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This paper is devoted to the stepped sandwich beam with clamped ends subjected to
a uniformly distributed load. The bending problem of the beam is formulated and solved
with consideration of the classical sandwich beam of constant face thickness. Two differential
equations of equilibrium based on the principle of the stationary potential energy of the classical
beam are obtained and analytically solved. Moreover, numerical-FEM models of the beams
are developed. Deflections for an exemplary beam family with the use of two methods are
calculated. The results of the study are presented in figures and tables.
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1. Introduction

Sandwich constructions, initiated in the mid-twentieth century, are the sub-
ject of contemporary studies and are intensively improved.

Noor et al. [15] reviewed 800 references devoted to computational models of
sandwich plates and shells. Their review includes numerical results of thermally
stressed sandwich panels. In addition, the authors cited 559 articles as comple-
mentary sources of information. Vinson [20] reviewed the possible applications
of sandwich structures and discussed the basics of the structural mechanics of
these structures. This revision contains 174 references. Icardi [5] developed
a sublaminate model of a laminated or sandwiched beam based on the zig-zag
theory. For this purpose, the author compared four models with linear or cubic
approximation and with or without the zig-zag theory. The author described the
advantages of higher-order displacement approximations in layers of sandwich
or laminated structures, and proposed a model that can be used to calculate
sandwich or laminate structures in which laminates are thick and whose ma-
terial properties change in the layers. Steeves and Fleck [19] considered the
three-point bending of sandwich beams made of composite faces and a polymer
foam core. The authors focused on defining the collapse mode of this structure
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in relation to its geometry and weight. In addition, the authors compared the
collapse strength of sandwich beams made of composite faces and a polymer
core with those with a metal core and metal faces. A higher-order impact model
of a sandwich beam with a soft core was presented by Yang and Qiao [23].
The authors considered the free vibrations of the sandwich beams impacted by
a foreign object and compared these results with the numerical results. The
model developed by Yang and Qiao can be used to design anti-impact sandwich
structures. Magnucka-Blandzi and Magnucki [7] described the bending of
a simply supported sandwich beam with a metal foam core. The authors for-
mulated and solved a system of equations of equilibrium based on the theory
of potential energy minimum. A numerical solution has also been presented.
Carrera and Brischetto [2] reviewed the bending and vibration of sand-
wich plates and presented various theories: classical, higher-order, zig-zag, lay-
erwise and mixed. Moreover, in their article, the authors considered benchmark
problems of simply supported orthotropic panels. Carrera and Brischetto
pointed out the sources of errors related to the ratio of length-to-thickness and
the ratio of face-to-core-stiffness. Nguyen et al. [14] investigated the advantages
of sandwich panels with stepped faces. The authors described many examples to
prove that stepped facings can locally improve the strength and stiffness of sand-
wich structures. Kreja [6] reviewed the theoretical model of sandwich beams
and their numerical implementation. The result of analyzing over 200 references
is the fact that there is no universal numerical model for layered composite
and sandwich panels. Wang et al. [21] described sandwich beams with metal
facings and a core made of shape memory polymers. The authors considered
two types of beams that differ from the material of facings (aluminum or steel).
Xiaohui et al. [22] developed a higher-order broken line theory for laminated
composite and sandwich structures, which is independent of the number of lay-
ers. Results of numerical studies have been presented by the authors. Phan
et al. [16] developed a one-dimensional high-order theory for sandwich beams
that are orthotropic and elastic. This theory is an extension of the high-order
theory of sandwich beams and is based on three generalized coordinates in the
core. The advantage of this approach is that it can be used to analyze sandwich
beams, the core and faces made of any material. Moreover, the authors pre-
sented a detailed numerical analysis of this theory. The bending and buckling of
a five- layer sandwich beam, in which a thin layer of glue bonds faces and a core,
was described by Magnucki et al. [9]. In the article, the authors compared the
analytical, numerical and experimental results of bending a five-layer sandwich
beam. Sayyad and Ghugal [17] reviewed the bending, buckling and free vibra-
tion of sandwich beams and laminated composite. The authors also considered
numerical modeling of laminated and sandwich structures. The review was made
based on 515 references.
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Magnucka-Blandzi [8] developed an analytical model of seven-layer beams
with a corrugated core and three-layer facings and compared it with classic three-
layer beams. An analytical model of this structure was formulated, taking into
account the deformation depending on displacements and deformation fields
as well as the rigidities of the layers. Moreover, Magnucka-Blandzi presented
and compared the solution of equilibrium equations of a three- and seven-layer
sandwich beam. Birman and Kardomateas [1] reviewed mathematical mod-
els, methods of analysis and problems in the design of sandwich structures.
Their paper focused on novel works of sandwich structures and older articles
were only mentioned as the basic sources of knowledge. The authors described
different designs of sandwich structures, such as miscellaneous cores, nanotubes,
smart materials and functionally graded. Furthermore, possible applications of
sandwich structures in, for instance, aerospace, civil and marine engineering
were presented. Sayyad and Ghugal [18] reviewed the analytical and numeri-
cal methods for modeling functionally graded sandwich beams using the theory
of elasticity. Their article contains 250 citations and references. Furthermore,
the authors suggested possible areas of further research on functionally graded
sandwich structures. Magnucki et al. [10] developed a mathematical model of
an unsymmetrical sandwich beam whose faces differ in thickness and mechani-
cal properties. In the article, a mathematical model of the beam was formulated
on the basis of broken-line hypothesis. The authors compared analytical results
with solutions from two different FEM systems. The bending of simply sup-
ported sandwich beams and I-beams of symmetrical structure in two different
load cases was considered by Magnucki [11]. The author developed two models
based on zig-zag and nonlinear theory, respectively. The results of the analyt-
ical solution of equations of equilibrium for two load cases based on the total
potential energy principle were presented.

