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ON THE DETERMINATION AND USE OF PRINCIPAL LINES
IN PLASTIC FLOW

M. ROGOZINSKI (WARSZAWA)

Assuming plane strain for Huber-Mises yield condition {for a Coulomb-Tresca one, both plane
strain and stress are admitted) of incompressible homogeneous isotropic ideal plastic medium,
basic relation of principal lines (of curvatures and their derivatives), consisting with known relations
is derived, Tt leads, in the case of family of curves translated to one another, to an ordinary differ-
ential equation of the second order in y; where ¥, (x;) denotes principal line. The solution of this
equation is known (the respective integrals are tabulated in the paper) and thus the result — fully
consisting with the well-known Prandtl solution is obtained by the direct method. Similarly in the
case of family of homothetic principal lines analogical (although more complicated) equation is
obtained in ¢=dq/dp, where g=In r and r,  are polar coordinates. In this case the principal lines
ave directly proved to be logarithmic spirals with an arbitrary slope with respect to radii vectors
(the latter case is degenerated one) or other spirals — that is presumably a “new” solution — which,
for some values of parameters, may be fairly good approximated by Galileo spirals. Calculation
and displaying have been performed by means of ODRA 1204 computer, A brief note on possible
degenerations is added.

INTRODUCTION

The principal lines'in axially symmetric three dimensional problems of the ideal
plastic medium have been considered by H. LipPMANN [1, 2]. In the present paper
it will be shown that at least in two simple cases principal lines may be used for
direct solution of the plane problem and, moreover, in the second case, this leads,
apart from the known solutions (as in the first case), to a “new” one.

2. ASSUMPTIONS

Homogeneous isotropic ideal plastic medium (body forces neglected), plane
strain (or some cases of plane stress) with Coulomb-Tresca yield condition, alterna-
tively, plane strain of incompressible medium with C.-T. or Huber-Mises yield
condition. Moreover, all functions specified are assumed to be differentiable as
shown in the text and, on the basis of some analysis, principal lines are assumed
to be in translation (Sect. 4) or homothety (Sect. 5) with respect to each other.

3. GENERAL RELATION

Consider the two Lamé-Maxwell equations of the form:
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where ¢;, ¢; denote principal stresses, s gnd p; — length of the arc and curvature
radius of trajectory of principal stress marked by the respective index. (Sign conven-
tion: ¢f [3, 4] and note: ds; = —dp;). Let us take into account o, — 0, =k (cf. Sect. 2.),
observing that for the Huber-Mises yield condition k=2a(,/|/§, whereas for the
Coulomb-Tresca yield condition k=0, where o, 18 yield strength in the tensile
test. We obtain: - -
do; .

(3.2) 55, =~ (= ey,

where x; denotes curvature of the trajectory of ¢, Differentiation of the Eq.
/(3.2) gives '
! 2o , Ircy
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Observe that in general
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On introducing Lamé’s coeflicients H, and H,, in view of
2
2 " -
3 (2% _ 32 (22}
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we have:
34 a, g g, %01 b, 11, 0
(34) L2 9, L2 as ds, 2l as, 2 ag, 05,7
where H, , and H,, denote derivatives of H, and H, with respect to the
. _ H,,
curvilinear coordinates «, and e,. Substituting the known relation ;= —*F}i—-
L I3 J .

(cf. [3, 4]) in the Bq. (3.2) and equating k& found from the two equations thus obtai-
ned, we have
doy Hi,s doy Ha,,

gs, H H, 95, H.H,

Substitution in the Eq. (3.4) after taking into account the Eq. (3.3), gives

Jic, 0y

(3.5) 55—1— E

=2, Ky .
This relation follows directly — in the case of homogeneity — from more general
considerations of an inhomogeneous medium ([5] 2.42, p. 47).

