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ON A ONE-DIMENSIONAL MODEL OF THE FRACTURE PROCESS

-

"M.SOKOELOWSKT (WARSZAWA)

An elastic rod is extracted from an elastic foundation by means of a longitudinal force applied
to the free end of the rod (Fig. 1). In spite of the extreme simplicity of the model (axial forces in
the rod, the foundation transmits only shearing stresses), the process reveals close analogy with
the phenomena of fracture (crack propagation) in three-dimensional elastic solids.

Several aspects of that analogy are discussed: the possible fracture criteria, steady-state motion
of the rod extracted from the medium at a constant velocity, sudden start and stopping of motion;
in conclusion the paper presents a representation of steady-state solution in terms of superposi-
tion of the waves produced by “elementary fractures™

NOTATIONS

[F, L, M, T] dimensions (force, length, mass, time),
x [L], £ [1] space coordinates; E=x/k,
£ [T, v [1] time coordinates; t=ct/k.

ROD CHARACTERISTICS

A [L?*] cross-sectional area,
S dx [L?] element of the lateral surface,
p [ML73] mass density,
E{FL?] Young’s modulus,

P |F] longitudinal force, -
C[LT™'} clastic wave propagation velocity, c=l/E/p,

u {L] longitudinal displacement,
a [FL~?] longitudinal stress,

e [17 longitudinal strain,

FOUNDATION CHARACTERISTICS

7, [FL~?] shearing siress,
k [FL~3] foundation rigidity parameter,
x [L} foundation compliance parameter , x:]/EA,IkS.

GENERAL NOTATIONS.

v {LT~1] fracture propagation velocity,
A 1171 dimensionless velocity parameter, f2=1--v?/c?,
P [T~'] Laplace transform parameter,
&, L1 Laplace and inverse Laplace transform oparator,
n (¢) Heaviside step function,
& (#) Dirac’s impulse function,
44 (x) Bessel function.
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1, INTRODUCTION. DESCRIBTION OF THE MODEL

The problems of propagation of cracks in sclids attracts the attention of numer-
ous specialists, theoreticians and experimentalists, from various fields of solid
mechanics and physics, applied mathematics and technology. The technological
and physical significance of crack prepagation -and fracture phenomens is obvious,
and requires no emphasis here, From the purely mathematical point of view, the
problem of non-topological motions of continua (following the definition by
C. TruespELL [1]) is equally interesting in view of very serious difficulties in proper
formulation of the corresponding initial and boundary value problems of the phe-
nomena discussed (cf. [2]). The principal difficulty consists in defining the boundary
- of the-medium: a propagating crack creats new boundaries at which certain dynamic
‘conditions ‘must be satisfied. However, the velocity at which the boundaries
are created, and their form (crack path), depends on'the physical decohesion prop-
erties of the material {fracture criterion), which are different for different materials
and may vafy considerably with physical conditions (temperature, humidity etc.).
At the same time, the crack velocity obviously depends upon the actual states of
displacement and stress in the medium, which cannot be determined unless its
previous configurations are known. The main’ problem consists, then, in selecting
from all geometrically possible crack motions the one which ensures the fulfillment
of the fracture critetion at each instant of time. This vicious circle-type problem,
combined with the fact that non-topological motions lead to violation of the funda-
mental assumptions of most of the existing solid body models (such as elasticity,
[2]), makes the analysis of the crack ‘propagation processes extremely difficult.
The aim of this paper is to

. p \f\s\(f\)xh “discuss the fracture process on the

RS AT —& X = simplest possible, one-dimensional

-\\ X model resembling the situation ske-

K < tched in Fig. 1. A rod (or wire)

p MR - is pulled out (extracted) from a solid
‘-ws-—i A5,

m block (e.g. fiber-reinforced material,

. concrete). The shearing stresses T,

} Ax E . " acting at the rod-block interface

= keep the rod in equilibrium. Once

o1 the stresses 7, (x) (presumably at

x =0)—or the corresponding dis-

placement or sirains — attain certain limiting values, mutual bonds between the rod
and the matrix are broken, the rod is partly pulled out from the block, and the

origin of the contact area is displaced by a certain distance Ax; a new state

of equilibrium is then established (Fig. 1).

