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ON THE THREE-DIMENSIONAL CONTACT PROBLEM OF A RIGID
INCLUSION PRESSED BETWEEN TWO ELASTIC HALF-SPACES

G.M.J. D AMEN (EINDHOVEN)

An approximation solution is found for the three-dimensional contact problem of two elastic

half-spaces pressed against each other with a rigid inclusion between them. We confine oursclves
to identical spaces nad will examine an inclusion of a such a nature that rotational symmetry is
achieved.
' We apply asymptotics to a small parameter which is the quotient of .the radius of the contact
region with the inclusion and of the radius of the region where the spaces touch each other, These
quantities can be compouted if the pressure at infinity and the geometry of the inclusion are given.
After solving this part of the problem the surface pressure may be obtained.

Numerical results are given for the small parameter and the surface pressure.

INTRODUCTION

This paper may be considered as a generalization and a further continuation
of [1,2] by J. B. ALBLAS, dealing with the corresponding two-dimensional problem.

Here we solve the three-dimensional problem of two elastic half-spaces which
we press against each other with a rotationally symmetrical rigid inclusion between
them. The spaces have equal constants of elasticity.

The half-spaces not only make contact with the inclusion but will also thouch
each other at some finite distance after any arbitrarily small pressure has been
applied.

We call the contact ratio k. This is the quotient of the contact parameters ¢ and p,
where ¢ is the radius of the contact region with the inclusion and p is the distance
at which the spaces meet.

We will represent the pressure at the surface in the form of a series expansion
in powers of the ratio k. We are able to generate step by step the coeflicients of that
series, using for each term the results of the preceding ones. The proof of the con-
vergence of this series is not included, however a rough estimation gives a radius of
convergence of 0.2, Postulating limitation of the pressure, we get two equations
for the contact parameters, the diameter of the inclusion and the pressure at infinity
being given. Knowing these quantities we can determine displacements, deformations
and stresses all over the half-spaces. '

Cuatting down the series mentioned before, we get our various approximations.

For several values of the pressure at infinity and of the diameter, numerical
results are given for the contact ratioc and the pressure at the surface.
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1. STATEMENT OF THE PROBLEM

We consider two isotropic, homogeneous elastic half-spaces of the same material,
occuping the regions r=0, 00<2x, z>0 and z<0, (r, §, z) being a system of
cylindrical coordinates with 20, 0f<2n, —co<z< oo (cf. Fig. 1).

To each of these half-spaces we apply a rigid body displacement d, so that the
distance between them becomes 2d.

Next, we put a smooth rigid inclusion of 2d width between the space, the surface
consiting of two paraboloids which we obtain by evaluating two parabolic arcs
around the z axis. , .

In this way we get a rotationally symmetrical géometry, the z axis being the axis
of symmetry.

By pressing at infinity (pressure p°) the spaces move towards each other and
make contact at soine distance from the origin, the situation of which is illustrated
in Fig. 1,
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Frc. 1.

In linear elastostatics the equations of equilibrium for the displacements read '
by
1-2v

in which u is the vectorial displacement, A is the LapIac;an Operator and v is the
Poisson ratio.
In the case of rotational symmetry

a

(1.2) ué—ﬁ_ )

in which wu, is the displacement in the #-direction.
With the aid of (1.2), (1.1} can be simplified to

{L.1) 2 grad divu—rot rofu=0, A

2{32u+1 du u} . &*w c'Jzu_O
- r dr 12 +(B - )3231“ dz2 7
(1.3)
Bzw_]_l 8w+ - 3{@u+ }+262w_0
or? roar HEE =) Jz Ladr r B 22
in which
1.4 gt
( " ) ﬁ - 1—“2V’

and u and w are the displacements in the »- and z-direction, respectively.
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On account of symmetry we may confine ourselves to one half-spacef for which
we take z<0. The boundary conditions fo; the region mentioned before

(1.3) S 20,7 0<0<2r,  2<0;
are ' '

Z=07 0-.<__l‘<00, trz:Os

. . ,,.2

O<r<e, =d——0,

w6 F<e w d 2R
' csr<p, tzz:O:
'pé\r{oo, w=0,

in which 7, are the components of the stress tensor, 1/R is the curvature at the vertex
of the parabola and c is the radius of the contact region with the conclusion. The
half-spaces make confact with each other if r>p at which

(1.7) p=c+a.
The pressure at infinity is p°, so
(1.8) tz=—p%, (]/r2+22—}oo). ’

2. DECOMPOSITION OF THE PROBLEM

Subtracting from the problem stated in Eqs. (1.3) and (1.6) the displacements
belonging to the fundamental problem of two half-spaces without inclusion,
o . »°
R R R PTCE R
in which g is the modulus of shear, the boundary conditions for the residual problem
change to

2.1) Pou

z=0, O<r<oo, ¢{,=0,

- O<r<e, w:cf—E“Rj,
) Cgr<p9 tZZ:poJ
p‘g"“{‘oo) WZO,

in which #,, vanish at infinity.

