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A beam of circular cross-section, made of viscoelastic material of Kelvin–Voigt type, is
considered. The beam is symmetric with respect to its center, the length and volume of the
beam are fixed and its ends are simply supported. The radius of the cross-section is a cubic
function of co-ordinate. The beam interacts with a foundation of Winkler, Pasternak or Hetényi
type and is axially loaded by a non-conservative force P (t) = P0 + P1 cos ϑt. Only the first
instability region is taken into account. The shape of the beam is optimal if the critical value
of P1 is maximal. A few numerical examples are presented on graphs.

1. Introduction

Problem of stability and parametric optimization of an axially loaded beam
interacting with a foundation is considered. The radius of the circular cross-
section of the beam is assumed to be a cubic polynomial of co-ordinate and
an additional strength condition is added. Foundations of Winkler, Pasternak
and Hetényi type are taken into account. Only the first instability region is
considered. The optimal shape of the beam is characterized by variation of its
cross-section radius. This paper is a continuation of the papers [1, 2] in which
one-parameter and two-parameter optimization of the problem were considered.

Optimization of viscoelastic cantilever beam with respect to its dynamic sta-
bility was presented by A. Gajewski and A. S. Foryś during Euromech Col-
loquium 190 [3], cf. [4]. Optimization of structures is the subject of monograph
by A. Gajewski and M. Życzkowski [5]. A study concerning to optimization
of mechanical systems in conditions of parametric resonances was written by
A. Foryś [6]. Some new approach to the solution of optimization problem for a
compressed column is given by A. Gajewski [7, 8].

The Lagrange problem on an optimal column is analysed in the paper by
A. P. Seyranian, O. G. Privalova [9]. Parametrically excited beam and its
optimal shape is considered in the paper by A. A. Mailybaev, H. Yabuno
and H. Kaneko [10].
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2. Formulation of the problem

A straight beam of circular cross-section (see Fig. 1) is made of viscoelastic
material of Kelvin–Voigt type. The undeformed beam axis coincides with the x-
axis. In view of symmetry of the problem we assume that the beam is symmetric
with respect to its centre x = l/2. The length l of the beam and its volume V are
fixed. We assume that the cross-section of the beam is non-zero i.e. the radius
r(ξ) (where ξ = x/l ) of the cross-section satisfies the assumption

(2.1) r(ξ) > 0, ξ ∈ [0, 1].

Fig. 1. The shape of the beam.

We assume that the radius is given by the following formulae:

(2.2) r(ξ) ≡ r0(ε1, ε2, ε3)ϕ(ξ; ε1, ε2, ε3)
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where r0 > 0. Values of the parameters ε1, ε2, ε3 determine the shape of the
beam. For a prismatic beam ε1 = ε2 = ε3 = 0. In this paper one assumes that
ε3 6= 0. On the basis of the assumption (2.1) employed for ξ = 0 i.e. r(0) > 0,
one has the inequality
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8
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The volume of the beam is
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Therefore one obtains the following formula:

(2.5) r0 =

√
V f(ε1, ε2, ε3)

πl
.

The three independent parameters ε1, ε2, ε3 are the optimization parameters.
Their admissible values must belong to a set in R3 in which the inequality (2.1)
is satisfied. One boundary (a plane) of this set is given by (2.3).

So we look for such values of parameters ε1, ε2, ε3 for which the value of the
cubic polynomial ϕ(ξ; ε1, ε2, ε3) given by the first formula (2.2) is positive for

ξ ∈
[
0,

1

2

]
.

To this end the following reasoning is applied. Beacause of the assumption
that ε3 6= 0, the possible graphs of this polynomial can be of the forms shown in
Figs. 2–5, where ϕ = ϕ(ξ; ε1, ε2, ε3).

For the graphs shown in Figs. 2 and 3 the polynomial has no extremes, so
the following condition is fulfilled:

(2.6) ∆ ≡ 3ε1ε3 − ε22 ≥ 0.