A similar situation is encountered in cons:dermg the rlveted (or welded) joint
shown in Fig. 2. At a certain value of force P, the first rivet suffers break, and the

- region of interaction between sheets @ and b is displaced by a distance 4x to the right,

which correspond to a crack propagating (in jumps) into a solid body.
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. The model to be considered in this paper, however; must be even simpler to
ensure its one-dimensionality. The real stress and displacement distributions in the
cases mentioned here are three-dimgnsional, the rod is subject to lateral contrac-
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tion, elastic waves are propagated and reflected in the transversal direction, infi-
nite stress concentrations may be expected at the edge of the contact zone between
the block at the reod in Fig, 1.

Hence, our attention will be focussed on a very simple, theoretical model shown
in Fig. 3, defined by the following assumptions: '

An infinitely long, prismatic elastic rod (of cross-section A bounded by the

boundary curve §) is subject to a longitudinal force P=P (f). The material of the
rod is characterized . by the Young

modulus ¥, Poisson ratio v=0 and s f@&/ Ta(x)

mass density p. The lateral surface of o s
the rod x<0 is Astress-free, and for L : 3 .
x>0 the shearing stresses 7, exerted e
by the foundation-on the surface of S0 mc_,_'_‘.,,_:
the rod are proportional to the long- p 7

itudinal displacements u (x) of the rod, —

7, (x)= —ku (x), coefficient k& charac- I
terizing the rigidity of the elastic foun- Fic. 3

dation. The elastic foundation transmits
no other forces to the rod (no normal siresses in particular), and it may be imagined
as consisting of thin, weigtless, densely distributed elastic wires transmifting no
elastic waves and able to react to shearing deformation only. -

~ These assumptions ensure the complete lack of interaction forces between indi-
vidual elements of the foundation (except for those transmitted through the rod),
and make it possible to reduce the entire problem to analysis of the longitudinal
motion of the rod cross-sections, described by the single displacement component
u,=u (x,7) and the single stress component ¢, =a (x, t).
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It is assumed, moreover, that at a certain critical value of displacement,
u (x, 1) =u", the “wires” representing the foundation are broken, and the surface
of the rod at that area becomes free (Fig. 3, dashed lines represent broken bonds).

It will be shown, that, in spite of the extreme simplicity of the assumptions, be-
haviour of the model retains certain characteristic features of the much more com-
plex, three-dimensional fracture processes occurring in elastic bodies. In view of
its conceptual and mathematical simplicity, the model may serve as a useful tool
for predicting or explaining certain phenomena occurring in real fracture processes.
This is the principal aim of the considerations to follow, apart from their possible
direct applications, such as those indicated by Figs. ! and 2.

The assumptions concerning the model 'may also be modified to embrace a wider
class of phenomena and materials subject to fracture. Shearing waves may be
assumed to propagate within the foundation; the corresponding “fracture criterion”
may include terms depending on time derivatives of «; material of the rod may be
viscoelastic or elastic-plastic, and the same applies to the foundation, In this paper,
however, purely elastic material properties are assumed.

2. EQUATIONS OF MOTION AND EQUILIBRIUM

Let us consider the longitudinal motion of the rod shown in Fig. 3. An element
of the rod of length dx is acted on by normal tractions, — Ao (x) and A (g -+ 86/dx) dx,
at its ends, by shearing forces t, (x) § dx on its lateral surface, and by the force
of inertia — p4 (6 ufdx*} at its center of mass (Fig. 4). Summing up all the forces,
denoting by % the foundaticn stiffness parameter {coefficient of proportionality
of 7, and u), and wusing Hocke’s law in its simplest form,

Ju
2.1 sy _Thax__
' ‘ ox AZUdx | A2 dy)
we obtain the equation: Ao | M
2u g% e
2.2 AE —~kSu=pA——.
2:2) axz OHEP g Fig. 4

By introducing a new parameter x (foundation compliance coefficient, of the di-
mension of length),
' EA

2.3 K= —
kS
the following equation of motion of the rod immersed in the particular type of elas-
tic medium is obtained:
@4 Pu u 1 %u .

