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INTERACTION OF SHEAR WALL WITH ELASTIC FOUNDATION UNDER
THE EXCITATION OF SH WAVES

U. GAMER (WIEN) and Y.-II. P A O (ITHACA)

The study of the interaction between soil and structure was started by T.E. Fuco (1969 ) who
treated an infinite shear wall on 4 rigid foundation of semi-circular cross section uinder the excitation
of a plane harmonic SH wave. M.D, Trifunac (1972) found that the motion of this structure is
independent of the angle of incidence. In this paper, an elastic foundation is considered. Further-
more, a rigid mass on top of the shear wall is added. However, the boundary conditions at the inte-
face between foundation and shear wall are satisfied only in average over the width of the latter.
The numerical results are compared to those of the rigid foundatlon case. There are considerable
differences.

1. INTRODUCTION

The interaction of a structure and ground motion can be conveniently analyzed
by assuming that the foundation of the structure is connected to the ground by a
system of springs and dashpots [1]. These springs and dashpots model the elasticity
and damping properties of the soil. Although the elastic property of the soil can be
estimated from static tests, the determination of the damping characteristics must
bebased on dynamic experiments and analysis.

There are two parts of the damping that should be considered: one is the material
damping due to the plasticity and porosity of the soil, the other is the damping through
radiation of energy. When incident ground waves are scattered by the foundation
considerable amount of energy is carred away the scattered wave. For this wave
a detailed analysis of wave motion in the soil and the foundation is required. A general
discussion of the scattering of elastic waves in solids is given in the monograph by
PAro and Mow [2].

The scattering wave theory was first applied to the interaction of foundation
and ground motion by Luco [3]. In the original paper, he considered a semi-circular
- cylindrical foundation embedded in an elastic half-space. The cylinder is assumed
to be infinitely rigid. A shear wall is instafled on the cylinder, and the foundation
is excited by an incident SH-wave (horizontally polarized shear wave). A closed form
solution is obtained for the system of shear wall, the rigid foundation and the elastic
soil, from which the foundation motion and the base shear foree are calculated.
Luco’s numerical result shows ‘that the value of the specific damping coefficient
is about 0.46 which means that the radiation damping is sxgmﬁcantly larger than
the ordinary material damping.

Luco [3] considered only the case of normal incidence where the direction of wave
propagation is perpendicular to the plane surface. The case of an arbitrary angle
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of incidence was considered later by TRiFuUNAC [4]. However, the foundation displaée-
ment was found to be independent of the incident angle for a rigid semi-circular
foundation. Only when the geometry of the foundation is changed to a half-elliptical
cylinder, js the displacement affected by the direction of the incident angle [S].
This raised the question on whether a rigid foundation, which leads to a considerable
scattering of the waves away from the foundation, is a realistic model.
In this paper we replace the rigid foundation by a semi-circular elastic cylinder.
In addition, we consider a mass added on top of the shear walf because the total
mass above the foundation has a considerable influence on the motion of the latter.
Introducing an elastic foundation prevents us from finding a closed form solution
which satisfies exactly the boundary conditions at the interface between the shear
wall and the elastic foundation. This exact condition that the traction and displace-
ment should be continuous across the interface degenerates to some simple from
when the foundation is assumed to be rigid. However, through the addition of
a concentrated shear force at the base of the shear wall, we are able to find a closed
form solution which satisfies the condi-
Ly’ tions of continuity of the tractions and
displacements averaged over the width
of the shear wall. Our results reduce
to the ones in Ref. {3] when the shear
1 modulus of the foundation approaches
2b ) infinity.

"

(3

< 2. THE MODEL OF ELASTIC FOUNDATION
2) AND SHEAR WALL

Consider a system of soil, founda-
tion, shear wall and a top weight as
depicted in Fig, 1. The soil is represent~
ed by the elastic half-space with con-
stant mass density p, and shear modulus
Ho. A semi-circular elastic cylinder of
infinite lenght {in the direction of the
z-axis) models the foundation. A cir- .
Fig. 1. Model of soil, clastic foundation and cular-shaped foundation is assumed for

- top mass. the ease of analysis of wave motion.

