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CONSOLIDATION OF THE VISCO-ELASTIC HALF-SPACE AT MIXED
CONDITIONS OF PERMEABILITY OF THE BOUNDARY

J GASZYNSKI and'A. KUMANIECK A (KRAKGW)

The exact form solution of axi-symmetric consolidation problem for a visco-elastic haif-space
at mixed conditions of thc permeability of the boundary is presented. The process of consolidation
is dué to time-variable normal load actin g on the boundary of the half-space, ‘The load {ree boundary
of the half-space is- permeablle while its loaded part is not permeabile, On the basis of a coupled
three-dimensional Biot’s' consolidation theory with taking into account the rheological properties
of the skeleton the state of stress and deformation is evaluated and the elastic skeleton the diagrams
for pressure in pores under loading for different moments of time and different rates of the load
increments are given,

1. INTRODUCTION

- In several papers devoted to the solution of the boundary problem of the con-
solidation theory, problems essential for applications were undertaken and effective
solutions obtained. The interest here are the general solutions presented in [6, 12]
formulated for the most general linear visco-elastic medium without ageing. From
a theoretical point of view, the papers devoted to the structure of fundamental
solutions have a special valye. Among them, note papers {7] and [5]. The solution
of problems with mixed discontinuous boundary conditions is of special interest.
Attempts at solution of these problems have many times been initiated by several
authors [2, 3, 151, mainly for contact problems, but a fully satisfactory solution for
the axi-symmetric state of strain has been given only recently by J. GaszyNsk1 and
Szrrer [8] and for the plane state of strain by Gaszy®skl [9]. A shoricomming
of all the papers indicated is cleare to take into account the mixed conditions of
permeability of the boundary Which it seems, is necessary from a point of view
of apphcatlons and is also attractwe for the further development of a theory.

This paper deals with the process of consolidation of a porous viscoelastic sat-
urated medium excited by a. known normal load acting on the boundary of the
half-space The Joaded part of the boundary is not permeable, while the unloaded
boundary of the half-space is permeable. The problem under consideration belongs
then to the group of mixed boundary-value problems for two-phase media. For
description of the rheological properties of the skeleton, the most general linear
visco-clastic model without ageing was considered, assuming different features of
creep — namely shear creep, dilatational creep, and creep caused by liquid pressure
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in the pores, The problem was formulated and solved within the framework of
Biot's. coupled three-dimensional consolidation theory for an axi-symmetric state

of strain.

2. REGISTER OF EQUATIONS FOR A CONSOLIDATING VISCO-ELASTIC MEDIUM

We shall consider here a two-phase deformable medium composed of a po-
rous isotropic homogeneous visco-clastic skeleton and liquid flowing slowly through
the pores according to Darcy’s law. We assume that the skeleton has rheological
properties without ageing, with different creep features during a process of deformat-
ion — namely, shear creep, dilatational creep and creep caused by liquid pressure
in the pores. We assume the most general model of a linear visco-elastic porous
and saturated medium. It covers, according to the results of Zarecki’s works [15]
and Mestchian’s investigations [13] a wide class of clays which reveal different
features of shear and dilatational creep in the process of deformation.

The constitutive equations for the material characterized above have the form:
(21) : G'USZNEgj-i'MHkk (SU—ApJU,

where N, M, A are the following Volterra type integral operators describing the '
rheological properties of the skeleton:

N=pyu [1 - fR(:—r)...dr].

1
M='3—(A,,,—2N),

2.2 : A"“—ﬂtx”[l“ ftR.,(rQr)... dr],
———[1+fk t—1.. dr]
A=A, 47",

R (1—1), R, (1—1)are the resolvents of the kernels of the shear and dilatational creep,
respectively, K, (t—1) is the kernel of the creep caused by liquid pressure in the
pores. The following notations have been introduced: o;; — the elements of the
stress tensor for the two-phase medium, &;— the elements of the strain tensor,
p — the pressure of liquid in the pores, d;; — Kronecker’s symbol, gz — shear mod-
ulus of the skeleton, «, — bulk modulus cavsed by liquid pressure in the pores.
To the constitutive equations we join, further,
the equations of equilibrium:

23) . 615,50,
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the geometrical relations:

’ 1
(2.4) ' &y = X (i, ;4 u;,0),

and " the filtration equation:

k J 3n

(2.5) s p+é,
in which u; are the coordinates of the displacement vector, n denotes the porosity,
k — filtration coefficient, y — the voluminal weight of the liquid, «,, is a compressi-
bility modulus of fluid, 4 denotes the Laplace operator and a dot (-) denotes the
partial differentiation with. respect to time.
~ The Egs. (2.1)-(2.5) constitute the complete set of equations of the consolidation
theory for a medium having a visco-elastic skeleton. :

In a further work it will be more convenient to use the well known system of
displacement equations:

(2.6) NAu+(N+M)e ;~Ap ;=0, i=1,2,3
obtained by substitution of the Eq. (2.4) in to the Eq. (2.1}, and the result subsequently

in to the Eq. (2.3). The Egs. (2.6) together with the filtration equation (2.5} form the
basic system of equations which will be convenient for use in further considerations.

3. FORMULATION OF THE PROBLEM

In a cylindrical system of coordinates Orgz, consider the half-space z30, the
smooth boundary of which is the known loading function Q(r,?) (Fig. 1). The
Eqgs. (2.6) and (2.5) are the basis for further considerations and: in the case of axial
symmetry have the following form:

u
N(Au “F)+(N+M) £, =Ap,,

@an NAw+(N+M)e ,=Ap .,
k n
—y" dp=u—wp+8,
where

a2 1.8 &

u
= F—+ b
ETH T T e 4= &y o

and u and w denote the radial and vertical displacement, respectively. The Eqs. (3.1)
constitute a complete system of three linear integro-partial differential equations
of mixed eliptico-parabolic type for the three unknown functions u, w, p. The solution
of this system of €quations will enable evaluation of the state of stress: and strain
in the: consohdatmg medium.

&
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The boundary conditions for the problem considered are as follows:
(32) Jrz(r’ 0, t)=01 Gz(rs 0, t).’=Q(r, t):
for the pressure in pores

p(r,z,t)

P =0, r<R,

Clz=0

2(r0,0=0, r>R.

-¥

Thus, the problem formulated, which will be the subject. of further considerations,
belongs to-the group of  problems. with mixed boundary conditions. Further we
require that at infinity-the following conditions be satisfied :

lim (u; w, P} =0 » where Rz =]/r2 +ZZ,
Ry>w

assuming that the loading e X(A)) increases with time in a continuous manner from
z6ro to a finite value and that the following homogeneous initial conditions are
fulfilled

(3.3) u(r, 2, 0)=w(r, z, 0)=p(r, z, 0)=0.
There conditions satisfy the compatibility equations [7], required for the sjstem

of equations of the consolidation theory.

4. GENERAL SOLUTION OF THE PROBLEM FORMULATED

Il‘l,constructing the general solution of the system (3.1), we shall apply the Nankel -
integral transforms with tespect to the variable r,-and the Laplace transforms with
respect to the variable ¢. Using the well known relations for the Bessel functions, the
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form of the operators N, M, 4, a convolution theorem for the Laplace transforms
and the initial conditions (3.3) will be obtained from the Eq. (3.1):

dz
N( p —pz)ﬁ+(N+M)( p)E=—pAp,.

| & Edp
4.1) N(d )w-}-(ﬁ-i-M)‘d‘— /IE;, ,.

k dz ™ 3 .
Pl vt et a2
where

7 Ei(p, z, s)=ff u(r, z, OrJy (pr)e~% drds,
Q0

#(p, z, 5) _ ~ A Ewn, z, f) »

[Ew,z,s)]"of J L,(, ot ]ﬂo(pr)e drd,
R _
E=pli+— o

R, 87, A= [ IV, M, Dledt.
0 B

We start the solution of the system (4.1) by performing the following preliminary
operations: first we multiply the Eq. (4.1) by p and differentiate the Eq. (4.1), with
respect to the variable z, and after adding relations thus transformed we obtain:

o a Y -
@.2) (2N+M)(—&—z;— 2)5— (d22 - p )ﬁ.-

Taking into account the third of the Egs. (4.1), we obtain the fourth order differential
equation for the unknown function of the pressure in the pores in the form:

) - g% 2 _ d2 _
@ o) B

where the following notation has been introduced:

ﬂq%+;£ )
Tk \m, 2N+M]

The solutions of the Eq. (4.3), .satis'fying the conditions at iﬁﬁnity, has the form:
@45 PP, 2,9)=C, (p, ) e+ Cs(p, 5) e,

where

44

=~

m?=p>+s8B,
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Using the function 5, we compute % from the Eq. (4.1), and substituting it in to
the two-remaining equations of the system (4.1), we obtain: .

42 2);_N+H{ [E( d* 2)-_ B]C oz
. dzz—p u= s]v- ' " dzz‘ P Sy 1€ +

‘ k{2
+pl— i Pl sB | Cye g,

(4.6)

d? -~ N+M k{d? _
=R A AP ]
| k{ @ _ |
Hmi ;,—zupz — 5B, Cze.‘""[,
where
5 = 3n + A
= T R

The general solutions of the above diﬁ'erential equations have the form:

AC
El ze— _.......{)__...f_...__.. P

_ N+
f#=Cye P+ Crgg BN+ ¢

2N
N+M _ © mAC,

nr EEESE——1 e |4
= Coe ™+ C) 3% o -— B, zem" sB(2N+H)e .

4.7

* Using the constitutive equations and the geometrical relations, we may obtam
the transforms for the stresses in which we are interested: '

- M(N+M
&,=C1[(N+H)Blzp+m—(—2—;———)— J]

2ANm?
~C BN T i)

. [ ) 0sB +MJ+3n(2N+M)(N+M)] e
z _(N+M)P2 1 2N “wzﬁ- +

2ANp*
+C BNt i

__lepz 24Nmp
0 =Ci(N+M)B—— e+ g gy Cae

e+ Cy p QN+ K) e 07— MICy pe=*-,

(4.8

e-—}uz_i_ C3 ﬁpg‘”z— C4‘(2N+ﬁ)pe—pz:

—mz

—Cs Npe—rs— CyNpe—*=,

The formulae (4.7) and (4 8) contain four coefficients Cj, Cz, Cs, C, for evaluation
of which we need four relations. Three of them are the boundary conditions (3. 2)
while the fourth relation is obtained from the fact that as a result of the assumed
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method of decoupling of the system of equations, the order of the filtration equation
has increased from the second to the fourth. The solution obtained (4.5) must then
satisfy the Eq. (4.1);. From here the relation sought is obtained:

: 3n
4.9) 2Np (Cs— C4)+[—— (3N+M)+J] Ci=

Before the boundary conditions are taken into account, we perform on them
the Laplace transform, to obtain:

N+M _ A
Of 3 Clﬁ‘l+2€szmm—CapJV—C4pN}pJo(pr)dp=
> {[E’_{ L (2N+M)(N+ﬂ)] 202 AN
f 2N «, 2N sB Q2N+ &)

C2+C3ﬂ7p_
@ - —(21V+M“)pc4}p10 (or) o= [ Gps)plotor) o,
[1]
f (~pCy—mCpy(prydp=0 for r<R,
4]

I(Cl—i-‘Cz)pJoQor)dp:O for r>R,
Li]

The condition (4.10),, (4.10), and (4.9) enable us to express the parameters C;, Cs,
C, in terms of C, in the following manner:

_ -1 [ 24N p = ]
Cl_(ﬁ+ﬂ)gl 2N+IZ m+p Cz"*‘“Q(P,S) E
. . O AR Pn _ mB,(R+ )|
.11 * " a, 2(N+ M)pB, (mIa“fif)(zﬁwq)ﬂE (m+ple, Np-m |

omein? g3
4= = y(N+ #) B, ZJVp sBQN+ MY(N+M)B,

The remaining boundary conditions (4.10); and (4. 10)4 lead to a systcm of dual
integral equations with the unknown quantity C,:

Y =8, [ 2pAN ] }
f (B.W+iD sBQN+M)B, (N+H) Caofplodprydp=

for r>R,
(4.12) ‘

F | —pQ(ps) 202 AN(m—p) - |
f l B (N+ M) [ sBQN+ M)B, (N+ i) + m] CZ}pJO {pr)dp=
' for r<R.
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Introducing the new variables:
r=Ru, p=R'v,
and substituting

2ANR *v(m—v) ]}

(p(w,s)='vR_1{Q(7’s S)—CZlﬁl(N+ﬂ?)+ sBQN+ M)

T B
S, s)=~-§ J- O (v, 5)G (v, $)Jo (vw) do,

4.13) - n sBB, (N+ M).
G, 5)= e ¥ivi
2B, (N+ M)+ N+ M
. sBB, (N+ M)
2 H)
_ Bi(N+M)(m+o)* + oo 2{m+v)

we obtain the system of equations (4.12) in the form:

1 7 R?
E;f d’)(v,s)[fa+ - G'(f),S)]Jo(u,f’)d‘b‘=f(":3): u<l,
(4.14) ° " |
P |
ff & (v, $)Jo (1,0} dv=0, u>1.
0

The mixed boundary condition (3.2); is then reduced to the system of dual integral
equations with zero order Bessel kernels, where the weight function has the following
form:

]

1
‘U+—?)- R2G (v, 5).

5. SOLUTION OF THE SYSTEM OF DUAJ INTEGRAL EQUATIONS

To solve the system of equations (4,14), the Ufland-Lebedev method is applied.

The unknown function is sought in the form:
1

(5.1) | ¢z, 5)=v f P ({,_ ls)co_s-sz dé’ .

Introducing (5.1) into (4.14),, after simple transformations we obtain:

- _ 1S 1 f
< | o[ o neoset deso @y do= [ Lot sinolsosdv=z [ 9053

. . gﬂ(l, .S') w ' 1 1 ’ ) . L
wsinol &gy ) do =222 [ sivady o) do =g [ 97Go) [ simotiox
. . 6 0 . [ o . 0

x(uwv)ydvd, for -u>1,
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Using the property of the Weber-Schafteitlin intégral :
. . 1 :
. °ﬂ N ) e >u’
G2 o sinold (w)do={V O~
0
’ 0, = {<u

confirm that the Eq. (4..14)2- is satisfied identically. Néxi, substituting the Eq. (5.1)
in to (4.14),, we obtain:

2

1 7 ; i g
— | = | e s)cosw{d(l‘v+
Rr? of 6[ v

G (v, s)] Jo(u)do= =

5) %

o i 1 ]
wd f o cos Lo, () do-+ f & f G0, s)Jo(w)do=f(u,5) for wu<l.

Integrating the above expression twice, and taking into account the values of the
Weber-Schafteitlin integral |

1
o ' =, {<u,
(53) [ cosold (w)do=1 ¥ u* =
° 0, {>u,
arrive at:
R () N sBB, (N+3) o (u, S)
§ V-2 2B, (N+M)+24N QN+ #)~" f]/ 2_¢- B
(5.4) szBZ (N+M);|_R2 L
- f o, ) f H(0,5)c05Lol i) d & =1 W, 5),

with the conditions

(5.5) p(L,H=0, ¢'(0,5=0,
;vhere .

o 1
(5.6) H(v, 5)=

Bi(N+M)(m+v)* +2AN QN+ M) ' v(m+v)
Assuming {=u sin 0 in the first two integrals, and using in the third the representation
of -the Bessel function

‘ nf2

D Jo(n9)=— J cos (uwsin 6)do,
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we obtain after transformations:

- xj2 o B, (N+M)sBp(using, s)
co | {“ﬁ‘f’ (usin & ) g Ny M)+ 2AN QN+ M)~

0

252 B2 B (N + FT)* R?
T R 2B, (N+ M)+ 2AN QR+ M)~

J " H(o, 5) [cos (¢ +usin O)o-+
d

+cos (¢ —usin B)v] dv f o (¢, s)dcj} A=, 5).