For the graphs shown in Figs. 4 and 5 the polynomial has two extremes, so the
following condition is fulfilled:

(2.7) ∆ < 0.

Fig. 2. The cubic polynomial.
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Fig. 3. The cubic polynomial.

For the cases shown in Figs. 2 and 3, from the inequalities r(0) > 0, r

(
1

2

)
=

r0 > 0 the condition (2.1) results. Therefore the conditions (2.3) and (2.6) define
the set of admissible values of the optimization parameters for these cases.

If ∆ < 0 the situation is more complicated. In this case the polynomial ϕ given
by the first formula (2.2) has two extremes at the points ξmin = (−ε2+

√
−∆)/3ε3

and ξmax = (−ε2 −
√
−∆)/3ε3 .

First we cosider the case ε3 > 0 , shown in Fig. 4. The points ξ = 0 and

ξ =
1

2
i.e. the ends of the interval

[
0,

1

2

]
, can be situated in the following six

positions: (11), (33), (22), (21), (31), (32), where each digit denotes the interval
indicated in Fig. 4. To satisfy the condition (2.1) the following inequalities must
be satisfied for succesive positions:

(11) : ξmin ≤ 0,(2.8)

(33) : ξmax ≥ 1

2
,(2.9)

(22) : ξmax ≤ 0 ∧ ξmin ≥ 1

2
,(2.10)

(21) : ξmax ≤ 0 ∧ ξmin ∈
(

0,
1

2

]
∧ ϕ(ξmin) > 0,(2.11)

(31) : ξmax > 0 ∧ ξmin ≤ 1

2
∧ ϕ(ξmin) > 0,(2.12)

(32) : ξmin ≥ 1

2
∧ ξmax ∈

(
0,

1

2

]
.(2.13)
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Fig. 4. The cubic polynomial.

Fig. 5. The cubic polynomial.

Next we consider the case ε3 < 0, illustrated in Fig. 5. To satisfy the condition
(2.1), the following inequalities must be satisfied for succesive positions:

(11) : ξmax ≤ 0,(2.14)

(33) : ξmin ≥ 1

2
,(2.15)

(22) : ξmin ≤ 0 ∧ ξmax ≥ 1

2
,(2.16)

(21) : ξmin ≤ 0 ∧ ξmax > 0 ∧ ξmax ≤ 1

2
,(2.17)
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(31) : ξmin > 0 ∧ ξmax <
1

2
∧ ϕ(ξmin) > 0,(2.18)

(32) : ξmin > 0 ∧ ξmin <
1

2
∧ ξmax ≥ 1

2
∧ ϕ(ξmin) > 0.(2.19)

For ∆ < 0 the above conditions define the admissible set in ε1ε2ε3 space, i.e. the
set in which the radius of cross-section of the beam is positive.

The beam under consideration is axially loaded by a non-conservative force
of the form

(2.20) P (t) = P0 + P1 cosϑt,

where t is time and P0, P1, ϑ are positive constants. The beam interacts with
a foundation of Winkler, Pasternak or Hetényi type with damping. A study of
different foundation models has been presented by Kerr [11].

The following dimensionless quantities are introduced [1, 12]:

υ =
w

l
, τ = (π/2l2)

√
πEV/ρlt, α = 4l4P0/πEV

2,

β = 4l4P1/πEV
2, Λ = (πλ/2l2)

√
πV/ρlE, κ = 4kl6/π3EV 2,

µ = 4Gl4/πEV 2, θ = (2l2/π)
√
ρl/πEV ϑ, γ = (2cl4/π2EV 2)

√
πEV/ρl,

δ = 4πDl2/EV 2, f ≡ f(ε1, ε2, ε3), ϕ ≡ ϕ(ξ; ε1, ε2, ε3),

where w(x, t) is the transverse displacement of the cross-section in the space
coordinate x at the time t, E is Young’s modulus, λ and c are the coefficients of
internal and external damping respectively, ρ is the mass density of the beam, k
is the foundation stiffness per unit length, G is the foundation modulus and D
is the foundation flexural stiffness.