: The foundation and shear wall have

mass density p; and p,, and shear modulus gy and p,, respectively. The radius of

the foundation is @; the thickness and height of the shear wall are 2b and / respective-

1y, with b<a. The top weight is a rigid body with a total mass per unit length nz;.

All physical quantities pertaining to the soil are identified by the index 0, those to

the foundation and shear wall by 1 and 2 respectively, and those to the top weight
by the index 3. :
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For convenience, we consider the soil-foundation, and the shear wall-concentrated
mass as two subsystems. The motions of these two subsystems are coupled through
a hitherto unspecified base shear, S, which is a concentrated force acting at the

_center of the semi-circular foundation. We shall discuss the interaction of the two
subsystems in three parts, first the motion of the elastic foundation under the exci-
tation of an incident SH wave and the base shear, next the motion of the shear wall
with the added mass and the base shear, and finally the coupled motion of the entire
system. . _

Only the steady state motion for the entire system is considered, and a time factor
exp (—iwf) where w is the circular frequency is assumed for all responses. The shear
wave speed in each mediom is given by c=(u/p)'/?. For harmonic waves, ck=ow
and (2n/k) is the wave length. With an incident SH wave and a shear wall, the motion
of the entire system is an anti-plane strain with displacements (0, 0, w) along the
(x, 7. ) coordinate axes where w is independent of the z coordinate.

3. WAVES IN THE HALF-SPACE AND FOUNDATION

Let w® (r, 8; ) and w'P (r, 0, w) be the displacement amplitudes of the wave
meotion in the half-space and the foundation, respectively. The time factor exp (—iwt)
is assumed for all responses and it is omitted in writing. Both displacements satisfy
the Helmholtz equation

2w 1 dw 1 2w

—+
arz - ¢ or  r%. 08%

3.1 V2o o2 = +k2w=0.

The shearing stresses in both media are given by

: o ow 1 adw
G2 L TTEG TSR g

For the soil we should attach the superscript (0) to w and o, and the subscript 0
to k and g in the previous equations. Similarly, the index 1 should be attached if
the equations are for the foundation.

For an obliquely incident SH wave at an angle y with the free surface, the ground
motion of the combined incident wave w'*) and the reflected wave w'™ can be repre-
sented by

(33) W(_i) + w(r) =W, eiko (xcosy—ypsiny) + Wo eiko (xcosytysiny) _

. - _
=2w, Z g, 1", (ko r)cosny cosng,

. n=0
where J, denotes the Bessel function of the first kind and ¢, =1 when n=0, and ¢,=2
when n1 (p. 116, Ref. 2). The maximum amplitude in the free half-space is 2wy,
The wave scattered by the foundation is

(3.4) W) =21, Z A, H, (ko ) cos nd
. H=0
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where H, is the Bessel function of the third kind (Hankel function of the first kind)
and A, are unknown coeflicients. Both Eqgs. (3.3) and (3.4) satisfy the Helmholtz
equation. :

The resultant ground motion, w(® =w® w04 g

(3.5) WO, 0)=2wo > (64", (g rycosny+dy H, (ko r)}cosnd.,
n=>0 :
The corresponding shearing stresses can easily be calculated from Egs. (3.2) with

M7= o
The waves inside the elastic foundation are expressed by

(3.6) W (r, ) =(S/21) Yo (s 1)~ 2wy Y] ol ey #)cos nf.