The compact form of this eﬁ(pression may be obtained after introducing the notation:
B, (N+M)sBg (usin8, 5)

2B (N+ M)+ 2ANQN+M)™!

+ — 252 B* B} (N+ M)* R?

" w2, (N+ M)+ 2AN+ 2N+ M)~1]

1
(59)  Flusing,s)=— ¢ (using, s)+

f o (&, ) [H{ +using, 5)+

+ A —using, s)]dC,
where

H(¢+usin0, s)=f H@’ s)cosv(é’-i—usin Ndo, -

(5.10) L ‘00c

H(¢—usin6, s)=f H{(v, s)cosv({—usin6) do.
O .

We obtain, then, the Schldmilch integral equation
nl2
(5.11) f F(usin@, s)d0=f(u, 5),
: i
the solution of which has the form:

2

(5.12) F(u,s)=%[f(0, s)+uf £ (usind, s)d].

Coming back to the Eq. (5.9), we c‘abtai.n the following expression for the function
@ (u, s) which is sought: '

R sB, B(N +#) |
R O O A U T SFTY.16) 07 e
* SPEE+HPR

7 (B, (N+ M)+ AN QN+ M)~

5 fqa(c,s)fc(u,z:, S =Fu, 5),

where

K, L, = +u, s)—{—ﬁ(é’—-u,: 5).
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This is & Fredholm integro-differential equation of the second kind with continuous
and bounded kernel, as is well seen from the shape of the expression (5.6). By means
of the symmetry of the kernel X (i, {, 5), the Eq. (5.13) may be presented in the form:

sBB, (N+M)
ZBI(N+M)+2JN(2N+M)—1 o (i, 8)—

1
(5.14) "};?"(ﬂ, s+

B SZEZBf(N-f-M)ZRZ
ST AR I f HG1,5)p €, 5)d{=F @, )

with the conditions (5.5).

Determining from this equation the function @ (s, 5) -and then from the Eq. (5.1)
@ (n, 5}, the system of dual equations (4.14) may be solved. Because of the combined
form of the kernel of the Eq. (5.14), the exact closed form solution is not possible .
to obtain. The existence in the kernel of a complex parameter also constitutes a
barrier to the application of numerical techniques. In this situation, it seems that
the orthogonalization method is the most effective for solution of the Egq. (5.14).
The solution is then sought in the form:

N
(5.15) o 5)= D' a,()Pu()+p, ,
C =0
where P, (1) is a complete set of the orthogonal functions in the interval { —1, 1>. For
the set of the functions P, (1), a system of Legendre polinoms, which possesses all
properties mentioned above is assumed.
Taking into account the conditions (5.5)

No
0@ u=1= D) a(s) Pu(1)+p0=0,
r=0
Ay '
?' W Numo= Y 8, () Py(W)lumo=0 fulfil 4,
. #=D
we obtain: -
No ‘
(5.16) | == D a@PW,
. =0
and finally;
Ny
(5.17) p= D a P, @) —P.(D].
’ =0

Substituting (5.17) into (5.14), multiplying the Eq. (5.14) subséquently by P, (u),
i=1,2,.., N, and integrating with respect to u in the interval {(—1, 1>, we obtain
the following system of linear algebraic equations with unknown coefficients a, (s):

(.18) 3 ) )= ),
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where

. | |
By (5)= j Fuy $) P () it 5

B, (N+1T)sB poa
A ()= f f PP QO e+ S IR GR T f H f P @)
R - 25? B2 B (N+ M)’ R* . ‘H b P (O
Py () dhu n[zﬂl(mﬂ)ﬁm(mﬂ)_l]_!_lf 1, )Py ()P, (O) dudl.

Cramer’s formulae enable effective evaluation of the coefficients a, (s}.