A proposal for a general mathematical model of sandwich structures was
presented by Magnucki and Magnucka-Blandzi [12]. This analytical model
was thoroughly presented by the authors for the rectangular plate. Moreover,
a system of plate equilibrium equations, which was formulated on the basis of
the total potential energy principle, was solved. Chinh et al. [3] investigated
the point interpolation meshfree method based on a polynomial basic function.
This function is used for constructing shape functions and approximating dis-
placement field of the computational domain. Moreover, the authors derived
equilibrium equations of functionally graded sandwich beams from the principle
of virtual work. The accuracy of the developed method was proved by com-
parison with results in literature. Drache et al. [4] developed the higher-order
theory of shear and normal deformation of functionally graded sandwich beams.
The novelty of this theory is that the hyperbolic cosine distribution of transverse
shear stress has been explained. The authors presented the solution of equilib-
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rium equations derived from the principle of virtual work. Results have been
compared with the solutions in the literature. Magnucki et al. [13] presented
a comparison of the bending, buckling and free flexural vibration of three models
of a sandwich beam. The authors developed two shear theories of the deforma-
tion of a sandwich beam’s cross-section. Furthermore, equations of motion for
the presented models were formulated.

The subject of this study are the stepped sandwich beams with clamped
ends of length L, total depth h, and width b. These beams are under a uniformly
distributed load of intensity q (Fig. 1), and are placed in the Cartesian coordinate
system xyz.

a)

b)

Fig. 1. Schemes of two cases of the stepped sandwich beam with clamped ends: a) thinner
facings of the middle beam part (hf2 ≤ hf1), b) thicker facings of the middle beam part

(hf1 ≤ hf2).

The paper’s main goal is to elaborate analytical and numerical FEM models
of this beam and determine deflections for sample beams.

2. Analytical model of the stepped sandwich beam
and calculations

The deformation of a planar cross-section (a straight normal line) of the
sandwich beam of constant faces’ thickness with consideration of the “broken
line” theory – classical model, presented, e.g., in [13], is shown in Fig. 2.
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Fig. 2. Scheme of the deformation of a planar cross-section of the classical sandwich beam.

Based on the above scheme, the longitudinal displacements in the x-direction
are as follows:

• the upper face (−1/2 ≤ η ≤ −χc/2)

(2.1) u(x, η) = −h
[
η

dv
dx

+ ψf (x)

]
,

• the core (−χc/2 ≤ η ≤ χc/2)

(2.2) u(x, η) = −hη
[

dv
dx
− 2

χc
ψf (x)

]
,

• the lower face (χc/2 ≤ η ≤ 1/2)

(2.3) u(x, η) = −h
[
η

dv
dx
− ψf (x)

]
,

where η = y/h is the dimensionless coordinate, ψf (x) = uf (x)/h is the dimen-
sionless displacement function, χc = hc/h is the relative thickness of the core,
and v(x) is the deflection of the beam.

