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In this study, the dynamic response of an Euler-Bernoulli beam resting on the nonlinear
viscoelastic foundation under the action of a moving mass by considering the stretching ef-
fect of the beam’s neutral axis is investigated. A Dirac-delta function is applied to model the
location of the moving mass along the beam as well as its inertial effects. The Galerkin decom-
position method is used to transform a partial dimensionless nonlinear differential equation of
dynamic motion into an ordinary nonlinear differential equation. Subsequently, the well-known
homotopy analysis method (HAM) is employed to obtain an approximate analytical solution
of this equation. The validity and accuracy of the solution are examined numerically using the
fourth-order Runge-Kutta method. Finally, several examples are provided to show the effects
of parameters such as linear and nonlinear stiffness coefficients of a viscoelastic foundation,
velocity of the moving mass as well as Coriolis force, centrifugal force and inertia force of the
moving mass on the dynamic deflection of the beam.
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1. Introduction

Engineers have investigated the dynamic behavior of the beam affected by
moving load from the establishment of the railway in the 19th century and have
studied different aspects of this behavior. A problem of structure that vibrates
due to the movement of a load on it can be observed in many industries and
engineering applications. Investigating the effect of moving load on bridge vibra-
tions, pipes carrying fluid, construction cranes, wood saw, computer disks, ve-
hicle brakes and cutting tools in machining are examples of applications of such



356 M. POURSEIFI, M.M. MONFARED

modeling [1–5]. Today, considering economic constraints, it is common to study
low-weight structures carrying a moving load, which increases the probability of
forming large vibrations in these structures; thus, controlling such systems has
become more important than ever [6–11]. The first study on bridge vibrations
was performed by Willis [12]. This study formulated a movement equation for
a railway bridge for the first time; the equation was proposed assuming a beam
without mass and moving load with constant speed. Mackertich [13] intro-
duced the effects of rotational inertia and shear deformation on the Timoshenko
beam. In this study, the effect of Coriolis acceleration has not been considered.
Green and Cebon [14] studied the bridge-vehicle interaction by considering
a vehicle model as a lumped mass supported by a spring and damper. By us-
ing the iterative method, the authors analyzed a limited range of sprung mass
properties. Auciello [15] analyzed the vibrations of an elastically restrained
cantilever beam of varying cross-sections under concentrated axial force using
the Rayleigh-Ritz method. Chen et al. [16] investigated the dynamic response
of an infinite beam under harmonic moving force on a viscoelastic foundation by
presenting similar and comprehensive studies. In their study, critical speed and
resonance frequency are obtained. Azam et al. [17] presented equations regard-
ing Timoshenko beam vibrations affected by a moving mass using Hamilton’s
developed principle. In their study, dynamic response affected by moving force,
moving mass and suspending moving mass was examined. Nikkhoo et al. [18]
investigated the dynamic response of the beam under moving mass with con-
stant speed using the semi-analytic method. In their analysis, the effect of the
critical speed of moving force on the displacement of the system was investi-
gated. Eftekhari [19] applied the differential quadrature method to investigate
the steady state of the linear and nonlinear vibration of the Euler-Bernoulli-von
Kármán beam resting on an elastic Winkler foundation; the beam was subjected
to a moving point load.

In recent years, semi-analytic or analytic solutions have attracted attention
in investigating the effect of different parameters on engineering systems [20–22].
One of the most applicable analytic methods is the perturbation method. But
this method has a great disadvantage: its dependency on nonlinear terms is weak.
The iteration method, energy balancing method and the HAM are more recent
analytic-approximation methods that have been widely used and tried to resolve
the perturbation method’s shortcoming. The HAM has attracted attention in
recent years in the analysis of vibrational systems [23, 24]. Most studies on the
homotopy method can be divided into two categories: studies that involve im-
proving accuracy and studies that demonstrate the capability of the homotopy
method to solve different equations [25–27]. Papers [28–31] can be mentioned
among the studies that involved solving governing equations of dynamic sys-
tems using the homotopy method. The buckling properties of a single-layered
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graphene sheet by using of nonlocal integral first shear deformation theory on
viscoelastic medium were analyzed by Rouabhia et al. [32]. In another paper,
the buckling behavior of a single-layered graphene sheet in a visco-Pasternak
elastic medium was studied by means of nonlocal theory for the four-unknown
integral model by Moussa et al. [33]. Some of the papers discussed the Win-
kler, Pasternak, and Kerr elastic foundation. Interested readers are referred to
[34–42]. Based on the authors’ knowledge, the nonlinear vibration of the beam
on a nonlinear viscoelastic foundation under the effect of moving mass using
the homotopy method has not been conducted yet. Furthermore, the HAM is
a nonperturbative analytical technique for obtaining series solutions to nonlin-
ear equations. Its capacity to choose different base functions to approximate
a nonlinear problem and its ability to control the convergence of the solution se-
ries have been very advantageous in solving highly nonlinear problems in science
and engineering.