=0

The corresponding stresses are

37 0 =2, (wofr) D] Cur, (ks r)sinnt),
n=1 .
(3.8) 0, D =(ky S/2) Yo (ky 1) 2p1 Fey wo Y, ol (e ) cosnt),
n=9Q

where a prime indicates differentiating with respect to the argument. In the previous
equations the series with the unknown coefficients C, is the standard representation
of standing waves, and the first term is added to account for the additional waves
generated by the base shear S (force per unit length} at the location r=0. As a result
of the concentrated force S, w*? is singular at r=0. This is the reason for choosing
the Bessel function of the second kind, ¥,, which i3 singular at »=0, By applying
the asymptotic formula for &, r—0, ¥, (k, ¥)=2{(zk,r), we can show from
Eq. (3.8) that ‘
T

(3.9) lim [0 rdd=S5.

r—0 g

4, MOTION OF THE SHEAR WALL

The motion of the shear wall is usually assumed to be a function of the height
(»" — coordinate) and time, which satisfies the one-dimensional wave equation

Wyt SW(' .0
@y o) e mpn 00

Let
Wy, )=w?(3") exp (—iw?),
P )=msf2b)6(y' I +ps,  p(Y)=u,.

(4.2)
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We then obtain from Eq. (4.1) an equation for the amplitude w{® (y") of the shear
wall motion (in the direction of the z'-axis),
dz (2}

4.3) d;m— T rmy k(Y h)} w=0,
where k,=wfc, with ¢ =p,/p,, and ms, =masfm, with m, =2bhp,.

In-the previous equations the delta function d (' —#4) is introduced to account
for the inertia of the concentrated mass m, at the top of the wall, and p, and u,
are constant. The boundary conditions for Eq. (4.3) are

4.4 by, (W Pdyy=0  at p’ =h*,
(4.5) 2by, (AW P[dy)=S  at p'=0.

The location y'=h* means that y’ is slightly larger than h, which is just above the
concentrated mass m;. Equation (4.4) means that the total shear force above n,
vanishes; Eqgs. (4.5) equates the total shear force in the wall at »" =0 to the unspecified
base shear 5. Viewing toward the bottom face of the shear wall, § is positive when
it acts along the —z"-axis (Fig. 1).

The solution for the equation of motion, Eq. (4.3} and the boundary condition
equations (4.4) and (4.5) can be found by app]ymg the Laplace transform [6]. The
answer is

' hY
(4.6) w3 ()= Hk_ [sink, y-+ T (kyAycosk, y],
22
where

—cosk, A+mga ko hsink, b

r ] . -
{4.6") Ik, h) sink,h+ms, kyhcosk, b 7

The shearing stress in the wall is

4.7 . o (= [cos ko y—TI(k, B)sin kz .

Note that if the shear wall is fixed at the location y=0, we have w* (0)=0. This
additional boundary condition is satisfied by I'(k, &)=0 or

(4.8) ko htank, h=1jms, .

This is the frequency equation (w=c, k,)} for the shear wall with a top mass m;
in free vibration.

5. BOUNDARY CONDITIONS AND INTERACTION OF SUBSYSTEMS

So far we have found the general sclutions for each and every subsystem with
w® (Eq. (3.5)) for the soil, w (Eqg. (3.6)) for the foundation, and w® (Eq. (4.6))
~ for the shear wall. These equations contain the unknown coefficients 4, and C,

(n=0,1,2,..), and the unknown base shear S. These unknown constants are:
*
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determined by the boundary conditions at the soil-foundation interface r=ga, at
the free surface y=0 and |x| <b, and at the base of the shear wall y=0 and |x|<5.

For the half-space (soil), the condition at the free surface is that ¢{2 =0 at y=0.
In polar coordinates it is

(5.1) i?=0 at =0, = andrza.
At the inierface r=a we have the continuity conditions
5.2) 6@=¢"  at r=a, 0<0<n,
(5.3) WO =yt

For the waves inside the foundation, in addition to the continuity conditions,
Egs. (5.2) and (5.3), some boundary conditions should be prescribed for ¢ and
w4 at y=0, In a more realistic case when the shear wall is connected elastically to
the foundation in the region —b<x<b, the conditions are ‘

(5.4) ol =0 ' at y=0, a<|x|<b,
(5.5) o=¢@? and wW=w®  at y=0, |x]<b.