It may be seen that, if we adopt rectangular coordinates, the relation represented
by the Eq. (3.5) does not involve ordinates y, y, of the two principal lines orthogonal
to each other, but only their derivatives. However, since two orthogonal families of
curves intervene, in general, integral constants are also involved. '
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4, THE SIMPLEST CASE — A FAMILY OF CURVES TRANSLATED TO EACH OTHER

In two cases at least — closely related with each other — the inteiral constants
vanish in the process of differentiation. The first is when one of the families consid-
ered is of the form p=7(x)+c¢, since y', »", y'” do not depend on «c. Thus simple

calculations give the direct relations of y’, ¥/, "'’ with the respective ones y}, ¥, ¥,
of the orthogonal family. Consequently, bearing in mind the well-known relations

1 rr r

zﬁﬁ 2 ———— . 2
8= ]/1 +3? and k= Uty 2P we deduce.l 5 I and
ch §Ep =3yt y
(4'1) aS Slﬁ

(with orhission of the index i=1,2 (not wntten) which is the same for all symbols).
Further, we obtain:
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As regards dx/ds, note that there are {wo ways of calculation, both leading to the
same result. In the sign convention of the Eq. (3.5) (cf. Eq. (3.1)) when replacing
“in the Eq. (4.1) and in the last formula for x, quantities denoted with indices by cor-
responding quantities denoted without indices and vice versa, the sign of one member 7
of the equation should be changed, Consequently, the Eq. (3.5) in the rectangular
Cartesian frame takes a form as if only the sign of the term dx/ds were changed,
The functions of y;, ¥, and 'y,  obtained determine ail quantities of the Eq. (3.5).
Thus substitution in that equati'on'elimi_nates ¥, ¥", """ and leads, by means of simple
calculation, to the relation determining the principal lines in the case considered:

4.2) (1—z%z"'=2(3—2%)2z%, where z=y].

The correctness of the Eq. (4.2) is seen by its fulfilling two conditions. The first —
that is the condition of orthogonality —is proved by the fact that two forms of

the Eq. (4.2), namely after two substitutions: 1) z=w, 2) z= —i are identical.
w22 e

{(In case 2) we have: z IR a—

" The second necessary condition is that the Eq. (4.2) should be verified by the

principal trajectories of the system, where slip lines in each family are cycloids

translated parallelly to’ each other along the coordinate line y (Prandil squt;on)
o

Obscrve that the slope of the cycloxd is:

htx
A¥x

4.3) Y=k
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and that of principal lines is:
yF1 :
1y,

4.4 ‘ =y =

Thus, assuming in the Bq. (4.3) “the upper signs”, we find:

Vi — < b= ]/k2~x
Z= e
x ZVhZ

2h (hz _ x2)3.'2 —2h* (hz _x2)+ B2 x2
x3 (hz _ x2)3[2

Substitution of these quantities into the Eq. (4.2) turns all its terms into zeros,
which means that the Eq. (4.2) is verified by the principal line of the Prandtl solution.
The calculations are facilitated by the relation: 14z =2z' V2 x?. Assumption
of ,,other signs” in the Eq. (4.3) leads to the same result, since they refer to curves
with the same symmetry as that inherent in the Eq. (4.2) (cf. signs of z and z").
"The symmetries of curves y=j(x) with respect to the axes y and x are geometrically
obvious, and tacitly admitted by the very formulation of the problem,

The Eq. (4.2) may be solved (cf. [6}, p. 651) and gives

L —

14222
(4.5) |Z'|~6"—( 2y ,
1-z*
. 1 z
4.6 - fy=—
(4.6) x f(1+ Sl e

For a fixed value of ¢, sgn (z' x)=const {cf. Eq. (4.5)), whence also it may be '
soen that 1) y () =y (=), 2) yu () =—, (x), Where y=Ja 3, 3) 2(—%)=—2 ().
The two forms with various signs of z’ are symmetric with respect to the axis x, but
in the given region only one of these forms may appear. It suffices to assume one of
these —for instance, z’<0.We have z =0 for x =0, whence (cf. Eq. (4.6)) ¢, =0. Then
for x,—0, z; >0 and also ¢, =0, Thus the Eq. (4.6) may be rewritten in the form:

z
“n 22 +—+1=0,

.