The main objective of this study is to obtain the analytical expressions for
nonlinear dynamic response of the Euler-Bernoulli beam resting on the nonlinear
viscoelastic foundation subject to the action of a moving mass. In the derived
dynamic equation, a geometric type of nonlinearity is considered. which is due
to the stretching effect of the mid-plane of the beam. The first partial differential
equation of beam is reduced to a typical nonlinear differential equation via the
Galerkin decomposition technique. The latter equation is solved analytically in
the time domain using the HAM. Afterward, in order to accurately assess and
examine the precision of calculation, an analytical solution is compared with
the numerical solution by the fourth-order Runge-Kutta method. Finally, effect
parameters such as linear and nonlinear stiffness coefficients of a viscoelastic
foundation, velocity of the moving mass as well as inertial effects of moving
mass on the dynamic deflection of the beam are studied.

2. Formulation of problem

The mathematical model of a simply supported Euler-Bernoulli beam rest-
ing on a non-linear viscoelastic foundation and subjected to a moving mass is
considered, as shown in Fig. 1. The moving mass travels in a straight line in

Fig. 1. A beam under the influence of moving concentrated mass
on a linear and nonlinear viscoelastic foundation.
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the horizontal direction, this movement is known, and the beam only vibrates
in the y-direction. Let w(x, t) denote the transverse displacement of the beam
and x and t represent the axial and the time coordinates, respectively. The gov-
erning equation for the transverse vibration of the Euler-Bernoulli beam model
under a moving mass of weight mg and velocity v by considering the stretching
effect of the beam’s neutral axis and the nonlinear viscoelastic foundation is as
follows [43, 44]:

(2.1) EIz
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2

− ∂2w(x, t)

∂x2
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(
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∂x2

)
δ(x− vt),

where ρ is the beam’s density, A is the cross-sectional area, E is Young’s modulus
of elasticity, Iz is the moment of inertia, and δ(.) is the Dirac delta function. Also,
the parameters k1 and k2 are the linear and nonlinear parts of the foundation
stiffness, respectively.

There are several methods for converting partial differential equations to
ordinary differential equations, and one of the best and most practical of these
methods is the Galerkin method, whose precision and accuracy have been tested
in a variety of problems. Using the Galerkin method, Eq. (2.1) is reduced to the
ordinary differential equation. The transverse displacement is assumed in the
following form [45]:

(2.2) w(x, t) =

n∑
i=1

ϕi(x)qi(t),

where qi(t) is the generalized coordinate in accordance with the i-th modal
shape function ϕi(x). The modal shape functions that satisfy the basic boundary
conditions of a simply supported beam can be considered as follows [45]:

(2.3) ϕi(x) = sin

(
iπx

l

)
, i = 1, 2, 3, ...

In accordance with the Galerkin decomposition technique, Eq. (2.2) is placed
in Eq. (2.1), and as a result a typical differential equation can be obtained

(2.4) M(t)q̈(t) + C(t)q̇(t) +K(t)q(t) + F (q̈(t), q̇(t), q(t)) = f(t).
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For the first vibrational mode of the Euler-Bernoulli beam resting on the non-
linear viscoelastic foundation of Eq. (2.4) is derived from the following form [45]:

(2.5)
(
1 + b1 sin2(τ)

)
q̈(τ) + b1 sin(2τ)q̇(τ)

+
(
b2 − b1 sin2(τ)

)
q(τ) + b3q

3(τ) = b4 sin(τ).