The equation of the transverse vibrations of the beam on its foundation has
the form [1, 12]

(2.21)
1
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∂ξ2
+ Λϕ4 ∂3υ
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∂2υ

∂ξ2
+ β

∂2υ

∂ξ2
cos θτ

+ π2fϕ2∂
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∂τ2
+ π2κυ + π2γ

∂υ

∂τ
+

δ

π2

∂4υ

∂ξ4
− µ

∂2υ

∂ξ2
= 0,

where µ ≡ δ ≡ 0 for a Winkler foundation, δ ≡ 0 for a Pasternak foundation
and µ ≡ 0 for a Hetényi foundation respectively.

It is assumed that the two ends of the beam are simply supported:

(2.22)
υ(0, τ) = 0, [ϕ4(∂2υ/∂ξ2 + Λ∂3υ/∂2ξ∂τ)](0, τ) = 0,

υ(1, τ) = 0, [ϕ4(∂2υ/∂ξ2 + Λ∂3υ/∂2ξ∂τ)](1, τ) = 0.
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From the Eq. (2.21) with the boundary conditions (2.22) one can determine
the first instability region for the beam under consideration. Parametric opti-
mization of the shape of the beam consists in finding those admissible values of
the parameters ε1, ε2, ε3 for which the value of P1 i.e. the oscillatory component
of the loading force, causing beam’s instability, is maximal.

3. Solution of the problem

The problem is approximately solved by the Galerkin method; cf. [1, 2].
Therefore one looks for the solution of Eq. (2.21) in the form

(3.1) υ(ξ, τ) =

N∑

n=1

qn(τ) sinnπξ

and obtains the set of ordinary differerential equations for the unknown functions
qn(τ)

(3.2)
N∑

k=1

(Ankq̈k +Bnkq̇k + Cnkqk +Dnkqk cos θτ) = 0, n = 1, ..., N,

where

Ank = f(ε1, ε2, ε3)

1∫

0

ϕ2(ξ; ε1, ε2, ε3) sinnπξ sin kπξdξ,

Bnk =
1

2
γδnk + Λn2k2f2(ε1, ε2, ε3)

1∫

0

ϕ4(ξ; ε1, ε2, ε3) sinnπξ sin kπξdξ,

(3.3) Cnk =
1

2
(κ+ µn2 + δn4 − αn2)δnk

+ n2k2f2(ε1, ε2, ε3)

1∫

0

ϕ4(ξ; ε1, ε2, ε3) sinnπξ sin kπξdξ,

Dnk = −1

2
βn2δnk.

Here δnk is the Kronecker delta.
In further considerations only the first two Eqs. (3.2) are retained; these are

equations for the functions q1(τ), q2(τ). From these two equations the boundaries
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of the first instability region of the beam are determined. The instability region
occurs in the neighbourhood of twice the value of the first natural frequency of
the beam [3, 4].

To determine the boundaries of the first instability region one assumes the
solution of Eqs. (3.2) in the following form [13, 14]:

(3.4) qk(τ) = Ak sin
θτ

2
+Bk cos

θτ

2
, k = 1, 2,

where Ak, Bk are constants. After inserting (3.4) into the system of Eq. (3.2),
a system of four algebraic linear homogeneous equations for Ak, Bk is obtained.
The non-zero solution of these equations exists if the determinant of the system
equals zero. This leads to the biquadratic equation for dimensionless amplitude
β of the oscillating component of loading, in the form ([1])

(3.5)
1

16
β4 −

[
h2

11 +
1

16
h2

22 + (θ2/4)B2
11 + (θ2/64)B2

22

]
β2 + h2

11h
2
22

+ (θ2/4)
[
h2

11B
2
22 + h2

22B
2
11 + (θ2/4)B2

11B
2
22

]
= 0,

where

(3.6) h11 = −(θ2/4)A11 + C11, h22 = −(θ2/4)A22 + C22.