. o 1 L
with the discriminant A=cz = , in view of —1<x<l: 420 for

lel<
that any pair of corresponding roots refers to the curves of different families; not,
however, at the same point, but at two different symmetric ones.(x, y and —x, y).
On the other hand, the change of the sign of ¢ alone (or x alone) leads to the change
of the sign of both roots of the Eq. (4.7) (Cf. z;+ 2y and z; z;y). Thus we may replace
the Eq. (4.7), where ¢ proved to be ambivalent, by '

. Denoting the roots of the Eq. (4.7) zj, zu, we have z zy=1. It follows

(4.8) 2t 1=0,
cX
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where ¢ has a fixed value. The Eq. (4.8) represents explicitely two coupled equations
A and B, with roots z41, Zq, Zgi, Zsn, Where z .= —zg; and z ;= —~ zgy. It follows
14 Zna=—1 (and zp zp = — 1) — that is, these are pairs of roots referring to the
orthogonal lines at a given point. This agrees with. the concrete value of ¢ as deter-
mined from boundary conditions, From the condition of antisymmetry (or symmetry),
for one family of curves for x=0, that is in the central plane of comptessed and
sheared layer we have z=0, and on its boundary for x= 41 we have z=F 1 (bearing,
in mind z’<0) and z=max as in the: Prandtl solution. Thus, from the .Bq. (4.7)
for x=+1 it follows that cx= +}2—, and in both cases c—--lz— Substituting this in
the Eq. (4.7), we have

(4.9 xz%42z4x=0, z“—”:#?i%v'.
Further integration gives _

@10 7=V 1=x7=In (1+V1-3)+C,

(4.11) f ' = —2Inx|- ]/l—x +In(1+¥1-x%) +C.

The curve: orthogonal w1th respect to yl =£{x)} is obtained from the coupled equatlon
{cf. Egs.: (4 ‘D and —{4.8)) or by changmg the srgn of y; Eq. (4.11) (+ into — and
vice versa). Since the functions p, (x) and ¥ (x) seem not to be tabulated, the re-
spective values as found by the computer are listed in Table 1. The respective graphs
are presented in Fig. 1. _Note from the Eq. ,(4 6} that all curves from the family
x=F, (z). may be obtained from each other by simple compression or extension
(change of c) and translation (change of ¢,). From the Eq. (4.6) and y= f zdx+ ¢,
it may be scen that for a given direction of the plate (layer) ¢, c,, ¢, have no
effect on the form of the principal lines (except their prolongation) but only on their
translation in directions x and y (change of ¢, and ¢, respectively), and on the scale
of the graph (homothety). In fact, any change of ¢ causes change of coordinates x
and y in the same ratio, z=dy/dx being unchanged.

Tt should be stated that the solution obtained in the present section is, in prin-
ciple, apart from minor additions, the same as that by Prandtl; the method adoptcd 18,
however, new one — the direct method, based on the use of principal lines.

The three integration constants dete_rmmmg y=f(x) are to be found from three
conditions (cf. Eq. (4.2)). In particular cases, when the coordinate of the plane
of symmetry or antisymmetry (plate in compression and in shear respectlvely) is
known, the two first conditions are as follows: on the symmetry plane 1) for x=0
»=0 2) for x=0 y"=0. In general, conditions are as follows: 1) on the surface of the
plate (layer) for x=0, y=0; 2) on the same boundary (x=0)"y' =y,; 3) on the
other boundary for x=2g {or plane of antisymmetry x=a) y =y,, where y, and
y; are calcualted from respective Mohr circles, or, aIternativéfy, determined by
photoelastic observation on a strip of finite width.

Certain generalizations are possible which, although they affect to some extent
the general assumptions, may be taken into account by respective modifications



Table 1. Functions y,—)/T—x*—in (1 J/T~x%) and y,=—21n jsl—/ 1= x*+
+in (1+]/ 1—=x2) (see Egs. (4.10), 4.11), and F!ig. 1).