The coefficients used in Eq. (2.5), which are expressed as dimensionless, are
respectively defined as follows:

(2.6)

b1 =
2m

ρAl
, b2 =

π2EIz
ρAv2l2

+
l2k1

ρAv2π2
, b3 =

3l2k2

4ρAv2π2
+

Eπ2

4ρl2v2
,

b4 =
2mgl

ρAv2π2
, τ =

πv

l
t.

Equation (2.5) is the dimensionless differential equation of motion governing
the nonlinear vibration of the Euler-Bernoulli beam under a moving mass. The
center of the beam is subjected to the following initial conditions:

(2.7) q(0) = 0, q̇(0) = 0.

Note that nonlinear terms did not affect the governing equation of the beam
when the moving mass passed the end of the beam.

3. Homotopy analysis method

3.1. An overview

Among the methods used to find the analytic solution of nonlinear differen-
tial equations, the HAM is one of the best methods. This method transforms
a nonlinear differential equation into an indefinite number of linear differential
equations with auxiliary parameter p varying between 0 and 1. As the value of p
increases from 0 to 1, the solution of the problem moves from initial guess to
the exact solution. To show the basic ideas of the HAM, consider the following
non-linear differential equation:

(3.1) N [q(τ)] = 0

in which N is a nonlinear differential operator and q(τ) is an unknown function
of a variable τ . The homotopy equation is generally defined as follows:

(3.2) H[φ; p, h,H(τ)] = (1− p)L[φ(τ ; p)− q0(τ)]− p hH(τ)N [φ(τ ; p)],

where h is a non-zero auxiliary parameter, H(τ) is a non-zero auxiliary function
and L denotes an auxiliary linear operator. As p increases from 0 to 1, φ(τ ; p)
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varies from the initial approximation to the exact solution. In other words,
φ(τ ; 0) = q0(τ) is the solution of the H[φ; p, h,H(τ)]

∣∣
p=0

= 0 and φ(τ ; 1) =

q(τ) is the solution of the H[φ; p, h,H(τ)]
∣∣
p=1

= 0. Similarly, ω(p), the non-
linear frequency of the beam, varies from the initial guess frequency ω0 to the
physical frequency ω. Then, φ(τ ; p) and ω(p) can be expanded in a power series
of p using Taylor’s theorem as follows:

(3.3)

φ(τ ; p) = φ(τ ; 0) +

∞∑
k=1

1

k!

∂kφ(τ ; p)

∂pk

∣∣∣∣
p=0

pk = q0(τ) +
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k=1

qk(τ)pk,

ω(p) = ω0 +
∞∑
k=1

1

k!

∂kω(p)

∂pk

∣∣∣∣
q=0

pk = ω0 +
∞∑
k=1

ωkp
k,

where qk(τ) and ωk are called the k-order deformation derivative. Setting
H[φ; p, h,H(τ)] = 0, the zero-order deformation equation is constructed:

(3.4) (1− p)L[φ(τ ; p)− q0(τ)] = p hH(τ)N [φ(τ ; p)]

with the following initial conditions:

(3.5) φ(0; p) = 0,
dφ
dτ

∣∣∣∣
0,p

= 0.

By differentiating the zero-order deformation equation with respect to p and
putting p = 0, yields the first-order deformation equation which gives the first-
order approximation of q(τ):

L [q1(τ)] = hH(τ)N [φ(τ ; p)]
∣∣
p=0

,(3.6)

q1(0) = 0,
dq1

dτ

∣∣∣∣
0

= 0.(3.7)

The higher-order approximations can be achieved by calculating the k-order
(k > 1) deformation equation which can be calculated by differentiating Eqs. (3.4)
and (3.5) k times with respect to p that is expressed as follows:

(3.8) L (qk(τ)− qk−1(τ)) = hH(τ)Rk (qk−1, ωk−1),

where qk−1, ωk−1, and Rk (qk−1, ωk−1) are defined as follows:

(3.9)

Rk (qk−1, ωk−1) =
1

(k − 1)!

dk−1

dp k−1
N [φ(τ ; k), ω(k)]

∣∣∣
k=0

,

qk−1 = {q0, q1, q2, ..., qk−1},
ωk−1 = {ω0, ω1, ω2, ..., ωk−1}.



