fibrous families. Each family consists of continuous, straight fibres coincid-
ing with the x-axis and lying in planes z = zr (r = 1, 2, 3...), zr ∈ (−h/2, h/2).
The fibres of each family are thin, densely packed and support only axial loads.
We assume that the fibres are made of linear elastic material which much higher
strength coefficients than the coefficients of the matrix. The force in the r-th
family is given by

(2.4) Srx = jrErAr (εrx − εorx ) ,
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where εrx, ε
or
x , E

r, Ar and jr mean respectively the unit elongation, the ini-
tial distortion, the Young’s modulus, the cross-section area of the fibre and the
amount of fibres in the family.

We assume in the paper a perfect adherence between the matrix surface and
the fibres surfaces, so that the resultant internal forces in the composite beam
can be calculated as a sum of forces in the beam’s components.

(2.5) N =

∫

A

σxdA+
∑

r

Srx; M =

∫

A

σxzdA+
∑

r

Srxz
r; T =

∫

A

τxzdA.

Making use of Eqs. (2.2), (2.3), (2.4) and assuming the amount of i equal pairs
of fibre families to be symmetrically located in the cross-section at the distances
zr = ±e1, ± e2, ....± ei; ei ∈ (0, h/2), and also neglecting initial elongation
of the fibres, Eqs. (2.5) take the form

(2.6) N = B
∂u

∂x
; M = D

∂ψ

∂x
; T = G′Ak

(

ψ +
∂w

∂x

)

,

where

(2.7) B = EA+ 2ijrErAr, D = EJ + 2jrErAr
∑

i

e2i

represent the respectively the tension/compression stiffness of the beam and its
bending stiffness [6]. Moreover A = bh; J = bh3/12; G′ – shear modulus of
the matrix, k = 5/6.

We formulate the equations of motion of a straight prismatic beam based on
the Hamilton principle. The assumption that the variations of displacements for
the times t0 and t1 are equal to zero, gives the following variational equation:

(2.8)

t1
∫

t0







l
∫

0

[

−
(

∂N

∂x
− ρAü

)

δu−
(

∂M

∂x
− T − ρJψ̈

)

δψ

−
(

∂T

∂x
− S

∂2w

∂x2
+ pz − ρAẅ

)

δw

]

dx

+Nδu|l0 +Mδψ|l0 +

(

T − S
∂w

∂x

)

δw|l0

}

dt = 0,

to be satisfied for any value of functions δu, δψ and δw. In the above expression
pz = p (x, t) denotes the external transversally distributed load, S (t) denotes
the external axial force, symbol ρ denotes density and ρJψ̈ is the moment of
rotary inertia. Dots denote differentiation with respect to the time coordinate t.
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The Eq. (2.8) implicates the system of three equations of motion:

(2.9)

∂N

∂x
− ρAü = 0,

∂M

∂x
− T − ρJψ̈ = 0,

∂

∂x

(

T − S
∂w

∂x

)

− ρAẅ = −p (x, t) ,

and the appropriate natural boundary conditions. Analysing the uncoupled prob-
lem of axial and transverse vibration, we obtain in the first case two combinations
of possible conditions for each boundary. In the case of pure transverse vibration,
the number of combinations of boundary conditions is equal to four. The initial
conditions correspond to the displacements u, ψ and w, and their velocities.

3. Influence of the rotary inertia on the natural frequencies

First of all let us determine the order of magnitude of the influence of the
cross-section rotary inertia ρJψ̈ on the transverse natural frequencies of a com-
posite beam.

Using the equations of motion (2.9) we obtain, taking into consideration
the constitutive equations (2.6) and eliminating the variable ψ, the following
differential equation describing the eigenvalue problem

(3.1) D
∂4w

∂x4
+ ρAẅ − ρJ

∂2ẅ

∂x2
− ρD

G′k

∂2ẅ

∂x2
+
ρ2J

G′k

····

w = 0.

The 3-rd and 5-th components in Eq. (3.1) express the influence of the rotary
inertia and the 4-th component corresponds to the influence of the transverse
shear deformation.