4-x ¥ Y2 +x »1 Ya
1.00 £.000000 0.0000000  0.49 —1.1818 - -0.24486
0.99 ~0.010997 —~0.0091033  0.48 —1.2205 —0.24745
0.98 —0.022894 —0.017512 047 —1.2601 ©—0.24998 -
0.97  —0.035426 —0.025493 046 —1.3006 —0.25244
096  —0.048504 —0.033140 045 —1.3422 —0,25485
095 —0.062080 —0.040507 044 —1.3848 —0.25720
094  —0.076122 —0.047629 043 —1.4285 —0.25949°
0.93 —0.090610 ~0.054532 042 —1.4733 —0.26172
092  —0.10553 ~0.061235 041 —1.5193 —0,26389
091 —0.12087 —0.067756 040 —1,5666 - 0,26601
090  —0.13662 —0.074105 039 ~1.6152 —0.26807
0.89 —0.15277 —0080295 038 —1.6651 —0.27007
0.88 —0.16933 —0.086334 037 —1.7165 —0.27201
0.87  —0.18629 ~0.092230  0.36 —1.7694 —0.27390
0836  —0.20366 —0.097990  0.35 —1.8239 —0.27574
0.85 —0.22142 —0,10362 0.34 —1.880f —0.27752
084  —0.23958 ~0.10913 0.33 —1.9381 —0.27924
0.83 —0.25815 -0.11451 0.32 —1.9980 —0.28091
082  —027712 —0.11978 0.31 ~2.0598. . —0.28253
0.81 —0.29650 —0.12494 0.30 -2.1239 —0.28409
0.80  —0.31629 —0.13000 0,29 —2.1901 . —0.28560 -
0.79 —0.33650 ~0.13494 - 0.28 —2,2589 ~-0.28706 -
0.78 ~0.35713 —0.13979 0.27 -2.3302 . —0.28846
0.77 —0.37819 —014454 026 ~2.4043 —0.28981
076  —0.39968 —0.14919 0.25 —2.4815 —0.29110
0.75 —0.42161 —0.15375 0.24 —2.5619 —0.29235
074  —044399 —0.15822 0.23 —2.6458 —0.29354
0.73 —0.46682 . —0.16260 0.22 ~2.7336 —0.29468
0.72  —0.49011 —0.16690 021 = —2.8255 —0.29577
0.71 —0.51388 —0.17110 0.20 —2.9221 —0.29680
070 —0.53812 ~0.17523 019  —3.0237 —~0.29779
0.69 —0.56285 ~0.17927 0.18 —3.1309 ~0,29872
0.68 —0.58809 —0.18324 017 13,2443 —0.29960
0.67 —0,61384 —0.18712 0.16 13,3647 —0.30043
0.66  —0.64010 —0.19093 0.15 —3.4930 —0.30121
0.65 —0.66691 —0.19466 0.14 —3.6303 —0.30194
064  —0.69426 —0.19831 013 —3.7778 —0.30262
0.63 —0.72217 —0.20190 0.12 —3,9373 - —0.30325
062  —0.75067 —0.20541 0.11 —~4.1107 —0.30382
0.61 —0.77975 —0.20885 0.10 —4,3008 —0.30435
0,60  —0.80044 —0.21221 0.09 —4.5111 —0.30483
0.59  —0.83975 —0.21551 0.08 —4.7462 —0.30525
0.58 —0.87071 —0.21874 0.07 ~5.0129 —0.30563
0.57 © —0.90233 —0.22190 0.06 — 53209 —0.30595
0.56  —0.93464 —0.22500 0.05 —5.6852 —0.30623.,
0.55 —0.96764 —0.22803 0.04 —6.1313 —0.30645
0.54 10014 —0.23099 003  —6.7065 —0.30663
0.53 —1,0359 —0.23389 0.02 —7.5173 ~0,30675
052  —1.0711 —0.23673 0.01 —8.9035  —0.30683
0.51 —1.1072 —0.23950 0.00 - —0.30685
0.50- —1.1441 —0.24221 - :

{518}
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of boundary conditions, These generalizations are: 1) residual stresses in thin layers
of the plate parallel to- its surface; 2) consideration of the weight of the vertical
plate (or layer). : ‘

Numerical example. From the Eq. (4.6) for ¢=1 and ¢, =0, we have x=F (z)=x,.
For y;=0.165 and y,=0.25 (cf. Table 1 and Fig. 1), we have x,,=0.310702, y,=

L=

y

y"'ﬁfnc”

- §s
Bl Yy,

A2 -

-y *Cap

-15

FiG. 1.