However, the conditions in Eq. (5.5) can not possibly be satisfied unless w®
and ¢'9 are functions of both x and y coordinates. We have not assumed this because
it is very difficult to find the two-dimensional solytion for the motion of a shear wall.
For the displacement functions given by Eqs. (3.6) and (4.6}, we replace Eqg. (5.5)
by a single condition at y=0 and |x|<b: '

(5.6) zl—b f [0 (7, 0)+ wD (1, )] dr = W (0)

This condition equates the averaged value of the foundation displacement at the
upper surface to the base motion of the shear wail. Since the condition of continuity
of stresses across the same surface has already been satisfied approximately by
assuming the common base shear in Egs. (3.6) and (4.5), the boundary conditions,
Egs. (5.1)-(5.4), plus the approximate boundary condition eguation (5.6) complete
the specification of the interactions among the two subsystems.

Returning now to the general solutions, we find that the condition in Eq. (5.1) is
identically satisfied by w(® in Eq. (3.5); Eq. (5.4) is satisfied by w” in Eq. (3.7).
Substituting Eqs. (3.5) and (3.6) and the corresponding expressions for o,, in Egs.
(5.2) and (5.3), we find that both conditions are satisfied by the following results:

For n=1,2,3...

.7 Ay =2i" cos ny 7, (ko @), (s @) Ly, (o @) (s @)/ A,
(58) C,=2i"cos iy [J,J (ka CZ)H:, (ko a)_}ln (ko L?)J:, (ko a)J/Ana
/

where !
Cro=py ki/(po ko)=P_1 cf(pq co)




INTERACTION OF SHEAR WALL WITH ELASTIC FOUNDATION 453

and

(5.9) Ay=L10 Hylko )" (kl a—H' (ko a)d,(k, a).

For n=0, with H, (z)=—H, (2),

(510) Ao H, (ke @)+ Colo (ks @) —(S/Aps we) Yo (ky a)+Jo (ko 0) =9,
(5.11) Ao Hy (ko &)+-Lxo Co Ty Uhs @) —Lio (Sl wo) ¥ (ky @)+, (@) =0

The solutions in Egs. (5.7) and (5.8) are the same as those for the elastic foundation
without a superstructure [7]. Equations (5.10) and {5.11) contain three unknowns
Aq, Co and S; and additional equation is provided by-the last boundary condition
Eqs; (5.6). Substfmtmg Eqgs. (3.6) and (4.6) in Eq. (5.6), we find

5.12 N y = =5 LD
(' ) 2 2naat OJG 4W0ﬂ2 Hai O_ZW{)#Z. 2k2b ]

where gy, =p,/py and

1 : i
J{):—b‘f']o(kﬂ')d"‘—"tfo(h b)‘['?(Jx (kb BYHy (ke D)—Jo (ky YU (K, b)),
o

1
13 To=y [ Yol =Yoo B+ 1V, (b, By (5, B)=
o ~ 7, (ke HYEL (6 B,

j2u fJZn (kl I)d’ ] b Z Jn+ 2m+ 1 (kl b)

m=0

_In the above, H, and H, are Struve functions [8].

In Eq. (5.12) all the integrals of Bessel functions J,, ¥, and J,, can be evaluated
numerically or calculated with the aid of tables (p. 493, Ref. /8)); the C,, (r=1)
are given by Eq. (5.8). Hence Eq. (5.12) relates the two unknowns C, and S/(2wg 1,).
Together with Egs. (5.10) and (5.11) it yields the following solutions:

(5.14) _ Ao=[-{10020Q5+Q: Qul/Dy,

(5.15) Co=[—Hylko @Qu—H, (ko a}Qs}/D,,
(5.16) S{@2wy pa)=—(CoJy+K)D;,
where

Dy =100 Hy (kg d)+Q1 H (ko a},
D, =T"(ky {2k, b)— 115, 170/2=

K= ;: Cznjz-n’