From Eq. (3.5) one determines the boundaries of the first instability region
i.e. the critical value of β as a function of θ. Inside the instability region the
critical value attains its minimal value given by the formula

(3.7) βmin = 4 |B11|
√
C11

A11
− B11

2

4A2
11

.

The critical value of β depends on the values of optimization parameters ε1, ε2, ε3.
The shape of the beam is optimal if the value of βmin is maximal.

The results of paper [2] show one difficulty: in many cases the radius of
the cross-section of the beam attains very small values. This fact undoubtedly
questions the obtained results. Thus in the present paper the following strength
condition is added – one assumes that the maximal stress, i.e. the stress, at the
smallest cross-section of the beam, does not exceed the limity stress σ0 of the
material:

(3.8)
P0 + P1

πr2min

≤ σ0.
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4. Parametric optimization of the shape of the beam

To realize a few numerical calculations one assumes: E = 2.1 · 1011 Pa,
σ0 = 2.2 · 108 Pa, V/l3 = 10−4. Therefore the strength condition (3.8) takes the
form

(4.1)
α+ β

f(ε1, ε2, ε3)ϕ2
min

≤ 13.37.

The numerical calculations have been performed for εk ∈ [−10, 10], k = 1, 2, 3
with step 0.1 and the maximum of βmin has been found out.

The following denotations are adopted:

Winkler model (µ = δ = 0)
case 1: γ = 0.03, κ = 0.1, α = 0.5, Λ = 0.01,

case 2: γ = 0.1, κ = 0.1, α = 0.5, Λ = 0.01,

case 3: γ = 0.1, κ = 0.1, α = 0.8, Λ = 0.01.

Pasternak model (δ = 0)
case 4: γ = 0.005, κ = 0.1, µ = 0.2, α = 0.5, Λ = 0.002,

case 5: γ = 0.1, κ = 0.1, µ = 0.2, α = 0.5, Λ = 0.01.

Hetényi model (µ = 0)

case 6: γ = 0.005, κ = 0.1, δ = 0.2, α = 0.5, Λ = 0.002,

case 7: γ = 0.1, κ = 0.1, δ = 0.2, α = 0.5, Λ = 0.01.

The results are tabulated and illustrated on the graphs which are shown in
Figs. 6–10, where

(4.2) R(ξ) = r(ξ)/l.

For comparison in Figs. 8–10 the graphs obtained in virtue of reference [2] are
shown by dashed lines.

Case ε1 ε2 ε3 βopt

1 −1.0 0.2 9.9 0.382
2 −1.1 0.5 9.5 0.623
3 −1.2 0.3 10.0 0.584
4, 6 −3.4 4.2 8.8 0.316
5, 7 −3.2 4.4 7.4 1.404

The optimal shape of the beam depends on the values of parameters describ-
ing materials of the beam and foundation. The optimal shape of the beam is not
a universal one.

Sensitivity of the shape of the beam i.e. R(ξ) to the values of ε1, ε2, ε3 is
presented by Fig. 11 where the graphs for optimal case and for εk−0.1, k = 1, 2, 3
are shown.



110 A. S. FORYŚ, A. FORYŚ

Fig. 6. The graph R(ξ), case 1.

Fig. 7. The graph R(ξ), case 4, 6.

Fig. 8. The graph R(ξ), case 2.
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Fig. 9. The graph R(ξ), case 3.

Fig. 10. The graph R(ξ), case 5, 7.

Fig. 11. The graph R(ξ), case 1, for different εk.
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5. Final remarks

The parametrical optimization of an axially loaded viscoelastic beam on a
foundation has been discussed. The radius of the cross-section of the beam is
a cubic function of co-ordinate. The beam performs transverse vibration and
interacts with a foundation of Winkler, Pasternak or Hetényi type. The values of
three optimization parameters defining optimal shape of the beam are calculated
for a number cases. Results are shown on the graphs.

The results of the paper are the extension and confirmation of the results
obtained in the previous papers [1, 2].
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