=0.049756; x,,=0.441542, y,a20.1(53715. Taking into account x=cx,+¢; and
the Bq. (4.6), we have +0.310702 c+c,=0 and 40.441542 ¢+c¢,=a, whence ¢
and ¢, are determined. Since y'=y., we may write yo =00 =0.381a; y,=¢Vu=
=0.785 a. , _

Tn simple problem of plastic layer, the stress is fully determined by the principal
direction, In fact, from the equilibrium equation, we have @, qr+Kk 008 200 =
= O sect -+ €08 2000,y Where o, denotes mean normal stress, k cos o presents a
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1
normal stress due to the deviator, tan o is the slope of principal line, and the subscript

.surf” denotes quantities on the surface, while “sect” denotes respective quantities
in an arbitrary section parallel to the surface,

5. HOMOTHETIC ¥AMILY OF PRINCIPAL LINES

Translation of the curves (Sect. 4) may be rggarded as homothety with the centre
in infinity. Replacement of the rectangular Cartesian frame by a polar one, associated
with such change of principal lines that they from homothety with the centre in
the origin of polar reference frame, gives generalization of the problem. Thus we have

(.1 cr=f(g),

where r, ¢ are polar coordinates. it may be sten that the slope, being in general
dr d{lnr)

5.2 —————

(3.2) dp dp

in this case (cf. Eq. (5.1)) is expressed by:

d(nr) _diinf(p)]

5.3
53) T

that is, depends only on ¢ while ¢ vanishes as constant summand similarly, as in
the case of translation (cf. Sect. 4). This means that in this respect the transformation
introduced is equivalent, apart from the transformation of the coordinates, to the
replacement of variables by their natural logarithms. It eliminates, in particular,
coefficient 1/r (cf. Eq. (5.2)) Confronting the result with that of Sect. 4., we note
that (Inr)’ replaces y* and [In f(¢)]" teplaces f (x). Consequently, independence
of the results of the integral constants of other family, as stated in Sect. 4., holds
also in this case, with variables x, y, f(x) replaced by ¢, Inr, In f(p), respectively.

However, in view of the change of coordinates, and thus of geometry, calculation
analogical to that of Sect. 4. should be carried out.

On using the orthogonality condition ryfr, = — r/r’, where subscript 1 and its omis-
sion have meaning as in Sect. 4., and on denoting In =g, In r, =q,, we obtain:

(5 4) q'—- — 1 q”_ q; ,”_q; q;"—z‘grz 3 1+q12_qu
. - T =72 = x-....,.h,_,_;_._H_’
“ a A (1+47p2)
K =q' b
and - 1
o - (1 ’2 s ' a3 '
{5.5) ok ~(1+9?) @ +4'+9")+3q'q -

ds , e (1+q'2)
On calculating, analogically to Sect. 4, in two ways, we obtain an identical result;

o (g (=g 42 g2 D=3
as, 7 (g7 5 1) '

(5.6)
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(Difficulties arising in correct determination of signs of dix/ds and O, [ds,, for
substitutions into the Eq. (3.5), are avoided by means of the condition of orthogona-
lity). This leads to the Eq.:

__ 42 re — 32 -
(5.7 | (1—t*)¢ +(1 I+tz) 28" + 41’ =0,
which by substitution p (£)=+', and division by p (c¢f. [6]) may be reduced to:
5 23 M
(—8) - - P+ 1_t4tp lmtz_ ¢

FiG. 2. r=ae*, ri=ae®®, ry=ge=%%¢,

The solution p=0 (excluded in the above treatment) gives two orthogonal.
- families of logarithmic spirals with an arbitrary slope, with respect to the radii-
-vectors, of one family (Fig. 2). In particular, 8,

in the case where the slope equals 7/4, it is a
trivial, well-known solution. Let us, however,

confront the well-known relations for curva- s . ©
ture radius R, length of the arc L, dR,/dp, ‘ 7
dL/dg, where index i refers to the involute being / L-p‘.»

also a logarithimic spiral (see Fig. 3)). It may FiG. 3.

be proved, that dI/dp=dR,/dp. This suffices -
to show that spirals of the Eq.: p=ae™ form Hencky-Prandtl trajectories for
any m (cf. [3]).
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In the case p#0, the integral curve passing the point has the form:

. : L\ =8 P ke (487
(59 p)=e ("+Jg(t)e dr)_(l+éz)2 (lwtz)[ 21~—é"'(1+t2 Iﬂ

where
t 2
F{f)= f zl—j tdt
g

Since p ()=t' [¢ (£)], from the preceding relation we obtain the expression for
the independent variable of the Eq. (5.7):

5.10 =—f Sl LSS
.10 P72 ) G+ +NQ+PR
1-g¢ 2 _—
where N EWHW' On integrating, we have:
1 1 t
(5.11) . @ =arc tan t——2— (P+?) arc tan—F-!- C,

where P—l/l +—.