6. COMPUTATIONS OF PRESSURE IN THE PORES AND DISPLACEMENT OF THE BOUNDARY ’
HALF-SPACE : : ‘

From the Eq. (4.5, for z:O- :
’ - 1
p= Ci+Cay

and the inverse Hankel transform is:

1 o>
6H ﬁ;=*-f (cl+cz)vfo(uv)dv.
From the Eq. (4. 14)2, it results that for u>1

W f (@, S)Jo(uﬂ)d'u

The Laplace transform for pressure in the pores at z=0 has the form

62 PO G DR f B (u, $)Jo (o) do=
i e A3
- B,(N+M)R V11— B1R(N+M) f |/.£_f2 .

Using the conditions (5.5) and performing the inverse Laplace transform we ﬁnally
arrive at:

| @' (C, 5)
{6.3) p D= 2mi fBl(ﬁ”rM)R fVCZ—“

The valie of the displacement w (7, 0,7) is obtained fromthe Eq. (4.7) for z=0:

dcds.

Am

W= C4 - Cz mﬁj,



CONSOLIDATION OF THE VISCO-ELASTIC HALF-SPACE 553,

and evaluating C, from the Eq. (4.11), C, from the Eq. {(4.13), and performmg
the inverse Hankel and Laplace transforms, we obtain:

R B @ 44AN -
'k(2ﬁ+M)B[(N+M)BE+WW}RQ@J,3)
? 24N
mo 2N+M]

R

(6.4)
2Nvy(N+ M) B, [(ﬁ+ﬂ)§1 +

voRs i T, R?
@N+M)B 55 S, P ®:9)

o 2AN ]

N V+MEB B (N+ D+ —_—
2Nvy(N+ M) B, [Bl (N+ M) o AN+ o
After transformation, we have:

oo

’ 1
—— vy -1
(6.5) = Of WJ, (ue) R~ vdods .

7. NUMERICAL EXAMPLE

The results obtained in Sect. 5 and 6 enable a partial quantitative analysis of
the problem considered to be performed. More complete qualitative and . quanti-
tative analysis may be made after calculation of the numerical examples and presen-
ting the solution in the form of diagrams. :

"The loading of the boundary in this example is assumed in the form

Q@r,)=T(t)q(r), T(t)
where
f ! : ‘ 1
— 0t <1y, !
()= t‘o I
L 1, o<t fo : t
~ Fic. 2.

and i8 presented in Fig. 2.

Usmg ‘this functlon it is possible, with accuracy sufficient for practical applica-
tions, to describe the real distribution of the loading applied to the soil; ¢, denotes
here the time of duration of the total loading. In the computations, 7, is assumed
as 1, 15, 30 and 100 days, respectively. The parameters characterizing the prop-
erties of the medium were determined on the basis of the results presented in papers
[13] and [15]. The numerical example was computed for an elastic skeleton. This
assumption does not limit the drawning of conclusions for the kernels of regular
and weakly singular integral operators. Nor is here any essential difficulty in taking
into account the rheological effects of the medium. The assumed parameters of the
medium are of orientation character and approximate solely the properties of
a certain group of clay soils.
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The solution of the integral equation is presented in the form of a combination
of orthogonal systems of functions complete in the interval { -1, 1. These functions
were assumed in the form of the Legendre polinoms. In, computations the following
form of the pelinoms was used:

Po(l*;)":l,
Pl(u):'us

Pz'(u)=%(3u2—1).

1
Py(w)= > (5u° - 3u) .

1 z=0 . 1y
“t=10/" t=300/ t=100f
| 6
04
05T pu,t)
Y ik6/em*]
t, =100 days k=2 cmiday t,=1day
Fig. 5,
1 ': g

! : t=05

=100
t=300 s
GsluX)
Y [kk6/em?]
‘ Fi1G. 6.

Rozprawy . Iniynierskie — 2
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For evaluation of the inverse Laplace transforms, the method of interpolational
polinoms, given in the paper [11], was applied. The following parameters charac-
terizing the properties of the medium were assumed: '

=125 kGjom?,

«, =500 kG/fcm?,

w, =25 kGjcm?,
k=2.10"! cmfday, k=2cm/day,
n=@$

a,=6-10* kG/cm?

"R=3500 cm,

g (r)=1 kG/em?.

The computatmns were performed on an computer Cyber 72. The results obtained are
illustrated graphicafly. The diagrams of the distribution of pressure in the pores
with time for. different coefficients of filtration, are presented, together with the
distribution of pressure in the pores for different rates of loading, the distribution
of maximal values of the pressure with time for different rates of loading, and finally
the diagrams of the stresses in the skeleton for z=0.