NONLINEAR VIBRATION OF A BEAM RESTING ON A NONLINEAR. . . 361

Initial conditions are considered in the following form:

(3.10) qk(0) = 0,
dqk
dτ

∣∣∣∣
0

= 0.

3.2. Application of the HAM

In this section, we apply the HAM to solve the nonlinear differential Eq. (2.4).
In order to obtain the answer to Eq. (2.4), the first guess of q(τ) is chosen as
follows:

(3.11)

q0(τ) = a1 sin(τ),

q0(0) = 0,
dq0

dτ

∣∣∣∣
0

= 0.

To construct the homotopy function, the auxiliary linear operator is selec-
ted as:

(3.12) L [φ(τ ; p)] = ω2
0

[
∂2φ(τ ; p)

∂τ2
+ φ(τ ; p)

]
.

The auxiliary linear operator L is chosen in such a way that the solution
of the equation exists and can be expressed by the general form of the base
function [46]. From Eq. (2.4), the nonlinear operator is defined as:

(3.13) N [φ(τ ; p), ω(p)] =
(
1 + b1 sin2(τ)

) ∂2φ(τ ; p)

∂τ2
+ b1 sin(2τ)

∂φ(τ ; p)

∂τ

+
(
b2 − b1 sin2(τ)

)
φ(τ ; p) + b3φ

3(τ ; p)− b4 sin(τ).

Having assumed auxiliary function H(τ) = 1 and the auxiliary parameter
h = 1, the first-order transformation equation with regard to Eqs. (3.6) and (3.7)
can be written as follows:

(3.14) ω2
0

[
d2q1(τ)

dτ2
+ q1(τ)

]
=
(
1 + b1 sin2(τ)

) d2q0(τ)

dτ2
+ b1 sin(2τ)

dq0(τ)

dτ

+
(
b2 − b1 sin2(τ)

)
q0(τ) + b3 q

3
0(τ)− b4 sin(τ).

(3.15) q1(0) = 0,
dq1

dτ

∣∣∣∣
0

= 0.

The solution of Eq. (3.14) should obey the general form of the base function.
Therefore, the coefficient of the secular term must be zero. After eliminating
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secular terms and solving the differential Eq. (3.14), q1(τ), and ω0 are obtained
as follows:

(3.16) ω2
0 =

3a2
1b3 − 2b1

2b1
,

(3.17) q1(τ) = a2 sin(3τ) + a3 sin(τ) + a4 sin(2τ)− a5 sin(2τ)

+ a6 sin(3τ)− a7 sin(τ) + a8 sin(τ).

The coefficients ai (i = 1, 2, ..., 8) are given in Appendix. The higher-order
approximations are obtained similarly. Assuming k = 2 in Eq. (3.9) leads to the
following result for the first-order approximation of non-linear frequency (ω1):

(3.18) ω1 =
a2

1(9a8b3 + 3a8b3) + b3a2a1(−12a2 − 6a6 + 6a7) + 6a8a
2
2b3

8ω0a1

− (2a8 + a3 + a4)b1(1 + ω2
0) + 3(a3 + a4)a2

2b3 − 2(a3 − a4)b1ω0

8ω0a1
.

In accordance with Eq. (3.3), the first-order approximation of q(τ) and ω
become as follows:

q(τ) = q0(τ) + q1(τ),(3.19)

ω = ω0 + ω1.(3.20)

4. Numerical results and discussion

In this section, in order to show the accuracy and effectiveness of HAM, some
results are obtained for nonlinear vibration of the simply supported beam under
the effect of moving mass on a nonlinear viscoelastic foundation. The geometric
and mechanical properties of the Bernoulli-Euler beam resting on the nonlinear
viscoelastic foundation are listed in Table 1.

Table 1. Geometrical and mechanical properties of the beam and non-linear foundation.