3. HANKELTRANSFORM
By definition the Hankeliransforms of u and w are
#(&2)= [ rule, 24, @) dr,
a

(3.1) "
Wi, z)=f rwir, ) o (Er)dr.
0
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L From Egs. (1.3) and (2.2)" we find

Lz (S, O™

EIAT T {B*+(B*-1)¢z},

3.2 w(t, z)=—

in which

¢.3) 1.8, 0)= [ 112 (r, 0o (&) dr.

4, TRIPLE INTEGRAL EQUATION

By putting z=0 in Eq. (3.2) we have the relation

fzz (5: 0)
f 3

4.1) ' w0 =K
K being defined by
(4.2) K=(1—w/u.

Together with the boundary conditions in Eqgs. (2.2),, 3,4 and (4.1) the inverse
transform of Eqs. (3.1), and (3.3) gives the triple integral equation

o 2

r

[ @ OneOd=d=gg,  rel,
@ N
(4.3) f E(E O, (k) dE=—p° K,  rel,,
[}
[ erE 0 e dE=0, rely,
in which~

4.4) Li={rl0sr<e}, L={rlesr<p}, L={rlp<r<oc}.

5. INTEGRAL EQUATIONS

The part on the right hand side of Eq. (4.3) is known. So we can, in principle,
determine w (¢, 0) and also £, (¢, 0) -according to Eq. (4.1). The inverse transforms
of these two functions give the displacement w and stress #,, at the plane z=0.

In Eq. (4.3) all boundary conditions meet the requirements. Solving this system
with the aid of [3] and [4] we get two related integral equations:

fy=m@+ [ M@, 0 fi(@)dt,
(5.1) 0 (\E !

gl
fi@=n@+ [ M@ 9)f0ds.

a 3




ON THE THREE-DIMENSIONAL CONTACT PROBLEM OF A RIGID INCLUSION 487

The functions are defined by

T—u? , Vi
fa(u)=w'/—u~;3nk“*1<ﬁa(~§-), m(u):i%k-%tl(i),

u

(5.2) [i@ =9V 1-02kKp, (cv), n@=vV1—0kl(cv),

V122
Vi1-¢? (1-k212u?)’

2
M(u, )= —?k*u

in which the functions g; (r) are the unknown pressure at the surface
ﬁi(r):_ zz(rs 0), I’EI,-

and the functions /; read

u K T 1—k?
L (“{)") 1 []/ -k - K"";L arc tan _“_‘u]/ ”"C“"'] 3

# T ]/1 u? l/l —u?
(5.3) o2
dn_ ———
i 2 Vl P Ry
2((:7))_ — e ]/1_?)2
2 pP°K

' ' Vi—k?
p]/l k2 mc]/l—w arctan 1.
]/_1“—1)2

]/lw

The important constant & is defined by

5.4 | oz
5.4) =
" while
(5.5) 0, wv<l.

We can reduce the system in Egs. (5.1} to one integral equation of Fredholm’s
type: '

(5.6) f (w):h(w)+f H(v, t)f; ()dr, 0<o<l1,
with

: h(v):n(w)+f Mv, s)m(s)ds, ‘

(5.7 H@ﬂ=fM@ﬂM@ﬂ®.
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The following expressions hold:

2 2d . 2 ¢
h(@)= 'v(lwvz)——k-i-;—— k*g‘Efaalﬁﬁ

2 2 . V1lk?
+—p KoV 1-k* ——p° Ku V1—o? karc tan—————+

7 £ kV1—o?

. . i 1/1 kz 2

. - -——zr Kf x

(5-8) 4 l/l—s (1-k2522%)
1/1 VI sV1-k d;
S arctan ~e—— }m s,

'v]/l kZi? S]/l—kz? P
s
l/l —12 P ]/1—s2 (1 —_kzﬂzsz)(lsztzsz)

Hw, t)=

and

L. VI=# o kaset w1k
m(u)AW /pK 1—- - e p" Karctan o

6. POWER SERIES SUBSTTTUTION

We substitute

h@)= D @k,

(6.1)  H@ 0= Hyp @0k,

Ji (‘U)ZZ f1.t(°”:_f)kl,

in Eq. (5.6) and equate the coefficients of equal powers of k:

fl,o(@)zho(”),
62) | 51 . ,
foi@=h@+ D [ By @D @d, 121,

which provides a recursive relation to calculate £, (@) (I=1).
Next we put

(6.3) muy=k=* 3" dy )k,
i=0
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(63) M, 0)=k"* Y' Moy, G, DR,

fcont.] =0
A=k X £, @)k
i=0

“in Eq. (5.1); which yields the recufreﬁc_e relation

fa,b(u)=do (),

i—1

(6.4) S, (@) =d, (u)+i

=0

) .
IIMzi+1(”; Dft2-irnyOdt, 121,
0 _ _

. - i 1 . . Lo . .
fa,zz+1(“)='§ fM2t+1(U, Df, 20-2dt, 120,
=0 0 .