Thus, the strains in particular layers are as follows:
• the upper face

(2.4)

ε(uf)
x (x, η) =

∂u

∂x
= −h

[
η

d2v

dx2
+

dψf
dx

]
,

γ(uf)
xy (x, η) =

∂u

h∂η
+

dv
dx

= 0,
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• the core

(2.5)

ε(c)
x (x, η) = −hη

[
d2v

dx2
− 2

χc

dψf
dx

]
,

γ(c)
xy (x) =

∂u

h∂η
+

dv
dx

=
2

χc
ψf (x),

• the lower face

(2.6)

ε(lf)
x (x, η) =

∂u

∂x
= −h

[
η

d2v

dx2
−

dψf
dx

]
,

γ(lf)
xy (x, η) =

∂u

h∂η
+

dv
dx

= 0.

Consequently, the stresses in accordance with Hooke’s law are in the following
form:

• the upper/lower faces

(2.7)
σ(uf)
x (x, η) = Efε

(uf)
x (x, η), σ(lf)

x (x, η) = Efε
(lf)
x (x, η),

τ (uf)
xy (x, η) = τ (lf)

xy (x, η) = 0,

where Ef is Young’s modulus of the faces,
• the core

(2.8) σ(c)
x (x, η) = Ecε

(c)
x (x, η), τ (c)

xy (x, η) =
Ec

2(1 + νc)
γ(c)
xy (x, η),

where Ec, νc are Young’s modulus and Poisson’s ratio of the core, respec-
tively.

The bending moment is
(2.9)

Mb(x)=bh2


−χc/2ˆ

−1/2

ησ(uf)
x (x, η) dη +

χc/2ˆ

−χc/2

ησ(c)
x (x, η) dη +

1/2ˆ

χc/2

ησ(lf)
x (x, η) dη

.
Substituting expressions (2.7) and (2.8) for normal stresses and integrating,

one obtains the following equation:

(2.10) Cvv
d2v

dx2
− Cvψ

dψf
dx

= −12
Mb(x)

Efbh3
,

where Cvv = 1 − (1 − ec)χ
3
c , Cvψ = 3 − (3 − 2ec)χ

2
c , and ec = Ec/Ef are

dimensionless coefficients.
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The elastic strain energy of the beam is

(2.11) Uε =
Efbh

2

L̂

0

[
Φ(uf)(x) + ecΦ

(c)(x) + Φ(uf)(x)
]
dx,

where

Φ(uf)(x) =

−χc/2ˆ

−1/2

[
ε(uf)
x (x, η)

]2
dη,

Φ(c)(x) =

χc/2ˆ

−χc/2

{[
ε(c)
x (x, η)

]2
+

1

2(1 + νc)

[
γ(c)
xy (x)

]2
}

dη,

Φ(lf)(x) =

1/2ˆ

χc/2

[
ε(lf)
x (x, η)

]2
dη.

Substituting expressions (2.4), (2.5), and (2.6) for strains into the above expres-
sion (2.11) and integrating, one obtains

(2.12) Uε =
Efbh

3

24

L̂

0

{
Cvv

(
d2v

dx2

)2

− 2Cvψ
d2v

dx2

dψf
dx

+Cψψ

(
dψf
dx

)2

+ Cψ
ψ2
f (x, t)

h2

}
dx,

where Cψψ = 4 [3− (3− ec)χc], Cψ = 24
1+νc

ec
χc

are dimensionless coefficients.
The work of the load is

(2.13) W = q

L̂

0

v(x) dx.

Therefore, based on the principle of stationary total potential energy
δ(Uε−W ) = 0, two differential equations of equilibrium of the classical sandwich
beam are obtained in the following form:

Cvv
d4v

dx4
− Cvψ

d3ψf
dx3

= 12
q

Efbh3
,(2.14)

Cvψ
d3v

dx3
− Cψψ

d2ψf
dx2

+ Cψ
ψf (x)

h2
= 0.(2.15)
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It may be easily noticed that equations of fourth-order (2.14) and second-
order (2.10) are equivalent. Thus, Eqs. (2.10) and (2.15) are governing equilib-
rium equations of the bending sandwich beams.

The scheme of the cut part of the beam with the load and reactions is shown
in Fig. 3.

Fig. 3. Scheme of the cut part of the beam with the load and reactions.