Further mtegrat:on with respect to ¢ leads to ¢’ (note: t=g) and to r, which
equals e% t2(o0)
To this end, the well known relation between f gdt and f tdp may be used,

i@,

and thus the integration of the Eq. (5.11) with respect to ¢ may ‘be replaced by that
with respect to ¢, This gives:

e

P21 k

. @ t=t ¢ +In | e | .
:('!).) e Vl‘”f AW
whence :
Pipl
IR Pz 4+
— 3 2
q—éf tdy ln[V 1+4 (P2+rf) ‘ ]
and
_ Pigd
‘ P2 4
G-13) r=nV1+s] (P2+t2) ’

where the parameter n determines particular homothetic curves of one family. For
numerical reversing of the function ¢ (¢) from the Eq. (5.11), a computer is used.
The family of orthogonal curves satisfying also the Eq. (5.11) is found by repla-

. 1 1
cing ¢ by u= — while ¢ remains unchanged —that is, P is replaced by P, =P

1 1
as follows from the Eq. (5.11). Thus denoting w=arc tan U=y (Pl P )X
1
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F1 |
% arc tanﬁ-l- C, we atrive at (cf. Eq (SA)pw=p+— 3 lz (P -I-i)—l]. Example:
for P= 10 t,y ¢?+2?t+0 0785. Graphs are obtained by means of a computer and
plotter. Some principal lines cover fairly wide angles (up to 2x). These curves (cf. dotted
lines in Fig. 4) are similar to logarithmic spirals, but may be found with much

FiG. 4. ... orthogonal Cartesian reference frame ﬁnd principal lines as plotted by computer and
plotter, — —— additionally calculated principal lines, — — -— additionally calculated slip lines.

better approximation than replacement by these spirals, and in a simpler way
than a strict calculation performed by the computer. In fact, neglect in the Eq.
{5.11) of the term arctan ¢ gives for smalfl values of P (of the order of 0.1) slight errors.
Then, from the Eq. (5.11), we arrive at

: ¢
(5.14) t=0.1 tan( 5'05),

and from r,=r; exp f td o it follows that rz cos E_(E=r§'

Three consecutive approximations by series, with preservations in each of two
terms only yield:

@1
(5.15) rl=c(1 ﬁ)a)’
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wherec_fz,andthecumulatlve error of all three approximations for P=0.1 and ¢ ==/2
amounts to less than 0.01%,. The Eq. (5.15) presents a Galileo spiral (cf. [7], vol.
II, p. 47)— that is, the trajectory of a freely falling material point with respect
to a vertical line rotating with the earth. In‘an analogical manner it is possible
to calculate directly @, r for respective points of the slip lines, with the slopes s
with respect to radii-vectors. In fact, from the reversed Eq. (4.4) we have for P=0.1:

(5.16) fsdqo— sosfmth x+505fm

(cf. Bq. (5.14)), where x =g /5.05.- On integrating, we obtain:
(5.17) r=rg |10cos y-sin y exp (—4.95),

where rg is the radius at a given point on the slip line.

Moreover, the Eq. (5.14) enables us to find-directly in the whole region the second
family of principal lines, while a computer, unless with sophisticated programs,
determines the selines in a narrow wedge region only (for P=0.1), In this case, wehave:

ra_ (Snf’i %)
r VU505 sin gz s

Fig. 5,
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where r, and r, are radii at arbitrary points of the line. However, the use of antideriv-
atives of the function from the Eq. (5.16) is more convenient, since to obtain the
value of the definite integral for any limits it suffices to subtract the respective
values F2 or G2 (Fig. 4). '

The symmetry of all curves with respect to the polar axis is evident from both
the physical sense and the Eq. (4.11). One only of these symmetrical forms is consid-
ered. The functions r(p), as presented in Fig. 5, are not single-valued; actual
principal lines are represented, however, by one branch only, the second being of
minor interest due to the limited included angle of the wedge region, and rather
slight deviation from the straight line. '
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Fig. 6. — — — first family of principal lines (as calcutated), — — — second family of principal

lines (obtained by graphical approximation),

This refers to the case P=0.1 (cf. Eq. (5.15)), while regarding other value of P
it may be stated that:

1} On expanding arctana and arctane/P into power series, the stability of these
functions may be shown, and also of r (¢) with respect to dP.