Item Property Notation Value

Beam

Length l 1 m

Young’s modulus E 207 · 109 Pa

Mass density ρ 7700 kg/m3

Cross-sectional area A 0.01 m3

Second moment of area Iz 2.08 · 10−6 m4

Foundation
Linear stiffness k1 106 N/m2

Non-linear stiffness k2 1017 N/m4

Moving mass Mass m 150 kg



NONLINEAR VIBRATION OF A BEAM RESTING ON A NONLINEAR. . . 363

In all plots, the horizontal and vertical axes represent the dimensionless
position of the moving mass and the dimensionless dynamic deflection of the
beam, respectively. The normalized dimensionless dynamic deflection can be
expressed as w /ws, where ws = mgl2

48EIz
represents the static deflection of the beam

under a mass load at midspan. In the first example, to demonstrate the accuracy
of the obtained analytical results, the authors also calculate the variation of
the dimensionless dynamic response of the beam using the fourth-order Runge-
Kutta method. Figure 2 illustrates the comparison between these results. As can
be seen in this figure, data from the analytical method are entirely consistent
with numerical results and represent a very high accuracy and a very high
convergence rate of this method.

Fig. 2. Comparison of analytical solution and numerical results
for the dimensionless dynamic response of the beam.

Plots of the dimensionless dynamic deflection of the beam versus the nor-
malized position of the moving mass are provided in Figs. 3a and 3b to further
investigate the effect of the nonlinear foundation stiffness and velocity of the

a) b)

Fig. 3. Effect of the nonlinear stiffness coefficient of a viscoelastic foundation on the dimen-
sionless dynamic deflections with k1 = 106 N/m2: a) v = 25 m/s, b) v = 60 m/s.
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moving mass. The results are presented for k2 = 1014, 1014, 1015, 1016, 1017,
1018 N/m4, and two levels of the moving mass velocity v = 25 m/s and 60 m/s.
It can be seen that the nonlinear foundation parameter has a considerable in-
fluence on the normalized dynamic response of the beam. So, the dimension-
less dynamic deflection of the beam decreases with the increasing values of the
nonlinear foundation stiffness. Additionally, for definite values of the nonlinear
foundation stiffness, it can be concluded that fluctuations of dynamic deflection
are reduced with the increasing velocity of moving mass.

Figures 4a and b illustrate the effect of changing the stiffness of a linear foun-
dation on the dimensionless dynamic response of the beam versus the normalized
position of the moving mass. By ignoring the nonlinear foundation parameter
in the movement equation (k2 = 0), the results are presented for various val-
ues of the linear stiffness coefficient k1 = 0, 107, 109 N/m2 and constant velocities
of the moving mass v = 25 m/s and 60 m/s. It is clear from Figs. 4a and 4b that
the dimensionless dynamic deflection of the beam decreases with the increas-
ing values of the linear stiffness coefficient. Also, as it might be observed, for
the definite value of linear stiffness coefficient, the magnitude of dimensionless
dynamic deflection increases with the increasing velocity of the moving mass.

a) b)

Fig. 4. Effect of the linear stiffness coefficient of a viscoelastic foundation on the dimensionless
dynamic deflections with k2 = 0: a) v = 25 m/s, b) v = 60 m/s.

The influence of the velocity of the moving mass on the dimensionless dy-
namic deflection is shown in Fig. 5. This figure depicts the results for v = 60,
120, 176, 256 m/s and two values of the nonlinear stiffness coefficient k2 = 0
and k2 = 1017 N/m4. According to Fig. 5, the dimensionless dynamic deflec-
tion of the beam in the nonlinear model at each speed has smaller values com-
pared to the linear model. Also, it is worth mentioning that at the low velocities
of the moving mass, the difference in the dimensionless dynamic response of
the beam between the linear and nonlinear models is noteworthy, while at high
speed of moving mass this difference is insignificant.
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Fig. 5. Effect of the velocity of the moving mass on the dimensionless dynamic deflections:
linear model (k1 = 106 N/m2, k2 = 0) – non-continuous lines, nonlinear model (k1 = 106 N/m2,

k2 = 1016 N/m4) – continuous lines.

The graphs shown in Fig. 6 display the variations of the non-dimensional
mass parameter (α = m/ρAl) on the dimensionless dynamic deflection of the
beam with linear and nonlinear models. In this case, the velocity of the mov-
ing mass v = 25 m/s and other parameters were chosen according to Table 1.
As can be seen in Fig. 6, the dimensionless dynamic deflection for the linear
model of the beam increases with the increasing non-dimensional mass parame-
ter, while for nonlinear model of the beam, the dimensionless dynamic deflection
is reduced with the increasing non-dimensional mass parameter. Additionally,
in this figure, we observe that for various values of the non-dimensional mass
parameter, the difference of the dimensionless dynamic response of the nonlinear
model of the beam is considerable, while for the linear beam, this difference is
minor.