The bending moment in accordance with the above scheme is as follows:

(2.16) Mb(x) = RAx−
1

2
qx2 −M0,

where RA = 1
2qL is the reaction, and M0 is the unknown reactive moment.

Consequently

(2.17) Mb(x) =
1

2

(
Lx− x2

)
q −M0.

The equilibrium Eqs. (2.10) and (2.15) apply to the classical sandwich beam
with constant layers thicknesses. One can notice that the layers’ thickness of the
successive parts of the stepped beams (Fig. 1) are constant. Therefore, these
equations with consideration of the expression (2.17) in the dimensionless co-
ordinate ξ, are thus used in the analytical study of the stepped beam in the
following form:

(2.18) Cvvi
d2v(i)

dξ2
− Cvψi

dψ(i)
f

dξ
= −6

[(
ξ − ξ2

)
qL2 − 2M0

] λ

Efbh2
,

(2.19) Cvψi
d3v(i)

dξ3
− Cψψi

d2ψ
(i)
f

dξ2
+ Cψiλ

2ψ
(i)
f (ξ) = 0,

where ξ = x/L is the dimensionless coordinate, v(i)(ξ) = v(i)(ξ)/L is the relative
deflection, λ = L/h is the relative length of the beam, i = 1, 2 is the number
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of the beam part, and Cvvi = 1 − (1 − ec)χ3
ci, Cvψi = 3 − (3 − 2ec)χ

2
ci, Cψψi =

4 [3− (3− ec)χci], Cψi = 24
1+νc

ec
χci

are dimensionless coefficients.
This system, after simple transformation, is reduced to one differential equa-

tion in the form:

(2.20)
d2ψ

(i)
f

dξ2
− (αiλ)2 ψ

(i)
f (ξ) = −6 (1− 2ξ)

Cvψi
CvviCψψi − C2

vψi

λ3 q

Efb
,

here αi =

√
CvψiCψi

CvviCψψi−C2
vψi

– dimensionless coefficient.

The solution of this equation is the function – dimensionless displacement:

(2.21) ψ
(i)
f (ξ) = kc1 [C1i sinh (αiλξ) + C2i cosh (αiλξ) + 6 (1− 2ξ)]λ

q

Efb
,

where C1i, C2i are integration constants, and kci =
Cvψi

CvviCψi
is coefficient.

The function (2.21) for the individual parts of the stepped sandwich beam
are as follows:

1) The first part of the beam (0 ≤ ξ ≤ 1/3), (i = 1) (Fig. 1): the condition:
for ξ = 0, ψ(1)

f (0) = 0, from which the constant C21 = −6, therefore

(2.22) ψ
(1)
f (ξ) = kc1 [C11 sinh (α1λξ)− 6 cosh (α1λξ) + 6 (1− 2ξ)]λ

q

Efb
.

The value of this function for ξ = 1/3 is as follows:

(2.23) ψ
(1)
f

(
1

3

)
= kc1 [C11 sinh (α1λ/3)− 6 cosh (α1λ/3) + 2]λ

q

Efb
.

2) The second-middle part of the beam (1/3 ≤ ξ ≤ 1/2), (i = 2) (Fig. 1):
the condition: for ξ = 1/2, ψ(1)

f

(
1
2

)
= 0, from which the constant C22 =

−C12 tanh (α2λ/2), therefore

(2.24) ψ
(2)
f (ξ) = kc2

{
C12

sinh [α2λ (ξ − 1/2)]

cosh (α2λ/2)
+ 6(1− 2ξ)

}
λ
q

Efb
.

The value of the nonlinear component of this function is negligibly small
– almost zero. Therefore, this function is linear in the following form:

(2.25) ψ
(2)
f (ξ) = 6kc2(1− 2ξ)λ

q

Efb
.

The value of this function for ξ = 1/3 is as follows:

(2.26) ψ
(2)
f

(
1

3

)
= 2kc2λ

q

Efb
.
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Based on the consistency condition for displacements ψ(1)
f (1/3) = ψ

(2)
f (1/3),

with consideration of the expressions (2.23) and (2.26), one obtains the integra-
tion constant

(2.27) C11 = 6
cosh (α1λ/3)

sinh (α1λ/3)
+ 2

1

sinh (α1λ/3)

(
kc2
kc1
− 1

)
.