In this way we have determined both f; and f3

7. THE PARAMETERS OF THE CONTACT REGIONS

Assuming that the pressure p® and the diameter d/R are given, the contact para-
meters ¢/R and p/R are unknown quantities. We will calculate them in the following
way. ' ‘

The pressure functions 7, (¢v) and g, (pfu) belong to the functions f; (v) and f5 ()
according to (5.2), ;. Assuming that these pressures are limited if », u=1, we find
two equations for the contact parameters. -

We shall illustrate this in the next sections.
8. FIRST APPROXIMATION

We approximate f; (9) by cuttiﬁg down the series in Eq. (6.1);. If we do so for
{=1, we will get the first approximation for £, (v): i (@). We find

4 4N 2 e dl S
(1) = 0 . i N, T SO RO S - o2
@) A@=—»p Kw(l+n2k)+ﬂkv[(1 2"’)R+c] PRk V1 o2,
from which
4 4 2 c d
T 0 4 = P A T
a2 ¥ K(l nzk)+nk[(l 2ﬂ)R+c]

kY 1—02

(3.2) K (co) = —p°K.

We postulate that 5, (cv) and so 55 (cv) is limited in v = 1. This gives the first of
the two equations mentioned in Sect. 7:

R

4 4 2 [d ¢
8.3 g0 — |+ k| == ={=0"
(8.3) P K(l-l—ﬂzk) nk[c ] 0
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Because of this Bq. (8.2) leads to
- 4 ,
(8.4) KA ey =—p K0 Vi

Next we calculate the first approx1mat10n of .fs (u) by cutting down Eq. (6.3),
at [=2:

2°K %K Vi-uw* w. '8 ¢ k?
() ey -1 — _—
8.3y fi'=k - - 2 arc tan ]/lmuz TR 2
from which -
P 1 2p°K . 8 ¢ k* 20°K #
8.6 K*(I) = | 3 y ———
(8.6) y ]/%1_112 x u 3 R nzu arc Ean ]/ —0

Again we postulate that the pressure is limited in this case in #=1. This condition

imposed on ﬁ”)( 5 ) gives
@®.7) , POK—- — =g,

This is the second equation we mentioned in Sect. 7. We obtain the representatlon
of the pressure:

(8.8) KPP (%) - .’Zp;K [u V1=t —arctan ——1%] .
We first solve the equations for the contact paramefers. By Eq. (8.7)
' ‘ ¢ 3 p°K
(8.9} R = I A %
This, substituted in Eq. (8.3} gives
d 12 9
(8.10) 2-13k4+——2—(p°K)2k2+3(p°IQ"k——nz(p"K)2=0.

This gives the first approximation of k:4". From Eq. (8.9) we get the first
approximation of ¢/R: ¢™/R and by

e
k R

®.11)
that of p/R: pV/R.

ks
R

9. SECOND APPROXIMATION

Analogously we compute the second approximation,

9.1 K (ev)= ( 2p°K+-——)]/1 v —pOK

2°K] - : u
(9.2 KpP ("-E");—" pﬁ [u Y1—u? —arctan “}*/—“] .

1—u?
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and the equation for k*}:

1664 32 32 d 1 } 4{_)23 32 4 1 }

sh— Bt S R S o B - SR
(0.3 k { 37t 72 m® R (p°K)2 * ,Ez—i__ R (°K)

16 48 9
+i3 12(7 - 1)+k2 (—;4— 24)+k.6—m 72 =0
rid i1 2
while ¢®/R follows from ’
4 3

L I
00 2Tk )

S

10. DISCUSSION AND RESULTS

To simply the numierical implementation we go over the following variables:
(10.1) oK 3 o ¢ 7] ’
. *P 3 =, =
: d Vra® 7 Vra

We arrive at the following equations:

1% approximation:

4 12 A2 2 H2 9 2 &2
2k -f‘-;;‘;p k*+3p k——g—n =0,

10.2
(10.2) 3 #p &u
F) e e — i‘j(l)= -
n KOP ke
2% approximation’
32 1664y 32 128 32
3 —_—— | —1— e e |
(10.3) k {p (752 371:4) n} K+ { (n“ +n2) 8}-!—
16 48 9
—i—ﬁzk?’-lZ(-j -—1)+ﬁ2k2(—2+ 24).+ﬁ2k.6-——1;2p’2=0,
s n 2
n_ 3m?—8 kP2 &
5(2):Mﬁ——— ﬁ2)=
2 [k(z)]?. 3 k)

We notice that the approximations of k are not identical for the same j, neither
are the parametes & and j.