In the case of a simply supported beam, the Eq. (3.1) will be satisfied if

(3.2) w (x, t) = Ane
−iωnt sinαnx, n = 1, 2, 3, ...

where An denotes the deflection amplitude, ωn means the natural frequency and

αn =
nπ

l
.

Substituting (3.2) into (3.1) gives

(3.3) β2α4
n − ω2

n −
J

A
α2
nω

2
n −

D

G′kA
α2
nω

2
n +

ρJ

G′kA
ω4
n = 0,

where β2 =
D

ρA
.
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If we take into consideration only the first two components in the Eq. (3.3),
then we will obtain the formula to calculate the natural frequencies of a slender
beam obeying the Bernoulli hypothesis

(3.4) ω2
n = β2α4

n, n = 1, 2, 3, ...

In the expression (3.4) the influence of the shear deformations and the rotary
inertia effect is not taken into account.

Substituting (3.4) into the last component of (3.3), as the first approximation,
we notice that this component can be treated as a small 2-nd order term with
respect to other components, so it can be neglected [9].

Making use of the above remarks, the Eq. (3.3) gives

(3.5) ωn =
βα2

n
√

1 +
J

A
α2
n

(

1 +
D

G′kJ

)

≈ βα2
n

[

1 − 1

2

J

A
α2
n

(

1 +
D

G′kJ

)]

,

n = 1, 2, 3, ...

If we assume in (3.5) the value of inertia J to vanish, we will obtain the formula
to calculate the natural frequencies respecting only the influence of the shear
deformation

(3.6) ωnp =
βα2

n
√

1 + n2π2ζ
≈ βα2

n

(

1 − 1

2
n2π2ζ

)

.

Taking G
′

= ∞ we obtain the expression

(3.7) ωnb ≈ βα2
n

(

1 − 1

2

J

A
α2
n

)

,

respecting only the influence of the rotary inertia.
Let us apply the following coefficient in (3.6):

(3.8) ζ =
D

G′kAl2
.

It characterizes the shear deformability of the composite beam [6]. By using

(2.7)2 and taking E
/

G
′

= 2 (1 + ν), the coefficient ζ becomes

(3.9) ζ =
(1 + ν)h2

5l2

(

1 + 24nrµr
∑

i

e2i
h2

)

.
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Equation (3.9) shows that the coefficient ζ strongly depends on the para-
meters h/l, nr = Er/E (Young’s modulus of the fibres to Young’s modulus of
the matrix), µr = jrAr/A (density of fibre packages in the r-th family) and
ei/h (location of the family of fibres in the cross-section). Figure 3 presents the
diagram of the coefficient ζ as a function of the beam slenderness l/h and of the
ratio Er/E with ν = 0.30; µr = 0.02; i = 2, e1 = 0.45h and e2 = 0.35h.

Fig. 3. Coefficient ζ as a function of the beam slenderness l/h and of the ratio
of Young’s moduli Er/E.

The relative errors εp and εb resulting from neglecting of the influence of shear
deformations and rotary inertia with respect to the natural frequency (3.4) of the
slender composite beam are as follows, if we take into account (3.6) and (3.7):

εp =
|ωn − ωnp|

ωn
· 100% =

1

2
n2π2ζ · 100%,(3.10)

εb =
|ωn − ωnb|

ωn
· 100% =

n2π2J

2l2A
· 100%.(3.11)

The relation

(3.12)
εp
εb

=
D

G′kJ
=

E

G′k

(

1 + 24
∑

i

nrµr
e2i
h2

)
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states how much the influence of the shear deformation is greater than the in-
fluence of the rotary inertia. Taking for example E/G′ = 2.6; i = 2 (two pairs
of identical fibre families in the cross-section), nr = 20; µr = 0.02 (4% of re-
inforcement), e1 = 0.45h; e2 = 0.35h we obtain εp/εb = 12.85. This leads to
the conclusion that for the composite beams with reinforcement by layers of long

fibres, the influence of shear deformation on the natural frequencies is at least

one order of magnitude greater than the influence of rotary inertia.