Consequently, the dimensionless displacement function (2.22) is as follows:

(2.28) ψ
(1)
f (ξ) = kc1

{
−6

sinh [α1λ (1/3− ξ)]
sinh (α1λ/3)

+ 2
sinh (α1λξ)

sinh (α1λ/3)

(
kc2
kc1
− 1

)
+ 6(1− 2ξ)

}
λ
q

Efb
.

Equation (2.18) after the first integration for the individual parts of the
stepped sandwich beam is as follows:

1) The first part of the beam (0 ≤ ξ ≤ 1/3), (i = 1) (Fig. 1)

(2.29) Cvv1
dv(1)

dξ
= C31 + Cvψ1ψ

(1)
f (ξ)

− 6

[(
1

2
ξ2 − 1

3
ξ3

)
qL2 − 2ξM0

]
λ

Efbh2
.

The conditions: for ξ = 0, dv
(1)

dξ

∣∣∣
0

= 0, and ψ
(1)
f (0) = 0, from which the

constant C31 = 0, therefore

(2.30) Cvv1
dv(1)

dξ
= Cvψ1ψ

(1)
f (ξ)− 6

[(
1

2
ξ2 − 1

3
ξ3

)
qL2 − 2ξM0

]
λ

Efbh2
.

The value of this function for ξ = 1/3 is as follows:

(2.31)
dv(1)

dξ

∣∣∣∣∣
1/3

=

[
2kc2Cvψ1q −

(
7

27
qL2 − 4M0

)
1

h2

]
1

Cvv1

λ

Efb
.

Integrating Eq. (2.30) with consideration of the function (2.28), one ob-
tains

(2.32) v(1)(ξ) =
C41

Cvv1
+

{
2kc1Cvψ1Φ

(1)
f (ξ)q

−
[(
ξ3 − 1

2
ξ4

)
qL2 − 6ξ2M0

]
1

h2

}
1

Cvv1

λ

Efb
,
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where

Φ
(1)
f (ξ) =

3 cosh [α1λ(1/3− ξ)] + (kc2/kc1 − 1) cosh (α1λξ)

α1λ sinh (α1λ/3)
+ 3(ξ − ξ2).

The condition: for ξ = 0, v(1)(0) = 0, from which the constant

(2.33) C41 = −2Cvψ1
3kc1 cosh (α1λ/3)− kc1 + kc2

α1λ sinh (α1λ/3)
λ
q

Efb
.

The value of this function (2.32) for ξ = 1/3 is as follows:

(2.34) v(1)

(
1

3

)
=

{
2Cvψ1

[
2

3
kc1 − (4kc1 − kc2)

cosh (α1λ/3)− 1

α1λ sinh (α1λ/3)

]
q

− 1

3

(
5

54
qL2 − 2M0

)
1

h2

}
1

Cvv1

λ

Efb
.

2) The second-middle part of the beam (1/3 ≤ ξ ≤ 1/2), (i = 2) (Fig. 1)

(2.35) Cvv2
dv(2)

dξ
= C32 + Cvψ2ψ

(2)
f (ξ)

− 6

[(
1

2
ξ2 − 1

3
ξ3

)
qL2 − 2ξM0

]
λ

Efbh2
,

The conditions: for ξ = 1/2, dv
(2)

dξ

∣∣∣
1/2

= 0, and ψ(2)
f (1/2) = 0, from which

the constant C32 = 1
2

(
qL2 − 12M0

)
λ

Ef bh2
, therefore

(2.36)
dv(2)

dξ
=

{
6kc2Cvψ2 (1− 2ξ) q

+

[(
1

2
− 3ξ2 + 2ξ3

)
qL2 + 6 (2ξ − 1)M0

]
1

h2

}
1

Cvv2

λ

Efb
.

The value of this function for ξ = 1/3 is as follows:

(2.37)
dv(2)

dξ

∣∣∣∣∣
1/3

=

[
2kc2Cvψ2q +

(
13

54
qL2 − 2M0

)
1

h2

]
1

Cvv2

λ

Efb
.

Integrating Eq. (2.36), one obtains

(2.38) v(2)(ξ) = C42 +

{
6kc2Cvψ2(ξ − ξ2)q

+

[(
1

2
ξ − ξ3 +

1

2
ξ4

)
qL2 + 6

(
ξ2 − ξ

)
M0

]
1

h2

}
1

Cvv2

λ

Efb
.
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The value of this function (2.38) for ξ = 1/3 is as follows:

(2.39) v(2)

(
1

3

)
=C42 +

{
4

3
kc2Cvψ2q +

1

3

(
11

27
qL2 − 4M0

)
1

h2

}
1

Cvv2

λ

Efb
.