Q1 =Jy(k, a)+ﬂ21 Yo (ks a)j{)/zDz,_

(5.17)
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Qo =Ty (foy @)~ pt; Yy {ky a)Jof2D,,
Gont) Qs =T (ko @+ tizs Yo ks ) KI2D;.
Ou=—d, (kg @)— 10121 Y (ky a) KIZDZ

Substitution of Egs. (5.7), (5.8), {(5.14), (5 15) and (5.16) into Eqs (3.5), (3.6}
and (4.6) completes the answer.

6. LIMITING CASE OF A RIGID FOUNDATION

If the foundation material is rigid, we set p,~>o0 but keep p, finite, ﬁSince kyis
of the order 1/)/u, , it approaches zero as u,—oo.

For the small argument z—0, the limiting valoes of the Bessel functions in Egs.
(5.7—(5.12) are given by the following formulae:

Jo(z) =1, Yo (2) > @fm)lnz,

I {z\" 142
Jn(z)_)ﬁnT(E): Y"(Z)—.‘—““_( )(FI nl.

Thus for n=1, 2, ..., and when k, a—0, Egs. (5.7) and (5.8) reduce to

(6.1) A, = —=2i"cosnyJ (ko a) H, (ky @),
(6.2) C,—0.
In Bq. (5.18), Jo-s1, Jy0, >0, and sy, To-r0 as ky a—0. Hence we find
(6.3) 0,51, 0,50, Q= Tolkod), @y —Ti(ko d),
(6.4) D, — I'(ks B)j(2bky),
(6.5) D, - [— ! Ko a pio+ 2t ]Hu (ko @)+ H, (ko a).
2 ‘ma T, h)

In the calculation of limiting values for {;, @, in D,, one should note that although
(,—0, the product {,, Q, does not vanish. The result is

6.6 ! k +— % L
( : ) é’lOQZ — 2 Oap.iOA na F(]Cz h)

In Eq. (6.5) we introduced the notation p4==p:/pe and {,o=k, u,/(ky po).
Substituting the above limiting values into Egs. (5.14) and (5.15), we obtain

1 20 {a0
6.7 Ao > |5 koapro~—— = ) Jo (ko @)= J (ko a)(/Dy,
(6.8) Co = 2i{(mky aD,),
where D, is given in Eq. (6.5). From Eq. (5.17) we find
hY 2bk
(©.9) -

2W0 Ha _>—C0 r(k;h) ’
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With the limiting values-given by Eqs. (6 2) and (6.9), we obtain from Egs. (3 6)
and (4.6)

(6.10) ‘ WO (r, 0) > — 2w, C,,
s
6.11) e O= 5y, T eah) > —2w, Co.

Thus the displacements at both sides of the surface y=0 are equal, in the limit
of a rigid foundation. For the case of an clastic foundation, only the averaged value
of the foundation displacement equals w'® (0).

When the top mass m; is removed, the I (k, A) function in Eq. (4.6") reduces
to (m3,—0) :

(6.12) Il By = —cotky h.

After the substitution of Eq. (6.12} in Eq. (6.5), and then in Eq. (6.8), it can be shown
that the movement of the rigid foundation, w'*? in Eq. (6.10), agrees with that derived
by Luco and by TrRiFuNac (Eq. 24 of Ref. 4).

7. NUMERICAL RESULTS

For rigid foundations and in the absence of a fop mass, extensive numerical
results were given in References 3 and 4. In this paper we shall concentrate on the
effect of the elasticity of the foundation and the added top mass.