2) From valees P=0.1, 0.8,0.97, 1, 1.2, (10), 11, 100, for 0.1 (10) and 100 (0.01)
only are there possible principal lines in a 1arge included angle (up to 2x) of the wedge
region; for the remaining values listed this angle is very small.. Consequently, the
respective cases have been neglected, especially since they may be assumed to be
replaced, with sufficient approximation, by suitable logarithmic spirals (cf. Eq. (5.7)
and Fig. 2). ) _

3. In the case of P=100 (Fig. '6), principal lines may cover the angles up to 2z,
but any particular principal line in practice covers a very small angle only, since
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otherwise the angle covered is associated with the change of the radius-vector by
several orders of magnitude,

The apparent “novelty” of the solution found may be ascribed, in the author’s
opinion, to the triviality of the well-known solution with the logarithmic spirals,
while, in the case of translation, the Prandtl solution, being not trivial, may be
only generalized in some respects by matching various regions.

6. ON THE DEGENERATION OF THE GENERAL RELATION (Egq. (3.5))

It may be shown (note: ‘
(6.1) ' (1422 z—32% =0

after integration gives x =c, where ¢=0, full proofs are omitted) that for families of
curves in tramslation (Sect. 4}, cases in which in the Eq. (3.5) one, two or three
quantities vanish are not possible. Thus, possible is only the case in which all four
quantities disappear, which means that pricnipal lines form a rectangular net of
straight lines, In the case of homothety of principal lines, degeneration may be
of two kinds — that is, with principal lines forming: 1) concentric circular arcs and
their radii, and 2) a rectangular net of strainght lines.

As regards the degenerated solution containing straight principal lines, it may
be stated that, in contrast with the curvilinear solution, it is not stable with respect
to convexity or concavity of the surface of the plate. This staiement disregards the
highly improbable possibility of dead zones on the surface, and is based only on_
the assumption that the high degeneration of the Egs. (3. 5) and (4.2) has greater
influence than a slight modification of the region.

The author is indebted to Professor J. RYCHLEWSKI, Professor A. SAWCZUK.,
Dr. J. Zawipzkl and Professor M. Zyczrowskr for their helpful remarks, and
to Miss A. DUNAJSKA for carrying out the necessary calculations on the ODRA
1204 computer.
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STRESZCZENIE

0O WYZNACZANIU I STOSOWANIU TRAJEKTORII NAPREZEN GLOWNYCH PRZY
PLYNIECIU PLASTYCZNYM

W zaloZenin plaskiego stanu odksztalcenia dla warunku plastycznoéei Hubera-Misesa (dla
warunku Coulomba-Treski dopuszezakny jest ponadto plaski stan napregenia) idealnego oé$rodka
plastycznego, niescifliwego, jednorodnego i izotropowego wyprowadza sig podstawowa zaleznosé
trajelctorii naprgzen glownych (krzywizn i ich pochodnych w ukladzie naturalnym), zgodng =z zalez-
noéciami znanymi. Prowadzi to, w przypadlku uktadu trajektorii réwnolegle wegledem siebie prze-
sunigtych, do réwnania réiniczkowego zwyczajnego drugiego rzedu wizglgdem yq, gdzie v, (x,) jest
rownaniem trajektorii glownej. Rozwiazanie tego rownania jest znane (odpowiednie wartodcl
calek podane s3 w pracy), a zatem otrzymuje si¢ metoda “prosta™ rozwiazanie zgodne ze znanym
rozwigzaniem Prandtla. Podobnie, w przypadkn gdy trajektorie gléwne tworza rodzine krzywych
jednokladaych, otrzymuje sig analogiczne, chociaz bardziej zlozone réwnanie ze wzgledu na (=
=dgldp, gdzie g=Inr, r, p za$ sq wspdlrzednymi biegunowymi, W tym przypadku uzyskuje sie
bezpodredni dowad, 2e trajektorie naprefen gldwnych sa spiralami logarytmicznymi o dowoinym