8. FINAL CONCLUSIONS

The results presented and the formulae derived constitute a complete solution
of thé problem formulated. As has been shown, the states of strain and stress ina
consolidating half-space having a visco-elastic skeleton may be effectively determined
and the exact form of solution obtained.

The solution obtained and the numerical example presented justify the following
conclusions: '

1. From the analysis performed, it results that the rate of loading of the medium
has a significant influence on the process of consolidation.

2. The distribution of pressure in time depends in an essential manner on the
filtration - coefficient. ‘

3. The maximal value of pressure in the pores depends on the rate of loading
and is reached (in our problem) under application of full loading. The longer the
loading time the smaller thls value. The largest magnitude of pressure in the pores
is reached for u=0.

4. Form the analytical solution it results that pressure in the pores on the bound-
ary is a continuous function of the time.

5. In the final phase of the consolidation process (¢-»cc). the solutlon tends
asymptotically to the solution valid for the uniphase medium.
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STRESZCZENIE

KONSOLIDACJA POLPRZESTRZENI LEPKO-SPREZYSTEY PRZY MIESZANYCH
WARUNKACH PRZEPUSZCZALNOgCI BRZEGU

W pracy podanc icisle rozwigzanie osiowo-symetrycznego zadania konsolidacji polprzestrzeni
lepko-sprezystej przy mieszanych warunkach przepuszezalno$ci brzegu. Proces konsolidacji wywo-
lany jest zmiennym w czasie, normalnym obciazeniem dzialajacym na brzeg polprzestrzeni. Brzeg
polprzestrzeni wolny od obcigZenia jest przepuszczalny, natomiast czesé brzegu pozostajaca pod
obcigzeniem jest nieprzepuszczalna.

Na gruncie trojwymiarowej, sprzgzonej teorii konsolidacji Biota z uwzglednieniem teologicz-
nych wlasnosci szkieletu wyznaczono stan naprezed i stan deformacji o§rodka uzyskujac efektywne
rozwiazanie. W szczegblnoéei dla ofrodka o szkielecie sprezystym podano wykresy cisnienia poro-
wego pod obciazeniem dia rbinychwchwil czasu i réznych predkosci przyrostu obcigZenia.

Pesrwome

KOHCOMMAAAIIHA BABKO-VIIPYIOI'O TIONVIIPOCTPAHCTBA TP CMEHIAHHBIX
YCIOBHAX TTPOHUITAEMOCTH T'PAHWI]

B pabote Aaerca ToWHOE pelmeHME OCECHMMETDHYHOM 3apayw KOHCONHJALNE BABKO-YIIPY-
TOTO NONYDPOCTPAHCTEA HDH CMEMAHHEIX YCIOBHAX HPOHMIAEMOCTH TpammH. Ilponecc KOHCO-
JHOANAA BRI3HIBACTCA LEPCMCHHON BO BpEMeHH, HOpMaNHHOH HATPY3KOH HelicTByromel Ha rpa-
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fuIe ToNympocTpagerea. CpobonHad FPAadaa NonynpOCT paHCTR: TIPORMLIAEMAs, 9acTh e Ipa-
HEME HAXOAAIAACK AOX HATPy3Kol HEOpOHWIACMAL. Ha rpyare TPEXMEpEOH, COLPXEHHOH
TeopuH KoHCONAIAuHA BHO, C YIETOM PEOIIOTHUECKRX CBOHCTB CKENETa, OTPEHCIICRE! HAIPAKEH-
Hoe ¥ He(OPMAIMOHAOE COCTOMMHA CPEIEL, mony4an stdexTEBHOS pollicHne, B UaCTHOCTH, Xis
Cpeapi ¢ YOPYTUM CKeICTOM IPHBECALI AMATPAMMEL IODHCTOTO NABRCHAA 1O Harpy:3xoil mma
PasHEIX MOMEHTOB BPEMEHH H DasHEX CEOpOCTeH IpHpOCTa HATPYIRH. :
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