The imporiant physical parameters of the entire system are the wave speed ratios
Cro=Cifco and cyo=cafcy, density ratios pig=pifpo and p,o=pa/pe, mass ratio
M, =Myfm, wWhere m, =2bhp,, and length ratios /ifa and h/a. The product pe is
often called the impedance of the material, thus {;q=p, ¢,/(ps co) and {oo=p, Caf
/(po ¢o) are the impedance ratios. The important parameters of the incident wave
are its dimensionless wave number b, a=mwa/c, and its angle of emergence, y.

For comparison with the results known for a rigid foundation, we calculate the
motion of the shear-wall footing based on Eq. (4.6) and the base shear force from
Eq. (5.16). In addition, we calculate the motion of the added mass at the top of
the shear wall also from Eq. (4.6), For convenience these formulae are repeated here:

w20 5 Tk

- T e 2wops  2bks
s Codo+ K
7.2 S= =— ]
2wg 1y (ke B)[(2bk2) — piaq Yof2 -
S inJp 4 Ty By cos key ]
(7.3) T Ty [—sink, A+ T _zh)cos e2 1,
o —cosk h+ma ko hsink, h
(7.9 Ik, h)= P =

sink,h+my kyhcosky b
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In the previous equations the coefficient C, is given in Eq. (5.15), J, and ¥, in Eq.
(5.13) and K in Eq. (5.16). All displacements are normalized by the free field wave
amplitude 2w,, and the base shear is made dimensionless by the factor 2w, ..

The effect of the top mass m, is characterized entirely by the function I" (&, k)
Elasticity of the foundation is contained in J,, ¥,, K, and C,. The direction of the
- incident wave, angle y in Figure 1, only affects C, and K. The higher order coefficients
s, (n>0), which are absent in the case of a rigid foundation, are all contained in K.

First we present the results for various angles of emergence. Figure 2 shows the
base motion |W,| of the shear wall on an elastic foundation with out top mass
y=0" {reference curve, repeated in Figs. 4,5, and 6) and y=90° as a function of &, 4,
the other parameters being c,o=L15, ¢;0=1.5, pro=1, pro=1, ms,=0, hla=4,
b/a=0.5. Since W is complex valued, which means that the motion of the wall is out
_ of phase with the incident wave, the absolute values are shown in Fig. 2, and the

phase angle for y=0° in Fig. 3. At higher frequencics the response is quite dependent
on the angle of incidence. The zéros of |,] coincide with the roots of I” (k, A)=0
(Eq. (4.4) with m,=0). At these frequencics the super structure acis like a dynamic
shock absorber for the foundation. The locations of these zeros are independent
of the elasticity of the foundation.

In Fig. 4 the motion |%,| of a rigid foundation is presented {1/c;,=0). All the
other parameters agree with those of the reference curve. The striking features are
the smaller first peak and the shift of the other extremes to smaller frequencies.

7% &

15—

14

a5

Fig. 2.
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Next, we consider the effect of the concentrated mass on |i¥,] as shown in Fig. 5.
Mas =1, and the other parameters are the ones of the reference curve. Because of
the added mass. the resonance frequencies of the super structure are changed. This
is evidenced by the shifting of the zeros along the kg ¢ axis for different m5, ratios.
The top mass raises the peak value for |W,| considerably at low frequencies, but it
has less influence at high freguencies.

F1gure 6 shows the amplitude of the motion of ihe top, !wgl, and the base, 1w 2
(reference curve), of the shear wall on an elastic foundation without top mass. The
amplitude of the top is everywhere larger than or equal to the amplitude of the base.
Thie points of osculation exist only in the absence of a top mass. The corresponding
frequencies are determined by

1.5) cosk,h==1.

There is no force acting on the shear wall (c¢f. Fig. 8).

The amplitude of the top mass (ma,, =1) is shown in Fig. 7. There is only one
important peak but rather small displacements for higher frequencies. For better
comparison the motion of the foot of the shear wall is repeated from Fig. 5 in a sui-
table scale. .