: kacie pochylenia wzglgdem promieni wodzacych«jest to zreszta przypadek zwyrodnienia), albo tez
sq innymi spiralami — a to jest przypuszczalnie ,,nowe’ rozwiazanie, ktore dla pewnych wartosci
parametréw moina z bardzo niewiellkim bledemn zastapi¢ spiralami Galileusza. Obliczenia i wykresy
“wzyskano za pomoca komputera ODRA 1204, Dodano kroétkie uwag1 na temat mozliwych zwy-
rodniefi. ”

PezwmMme

Ob OIIPEJIEHEHI/II/I W [PMMEHEHWI TPAEKTOPUN I'ITABHBIX HAHP}DKEHI/IH
JIPH INIACTHYECKOM TEYEHHWU

B npeanonokeHnr TUIOCKOTO AeHOPMAIMONHOTO COCTOSHES, I YCIOBHA IUIACTHYHOCTH
T'yGepa-Muzeca (mna ycnosas Kynoma-Tpecka kKpoMe 3TOTO HOOYCTHMO IMIOCKOE HAIPAYWKCHHOS
COCTONHAS) WACANBHO IUIACTHYECKOMH, HECHAMaeMOl, ONHOPOFHOW M H3OTPOHHON CPEibl, BHIBO-

* AMICH OCHOBHAA 3aBACHMOCTE TPACGKTOPMH THBHBIX HAUPMKEHRH (KDABH3H M WX NPOHIBOAHBICK
B HATYPANBHOU CHCTEME) COBNANANOMNAA C HIBECTHLIMY 3ABHCAMOCTEME, 3TO NPUBOOHT, B CNy-
4ae CHUCTEMEBl TPAackTOpH CABEHYTHIX HapamnelbHO OPYF OTHOCHTSNELHO OPyra, K OOLIKHOBEHHO-
My TEQOHEPCHIMANLHOMY YPABHCHHIO BIOPOTO LODSOKA IO OTEHINSHHIO K ¥1, vae ¥, (x;) AnnsA-
eTCAl YpaBHCHHEM riasRo# Tpackropuu. PelNeHne 5TOr0 ypaBHEHAS H3BECTHO (COOTBETCEBYIONAG
3HAYCHWA HHTETPANOB IIPABENCHH B pabore), CHCA0BATENEHO TONYIAETCA ,,JIPOCTEIM™ METOINOM
peilicHne COBHajaouiee ¢ M3BECTHRIM peieHneM IIpanarng. AHaJOTHYHO, B CAYYAS, KOTAA TNHaB- .
Hele Tpaextopui 00pasyioT ceMelcTEO MOoROOHRIX KPHBEIX, MOEYIACTCH aHAJOTHYHOE, X0TA Gonee
CIQUKHOE, YPaBHEHHe N[O OTHOeRMio k f=dg/dp, Toe g=Inr; r, ¢ — IIONAPHEE KOOPIHHATEL
"B 3TOM CHIyYa€ NONYYBETCH BENOCPEACTREHACE JOKAZATEISCTRO, YTO TPACKTOPHH IIaBHMX Hanpd-
KeHi 9TQ Jorapadimvrdeckne cOApaid © HPOWZBOMBHKM YINIOM HAKIOHA 10 OTHOIIEHWIO K pPd-
AAYCY — BEKTOPY (370 BIPOUEM Ciiyyail BEIDOKICHAA), WM K¢ JTO JAPYIME CDIHMAINE— 53TO BEpO-
SATHO HOBOE penieHme, XOTOPOEe it MEKOTOPLIX 3HAYCHWH NAPAMETPOB MOMKHO € OueHb HeDOIh-
molt ommmOxoH 3aMeHHTE crupaiswy [asunes. Pacuersl M TpadmEdm HOIYYEHBI NPH  HOMOIM
2BM Ogpa 1204, Jayorcs KpaTxue 3aMCYAHHA HA TEMY BO3MOMKHLIX BEIPOIKACHHIL,
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