Based on the consistency condition for the slope of the deflection curve
dv(1)
dξ

∣∣∣
1/3

= dv(2)
dξ

∣∣∣
1/3

, with consideration of the expressions (2.31) and (2.37),

one obtains the reactive moment

(2.40) M0 = M0qL
2,

where

(2.41) M0 =
(13Cvv1 + 14Cvv2)λ2 + 108kc2 (Cvv1Cvψ2 − Cvv2Cvψ1)

108 (Cvv1 + 2Cvv2)λ2
.

Based on the consistency condition for the deflection v(1)
(

1
3

)
= v(2)

(
1
3

)
,

with consideration of the expressions (2.34), (2.39), and (2.40), one obtains the
constant

(2.42) C42 =

{
2
Cvv1

Cvv1

[
2

3
kc1 − (4kc1 − kc2)

cosh (α1λ/3)− 1

α1λ sinh (α1λ/3)

]
− 4

3
kc2

Cvψ2

Cvv2

−1

3

[(
5

54
− 2M0

)
1

Cvv1
+

(
11

27
− 4M0

)
1

Cvv2

]
λ2

}
λ
q

Efb
.

Taking into account expression (2.38) with consideration of expressions (2.40)
and (2.42), after simple transformation, the maximum deflection of the beam is
in the following form:

(2.43) v(An)
max = v(2)

(
1

2

)
= ṽ(An)

max

q

Efb
,

where the dimensionless maximum deflection of the beam is

(2.44) ṽ(An)
max = kv0λ

3 + kvseλ,

and the coefficient of the dimensionless deflection of the pure bending is

(2.45) kv0 =
1

6

[(
53

432
−M0

)
1

Cvv2
−
(

5

27
− 4M0

)
1

Cvv1

]
,

and the coefficient of the dimensionless deflection of the shear effect is

(2.46) kvse=
1

6

(
8kc1

Cvψ1

Cvv1
+ kc2

Cvψ2

Cvv2

)
− 2 (4kc1 − kc2)

cosh (α1λ/3)− 1

α1λ sinh (α1λ/3)

Cvψ1

Cvv1
.
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Thus, the dimensionless maximum deflection of the beam (2.44), after simple
transformation, is as follows:

(2.47) ṽ(An)
max = (1 + Cse) kv0λ

3,

where the coefficient of the shear effect

(2.48) Cse =
kvse
kv0λ2

.

The detailed calculations of the exemplary stepped sandwich beams with
a constant volume of the core and faces are carried out for the following data: the
relative length λ = 20, dimensionless coefficient of Young’s modules ec = 1/20,
Poisson’s ratio of the core νc = 0.3.

Example 1. The relative core thickness sum 2χc1 + χc2 = 51/20. The results
of the calculations are specified in Table 1.

Table 1. Values of the shear effect coefficient (2.45)
and the dimensionless maximum deflection (2.44).

χc1 16.5/20 17.0/20 17.28/20 17.5/20 18.0/20

χc2 18.0/20 17.0/20 16.44/20 16.0/20 15.0/20

Cse 0.2020 0.2142 0.2165 0.2161 0.2081

ṽ
(An)
max 760.02 728.66 724.48 727.05 752.60

The diagram of the dimensionless maximum deflection (2.47), being a func-
tion of the relative core thickness χc1 of the first part of the beam, is shown in
Fig. 4.

vmax   (An)~

760

750

740

730

724.48

720

16.5/20 17.0/20 17.28/20 17.5/20 18.0/20 χc1

Fig. 4. Diagram of the dimensionless maximum deflection ṽ
(An)
max (χc1) – Example 1.
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The minimum value of the maximum dimensionless deflection of this stepped
sandwich beam is for the structure case of the relative thicknesses χc1 = 17.28/20
and χc2 = 16.44/20. Therefore, for this structure case, the bending beam rigidity
is maximum.

Example 2. The relative core thickness sum 2χc1 + χc2 = 48/20. The results
of the calculations are specified in Table 2.

Table 2. Values of the shear effect coefficient (2.45)
and the dimensionless maximum deflection (2.44).