We are interested also in the net shear force acting between the foundation and
the foot of the shear wall. Figuie 8 gives 1S| as a function of k, a for the shear wall
without top mass on an elastic foundation (parameters of the reference curve) and
on a rigid foundation (1/e;o=0). At certain frequencies the time rate of change of
momentum, and therefore the force, vanishes. They follow from 1/ (k, =0 or

(1.6) - Ky hootkyh=—1jms, .

Much higher peaks-occur in the rigid footing case.

The novel feature in the present investigation is the elasticity of the foundation.
As can be seen from the graphs, the influence of the angle of emergence is present
but not essential unless rather high frequencies are considered. The amplification
of the first peak of |#,|, and the shift of the other peaks to higher frequencies are
important. The influence-of the elasticity of the foundation on the shear force is also
interesting. It is much smaller than the shear force acting between the shear wall and
a rigid foundation. ‘

The added mass on top of the shear wall results in a shift of the frequencies at
which the motion of the foot of the shear wall vanishes and also in a shift of the
frequenceis at which the shear force vanishes; however this effect exists, of course,
also in the rigid footing case.
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STRESZCZENIE

ODDZIALYWANIE POMIEDZY SCIANAMI A PODLOZEM SPREZYSTYM
' PRZY ZABURZENIACH FALAMI TYPU SH

Badania wzajemnego wplywu podioza na konstrukcje zapoczatkowane zostalo w pracy J. E. Lu-
co (1969), w ktdrej rozwazana byla nieskonczona éciana spoczywajaca na sztywnym fundamencie
o polokraglym przekroju poddana dziataniu plaskich fal harmonicznych typu SH. M.D. Trifunac
(1972) udowodnit nastepnie Ze ruch takiej konstrukeji jest niezalezny od kata padania fali. W ninigj-
szej pracy rozwazane jest podloze sprezyste oraz dodatkowa sztywna masa spoczywajgca na §ciance.
Warunki brzegowe na powierzchni kontakiu podioza ze scianka spelnione sg jedynie w sposob
uéredniony po szerokosei §cianki. Pordéwnanie wynikéw numerycznych uzyskanych dla sprezystego
i sztywnego podioza wskazuje na znaczne rézZnice pomiedzy tymi rozwiazaniami,

Pezmome

B3IAVIMOJIEMCTBHUE MEXOYV CTEHKAMW M VIIPYTHUM OCHOBAHUEM
HIPH BOSMYHMEHHAX BOTHAMIM THITA SH

HcenemoranEa B3aHMHOTO BIHSHWA OCHOBAHAA HAa KOHCTPYKUWH HAYANMCA M3YYaTHCA B pa-
6ote Mx, 2. Jdyxo (1969), B xoTOPOH paccMaTpHBRIAchk DECKOHGUHAA CTEHKA, HAXOIAIIANACH 1A
KECTKOM ysiaMeRTe ¢ HOIYKPRITBIM CeHEHAEM, ITOABEPTHYTA MEHCTBUEIO IDIOCKHX FapMOHH-
yeckmx ronm Tria SH, H. A, Tpudyrar (1972) roxasan zaTeM, 970 NEHKEHHS TaKOH KOACTPYRIHK
HE 3aBHCHT OT YTIA DAICHER BONHEL B mEacToswei pabore paccMaTpusaerca YHPYros OCHORAHNE
M AOHONARTEILHAS KECTKAS MAacca HAaXOOAmagc Ha cretive. ['paBERIHbIE YCIIOBHSA HA MOBEPXHOCTH
KOHTAKTA OCHOBAHMI CO CTCHKOH YINOBNCTPBOCHHA TOJBKO YCPSAHCHHEIM 00Gpa30M TIO IHMpPUEES
cremkd. CpPaBHCHEC WHCIEHHRIX PE3YILTATOB, HONYICHARX I YOPYTOrO M XECTKOTO OCHOBAHMIH
YEA3LIBAET HA 3HAYATENLHEIC PAIHANSI MEXIY STHMH PElICHUAMIL.
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