We know that O<k<1. It apperas that &) =1 when $2=0.29 and k2 =1 when
P*=0.42. Although intuition tells us that k—1 when f—»oo the remarks made prev-
iously are not in the contradiction with this. Here, we cut down the power series in k&
and compute the contact parameters with the aid of that expression, the approxima-
tion of which is reasonable when & is small. An increase in & does not reqmre that
the equation should vield a nght estimation.

In the following prints we give a graphic representation of the relatlon between p
and &'? if 0<p<0.1, both for the first and the second approximation. We see that
there is a small difference between the approximations.

Rozprawy Inzynierskie — 7
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Considering the pressure p; according to Egs. (8.8) and (9.2), we establish that
Kp® qua forma, is equal to K (p/u) but the parametres are different.

We sketch the dimensionless pressure at the surface. The pressure is p°-+5 (7).
We do so in the case f==0.1 for both approximations. The differences are significant
for this high value of the parameter p.

k(f)'l
a5

ad

03

02

o1

14 i
, a=(p+Br) KYRIE=p+r) KVRI
=01

12
10
a8
a6
o4

g2
p=01
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We conclude that the corrections of the 2™ fo the 1% approximations are small.
We took § between 0 and 0.1. The values of § between 0 and 0.01 are of more
practical interest. In this case the derivations will be very small.
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STRESZCZENIE

O TROIWYMIAROWYM PROBLEMIE KONTAKTOWYM DLA SZTYWNEJ INKLUZII
SCISKANEJ POMIEDZY DWOMA SPREZYSTYMI POLPRZESTRZENIAMI

. Znaleziono przyblizone rozwigzanie tréjwymiarowego problemu kontaktowego, w ktérym dwie
sprezyste plprzestrzenie rozdzielone sztywna inkluzja sa wzajemnie ciskane. Zaklada sig identyczne
wlasnogci obydwu polprzestrzeni oraz obrotowa symetrig inkluzji.

Otrzymuje sig rozwigzanie asymptotyczne, gdzie jako maly parametr przyjmuje si¢ stosunek
promienia obszaru kontakin z inkluzja do promienia obszaru wzajemnego kontaktu pélprzestrze-
ni, Wielkoéci te moga byé obliczone gdy znane sa cifnienia w nieskonczonosci geometrii inkduzji.
Rozwigzujac te czesé problemun okre$hié mozna ci§nienie na powierzchni.

Otrzymano liczbowe wyniki dla malego parameiru oraz ci$nienia powierzchniowego.

Pezwome

O TPEXMEPHOM KOHTAKTHON 3AJAYE JUIA XKECTKOI'O BKIIOYEHKWA
CHUMAEMOTO MEXAY JBVMS VIIPYTUMU I10JYIONIPOCTPAHCTBAMI

Hatigeno npabmoxernoe peireHAe ThexMepHoH KOHTAKTHON 3a/layd, B KOTOPOH ABa YIDYTHX
HOIYIPOCTPACTBa, Pas/eeHELIe EECTKAM BXNFOYCHUEM, BIAMMHO CRuMaroTcd, IIpennonararores
WEeHTHIEEG cpolcrEa OOOMX NOMYOPOCTPAHCTE H BPAMATENLHYIO CHAMMETPHIO BRJIFOUCHHA,
TMony4acTcs acAMOTOTICICROS POILCHHE, IHE Kak Manwif papameTp HPHHAMACTCS OYHOIIEHHS
pazEyca OGIIACTH KOHTaKTA ¢ BRIFOTEHHESM K pajuycy o6nacTd B3auMioro KOHTAKTa IOIY/Rpo-
CTPANCIB, DTH BENMYENGl MOTYT OLITH BHIUACHCHBL 3HAS MABNeNye B OSCKOREYHOCTH IS BRIO-
wenms. Pemjas 9Ty 4aclh 34/Ia¥@ MOXHO ONPEendth HaBleHHe HA TOBEPXhOCTH. [Iomydess
THCIOBHIC PE3YNETATHL IUISl MAJoro HapaMerpa, a TakkKe [A7nf IMOBEPXHOCTHOIO JIaBICHUMA.
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