χc1 15.5/20 16.0/20 16.31/20 16.5/20 17.0/20

χc2 17.0/20 16.0/20 15.38/20 15.0/20 14.0/20

Cse 0.2490 0.2596 0.2623 0.2626 0.2584

ṽ
(An)
max 628.95 613.14 610.67 611.59 622.65

The diagram of the dimensionless maximum deflection (2.47), being a func-
tion of the relative core thickness χc1 of the first part of the beam, is shown in
Fig. 5.

v~(Amaxn)  

χc1

630

625

620

615

610

605
15.5/20 16.0/20 16.31/20 16.5/20 17.0/20

610.64

►

▲

Fig. 5. Diagram of the dimensionless maximum deflection ṽ
(An)
max (χc1) – Example 2.

The minimum value of the maximum dimensionless deflection of this stepped
sandwich beam is for the structure case of relative thicknesses χc1 = 16.31/20
and χc2 = 15.38/20. Therefore, for this structure case, the bending beam rigidity
is maximum.
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3. Numerical-FEM model and calculations

The numerical model of the beam is elaborated for comparison with the an-
alytical results. Computational calculations are conducted in Abaqus software.
The model and mesh of the exemplary beam are shown in Fig. 6.

Fig. 6. Numerical FEM model of the exemplary beams-element mesh (Abaqus 6.12).

The computational model of the beam is a solid consisting of three layers,
which is placed in the Cartesian coordinate system. The longitudinal x-axis is
collinear with the beam neutral axis, the y-axis is directed upward, and z-axis
is perpendicular to the beam neutral axis. Due to the symmetry of the beam,
only half of it is considered. The beam is under a continuous load and its ends
are clamped. To reach that, appropriate boundary conditions are imposed:

– the displacement vector component perpendicular to the symmetry plane
is zero,

– the rotational vector components parallel to the symmetry plane are zero,
– the displacement and rotational vector components are zero in clamped

ends.
The mesh of the numerical model consists of 10 000 quadratic hexahedral

finite elements (C3D8R type) and 12 221 nodes.
The FEM calculations of the exemplary stepped sandwich beams are carried

out for the following data: sizes L = 400 mm, h = 20 mm, b = 20 mm, q =
1.0 N/mm, material constants Ef = 72000 MPa, Ec = 3600 MPa, νc = 0.3, thus
λ = 20, ec = 1/20, and other data are adopted the same as in the analytical
studies. The results of the calculations are specified in Tables 3 and 4.

Table 3. Values of the maximum deflection – FEM – Example 1.

χc1 16.5/20 17.0/20 17.28/20 17.5/20 18.0/20

χc2 18.0/20 17.0/20 16.44/20 16.0/20 15.0/20

v
(FEM)
max 4.202 4.052 4.029 4.046 4.196

ṽ
(FEM)
max 756.36 729.36 725.22 728.28 755.28
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The differences between analytical (An) and numerical (FEM) results are
below 0.48% in these exemplary stepped sandwich beams.

Table 4. Values of the maximum deflection – FEM – Example 2.

χc1 15.5/20 16.0/20 16.31/20 16.5/20 17.0/20

χc2 17.0/20 16.0/20 15.38/20 15.0/20 14.0/20

v
(FEM)
max 3.490 3.424 3.407 3.414 3.482

ṽ
(FEM)
max 628.20 616.32 613.26 614.52 626.78

The differences between analytical (An) and numerical (FEM) results are
below 0.66% in these exemplary stepped sandwich beams.

4. Final remarks

In this article, the analytical model of the sandwich stepped beam with
clamped ends was considered. This model was developed on the basis of the “bro-
ken-line” hypothesis. The focus was placed on the shear effect during the bending
of the beam.

The analytical studies have shown a significant influence of the shear effect
on the deflection of sandwich beams with clamped ends. The values of the shear
effect coefficient Cse, present in expression (2.44), determined for the example
beams (Tables 1 and 2), are in the range (0.202–0.217) and (0.249–0.263). Thus,
the share of the shear effect in the deflection of the example beams is greater
than 20%.

An equivalent computational model was developed to make FEM calcula-
tions for the same beams. The Abaqus software was used both for modeling
and calculating. The purpose of the FEM calculations was to compare with the
analytical results. The beam deflection values determined with the two methods
differ slightly, and this difference does not exceed 0.31%.
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