Taking into account the above conclusion we will neglect the influence of the
rotary inertia of the cross-section on the vibration of composite beams.

The relative error εp caused by neglecting the influence of shear deformation
with the length of deformation wave l/n = 10h and 5h (where h denotes the
cross-section height), is equal to 5.3% and 21.1% respectively (keeping remaining
input values unchanged). So we can easily observe that the error is significant
and increases in proportion to the coefficient ζ.

Thus, taking into account the influence of shear deformations only, we obtain
the natural frequencies for a simply supported composite beam in the form (3.6).
The associated eigenmodes are expressed in the form

(3.13) Wn (x) = An sinαnx; Ψn (x) = Bn cosαnx.

4. Harmonically forced vibration

In the case of beam vibration forced by transverse load p (x, t) = p (x) e−iωt,
neglecting the influence of axial loads and rotary inertia, the system of Eqs. (2.9)
transforms into the system of uncoupled equations of motion

(4.1)

∂4w

∂x4
+
ρA

D

(

1 − ζl2
∂2

∂x2

)

ẅ =
1

D

(

1 − ζl2
∂2

∂x2

)

p (x, t) ,

∂4ψ

∂x4
+
ρA

D

(

1 − ζl2
∂2

∂x2

)

ψ̈ = − 1

D

∂

∂x
p (x, t) .

As a result of the load acting harmonically, the displacement w (x, t) and the
angle of rotation ψ (x, t) varies also harmonically

(4.2) w (x, t) = W (x) e−iωt; ψ (x, t) = Ψ (x) e−iωt.

Substituting (4.2) into (4.1) gives the following ordinary differential equa-
tions:

(4.3)

d4W (x)

dx4
− ω2 ρA

D

(

1 − ζl2
d2

dx2

)

W (x) =
1

D

(

1 − ζl2
d2

dx2

)

p (x) ,

d4Ψ (x)

dx4
− ω2 ρA

D

(

1 − ζl2
d2

dx2

)

Ψ (x) = − 1

D

dp (x)

dx
,
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completed by the appropriate boundary conditions. For a simply supported beam

we should assume W (0) = W (l) = 0 and
dΨ (0)

dx
=
dΨ (l)

dx
= 0.

Taking

(4.4)

W (x) =
∞
∑

n=1

An sinαnx;

Ψ (x) =
∞
∑

n=1

Bn cosαnx;

p (x) =

∞
∑

n=1

pn sinαnx

and making use of the Fourier transform [9] in order to solve the Eqs. (4.3), leads
to the following solution of the equations of motion (4.1):

(4.5)

w (x, t) =
2

l

e−iωt

ρA

∞
∑

n=1

sinαnx

ω2
n

(

1 − ω2

ω2
n

)

l
∫

0

p (u) sinαnudu,

Ψ (x, t) = −2

l

e−iωt

ρA

∞
∑

n=1

αn cosαnx

(1 + n2π2ζ)ω2
n

(

1 − ω2

ω2
n

)

l
∫

0

p (u) sinαnudu,

where ω denotes the frequency of excitation and ωn denotes the natural vibration
frequency.

In the case of the load being uniformly distributed along the beam
p (x, t) = pe−iωt or for the concentrated load p (x, t) = Pδ (x− ξ) e−iωt acting in
the section x = ξ, we obtain respectively

(4.6)

w (x, t) =
4pe−iωt

lD

∑

n=1,3,5,...

(

1 + n2π2ζ
)

α5
n

(

1 − ω2

ω2
n

) sinαnx,

Ψ (x, t) = −4pe−iωt

lD

∑

n=1,3,5,...

cosαnx

α4
n

(

1 − ω2

ω2
n

) ,
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and

(4.7)

w (x, t) =
2Pe−iωt

lD

∞
∑

n=1

(

1 + n2π2ζ
)

α4
n

(

1 − ω2

ω2
n

) sinαnx sinαnξ,

Ψ (x, t) = −2Pe−iωt

lD

∞
∑

n=1

cosαnx sinαnξ

α3
n

(

1 − ω2

ω2
n

) .