Fig. 6. Effect of non-dimensional mass parameter on the dimensionless dynamic deflections
with v = 25 m/s: linear model (k1 = 106 N/m2, k2 = 0) – non-continuous lines, nonlinear

model (k1 = 106 N/m2, k2 = 1017 N/m4) – continuous lines.

The effects of Coriolis force, centrifugal force and inertia force terms on
the dimensionless dynamic deflection of the beam with linear and nonlinear
foundation are plotted in Fig. 7. As can be seen in Fig. 7, for both models of foun-
dation, while ignoring inertia force of the moving mass in movement equation,
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a)

b)

c)

Fig. 7. Effect of: a) Coriolis force, b) centrifugal force, c) inertia force terms on the dimen-
sionless dynamic deflections with v = 25 m/s; linear model (k1 = 106 N/m2, k2 = 0) – non-

continuous lines, nonlinear model (k1 = 106 N/m2, k2 = 1016 N/m4) – continuous lines.

the fluctuations of dynamic response increase partially, while the magnitude
of the dynamic response does not change considerably. In comparison with the
previous case, it is interesting to note that the Coriolis force and centrifugal
force of the moving mass do not have a considerable influence on the dynamic
deflection of the beam.

5. Conclusions

In this paper, an Euler-Bernoulli beam resting on a nonlinear viscoelastic
foundation subjected to a moving mass by considering the stretching effect of the
beam’s neutral axis was analyzed. The Galerkin method was used to transform
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the nonlinear partial differential equation of motion into an ordinary nonlin-
ear differential equation, and consequently, an approximate analytical solution
was obtained for the nonlinear dynamic deflection of the beam using the HAM.
The efficiency and accuracy of the method were demonstrated by a compar-
ison between solutions obtained by the HAM and the fourth-order numerical
Runge-Kutta method. Numerical simulation was carried out to investigate the
effects of linear and nonlinear stiffness coefficients of a viscoelastic foundation,
velocity of the moving mass as well as Coriolis force, centrifugal force and in-
ertia force of moving mass on the dynamic deflection of the beam. From the
numerical results, the following key points were observed:

1) The dynamic deflection of the beam decreased with the increasing values
of the linear and nonlinear foundation stiffness.

2) When comparing linear and nonlinear models of the beam, the dynamic
deflection of the nonlinear beam was smaller than the linear model.

3) For the definite value of linear and nonlinear stiffness coefficient, the mag-
nitude of dynamic deflection increases with the increasing velocity of the
moving mass.

4) For both models of the beam, the dynamic deflection increased and de-
creased with the increasing non-dimensional mass parameter, respectively.

5) The inertia force parameter has a considerable influence on the fluctua-
tions of the dynamic response of the beam, while the Coriolis force and
centrifugal force do not have a remarkable effect on the dynamic deflection
of the beam.

Appendix

The coefficients in Eqs. (3.15) and (3.16) are defined as:

a1 =
−b4

ω0(ω2
0 − 1)

, a2 =
hb3a

3
1

32ω2
0

,

a3 = −
h
(
3b3(f1 + 4)a3

2 + a2(−4f2
1 + 6b3f1a

2
1 − 8f1 + b3a

2
1)− 4b4f1

)
4f1ω0(ω2

0 − 1)
,

a4 = −ha1(3a2
1b3 + 4ω0f1)

32(ω0 + 1)
, a5 =

ha1(3a2
1b3 − 4ω0f1)

32(ω0 − 1)
,

a6 = −ha1(b3a
2
2 − 4f1)

4(ω2
0 − 9)

, a7 = −ha
2
1a2b3(9ω2

0 + 12ω0 + 3)

36ω2
0 − 40ω0 + 4

,

a8 =
ha2

1a2b3(9ω2
0 − 12ω0 + 3)

36ω2
0 − 40ω0 + 4

.
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