The solutions describing the harmonic motion problem for simply supported
composite shearing-sensitive beam we have obtained above, can be used to eval-
uate the solutions of the slender reinforced beam problem. We just need to
eliminate the shear deformation γxz by substituting G

′ → ∞ or ζ = 0 into
Eqs. (3.6), (3.8), (4.1), (4.3), (4.5), (4.6) and (4.7). If we assume additionally
Ar = 0 (elimination of the fibre phase), we will obtain appropriate solutions for
the homogeneous beam [9].

The limiting case when ω → 0 gives the static problem. Thus, considering
the uniformly distributed load p or the concentrated load P acting in the mid-
span of the beam, we will obtain the following extremal values of displacement
components using (4.6) and (4.7):

w (l/2) =
5

384

pl4

D
(1 + 9.6ζ) ; Ψ (0) = − pl3

24D
= −Ψ (l) ,(4.8)

w (l/2) =
Pl3

48D
(1 + 12ζ) ; Ψ (0) = − Pl2

16D
= −Ψ (l) .(4.9)

Taking additionally ζ = 0 leads to the solution of the slender beam obeying
the Bernoulli hypothesis.

5. Parametric study

The aim of the analysis is to determine the influence of shear deformations
on the values of deflections of the composite beam we deal with in this paper.
As we have mentioned before, the girders made of fibrous composites are rein-
forced using fibres characterised by much better mechanical properties than the
matrix properties. The fibres exhibit significant shear deformability. The use of
Bernoulli hypothesis is suitable for isotropic slender beams. Because of it, a di-
rect application of this hypothesis to solve the fibrous composite beam problem
seems to be inappropriate and leads to significant errors.
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The relative error connected with omitting the shear deformations to be
calculated for extremal deflections

(5.1) ε =
|w − wB|
|wB|

· 100%,

taking into account (4.8) and (4.9) becomes, in the case of uniformly distributed
load,

(5.2) ε = 9.6ζ · 100%.

For the concentrated load, the relative error

(5.3) ε = 12ζ · 100%

is 25% greater than the distributed load error. In the Eq. (5.1), symbol wB de-
noting the deflection calculated according to the slender beams theory was used.

In order to demonstrate the influence of the beam slenderness changes l/h
and of the ratio nr = Er/E on the value of the error ε to be committed, let us
take for example the data identical as before (see Fig. 3).

The calculated values of the error ε are presented in Table 1 and visualised
in Fig. 4.

Fig. 4. Influence of the beam slenderness changes l/h and of the ratio nr = Er/E on the
value of the relative error ε caused by disregarding the transverse shear deformations effect.
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Table 1.

ε %
l/h

25 20 15 10 8 4

nr =
Er

E

10 1.02 1.60 2.84 6.39 9.98 39.9

20 1.65 2.57 4.57 10.3 16.1 64.3

50 3.52 5.49 9.77 22.0 34.3 137.3

100 7.05 10.4 18.4 41.4 64.7 265.2

200 12.88 20.1 35.7 80.4 125.6 502.3

300 19.12 29.8 53.1 119.3 186.4 745.7

6. Conclusions

The complete analytical results obtained in the paper as well as the analysis
carried out show that considering the influence of the transverse shear deforma-
tions in the dynamic problem of fibrous composite beams reinforced by layers of
long fibres, strongly influences the natural frequencies and displacements to be
calculated.

This influence depends mainly on the vulnerability parameter ζ which strongly
depends on the parameters h2

/

l2, nr = Er/E, µr = jrAr/A (density of fibres’
locations in the r-th family) and ei/h (location of the family of fibres in the
cross-section) and on the way the load is distributed.

The influence of shear deformations on the behaviour of a homogenous beam
(without reinforcement) with the ratio l/h ≥ 10 is negligible. An important fact
we have presented in the paper is that for the composite beam possessing the
same slenderness ratio, this influence is significant and may reach the values
greater than 100% (see Table 1).

However, the influence of the rotary inertia on the eigenvalues of composite
beams is over ten times smaller than the influence of shear deformations. Thus
it may be neglected.
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