’ ax? N
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This is a well-known Klein-Gordon wave equation (see, e.g., P. Morsg, H. FEsH-
BACH [3], chapter 2). Motion of the portion of the rod outside the eleastic medium
(where 7,=0) is governed by the usual wave egquation:
u 1 u
_ dx?  ¢? ot

In dimensionless coordinates £ =x/k, T=ct/x, Eqgs. (2.4) and (2.5) assume the
simple forms:

(2.5

&*u dtu
(2.6) 562 —u=—(7};?,
and
*u  u
2.7 922 = PR

In the static case, u (x) is a function of the only space coordinate x (or &) and
hence Eq. (2.4) transforms to

d*u(x) 1
(2.83) "—d}T—?u(x)=0 ,
while Eq. (2.5) is reduced to:
d?u(x)
2.9 e 0

Let us solve the particular static problem shown in Fig. 5; / denotes here the
length of the free (x<0) portion of the rod, which for x>0 is immersed in the me-
dium and extends to +oo. Solution of Eq. (2.9) valid for —/<x<0 is denoted by
t; (x) and for x>0 the solution of Eq. (2.8) is uy (x). It is easily found that

H;=C1x+C2 5 u“=B1 e"x""+B;,_ex'r"'.

Constants Cy, C;, By, B, are then found from the boundary (at x=—/) and con-
tinuity (at x=0) conditions of  (x) and & (), and from the condition of vanishing
of u at x—oco, Thus,

Go Tg Gg
Cl"—“i;‘, sz_EK’ : Bl”—"_EIC: B, =0,
and the solutions for u (x), o (x) and 7, (x) are:
o
(2.10) e (%) = ~fa(.rc~«x), oW =0, (—1<x<0),
and
Fa ‘

"u(x)=—’ET’CC"x'[K9 oy (X)=g5e ",

(2.11)

Tq
7. (x)= -E—-k.rce“f" (x>0).

The results are illustrated by graphs in Fig. 5,
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An analogous solution .may -be derived in the case of an infinite rod supported
at the points x,=nl, n=0, 1, 2, ...; by uniformly spaced, discrete supports. satis-.
fying the condition: . :

P,=k*u,,

P, is horizontal reaction, u, — displacement of the rod measured at thé n-th sup-
port, and k¥ — the stiffness coefficient independent of n. Stresses o, and strains
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g, are constant between the supports # and n+ 1, (cf. the notation indicated in Fig. 6),
and the corresponding stress-displacement relation has the form: :

., ., Uyyp g — Uy
Ty :Egn-:u €n = l R

The condition of équilibrium of the element shaded in Fig. 6 yields the difference
equation for displacem_e:gts u,, to be satisfied for all natural # (i.e. for positive val-
ues of x): o

Uy —2+qhu, i,y =0.
Here, g=k* [[EA.

Under the -assymiption that lim u, =0 for n—oco, the solution js an exponential
function of a,

(2.12) w, =g 1", .
with the notation _
r=y [+~ Vig47].
With decreasing values of /, the ratio !?c'*./l should remain finite, and fnay be

replaced by the previously introduced parameter-k*/l=kS; then g=0[x? and,
with /-0, also ¢g—0. Parameter r tends at small values of g, to

l—yg=1-1k
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and, since E )
u(x) zun:x/l ’
the displacement u, may bé expressed as a function of x:

1 (x) =110 lim (1 — iy =g e =% .
{0

This result coincides with the Eq.-(2.11). _ _

Another case in which the equations of motion (2.4}, (2.5) may easily by solved
by elementary methods is the case of steady-state motion of the rod drawn .out
from the elastic medium by a constant forcé; P,=Ao,. The velocity at which the
bonds between the rod and the mediim are broken js denoted by »; it may also be
viewed as the velocity: of prqpagatlon of the stress-free surface of the rod, which
creates a clear analogy to the process of propagation. of a crack in.a continuous,
two- ot three-dimensional medium. For the saké of brevity, @ will be called the
fracture propagation velocity. The analogy will be confirmed by subsequent deri-
vation and analys:s

In order to analyze the process of sleady stdte motmn of thc system the follow—
ing assumptions have to be made: ‘

a) The rod extends from --oco to +oo.

b) The fracture process has started sufficiently long ago to become steady;
the question of such a state may be achieved (if it can be achieved at all) will not
be discussed here. ' ' '

¢) At time =0, the elastic foundation extends from w=0 to +oo, the lateral
surface of the rod being stress-free for all negative values of x.

d) No physical conditions of detaching the rod from the foundation (i.e. no
fracture criterion) has as yet been introdiiced. It is tacitly assumed that the force
P, is large enough to maintain the steady-state rod-

i

-foundation separation process at the prescribed | Z a0
veloc.:ty 7. e - i\ﬂ XX
Fig. 7 shows the configurations of the system ____ P - =
at =0 and #=1¢; >0 measured in two reference | J t=t,
frames: ox and OX; the first is fixed in space, and ——————=~ N ‘
the second. moves together with the free surfaez __ __ . ¢ g xX
region thus satisfying the condition: . v
1
X=x—vt. ' C Fe. 7

The condition of steady-state motion requirés the functions u(x, £) and o (x, 1)

"to be time-independent as viewed from the convective coordinate system OX —

that is:
u(x, f)=u{x—ov}=u(X),

o (x, ) =0 (x—vr) =0 (X).
Consequently, since '
du  du du . du

ox ex’ e Cex’
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the two-equations of motion (2.4), (2.5) are simplified to the ordinary differential
eguations: ‘

d2uy

e =0 for X<0,
@13 7% uyy Uy

W“W"—_‘O for X>0.

Here, § is the velocity parameter,
pey 1=

well-known from papers dealing with crack propagation phenomena. The solu-
tions of Egs. (2.13) have the simple forms:

(2.14) 1!1=C1 X+ Cz N Upy =B1 e—X/BK+BZ ex"‘u".
As in the static case, constants C,, C,, B,, B, are determined from the boundary

and continuity conditions. The final results may now be written separately for
positive and negative values of X that is, for x>vf and x<wt.

For X <0:

@15 W)= =2 6h-X), o X)=r.
For X>0: |

u (X)V= ——ETB-}.'ﬁc««z"""“"s
(2.16) ! E
! . on (X) =0y~ */?"

and in addition
Oq
7 (X)E—E—— kxfe— X8«

The solutions differ from those concerning the static case by the constant £, multi-
plying some of the terms and appearing in the exponents of the functions (2.16).

The velocity of motion of material particles (material cross-sections of the rod)
measured in coordinates x, 7,

du(x, t) Ju
& Yax
is equal to
(217 = —‘U“fE",G— for x<ut

{Le., it is constant), and

(22
(2.18) ﬁn=—vfoe"”“‘ for x>ut.
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Since in most materials the ratio oo/E<1, the particle velocities (2.17), (2.18) are
much less than the fracture propagation velocity o.

Fig. 8 presents the comparison of static and steady-state solutions for « and o,
calculated at the instant #=0, and with #=1/2, Owing to the factor 1/8 appearing
in the exponents, the displacements and
stresses decrease with increasing '(positive) 2 X
x more rapidly than in the static case. o
With ¢ approaching ¢, the parameter f WW)
tends to zero, and so u(x) and ¢ (x) for 2 l}L’mtﬁ /
x>0 are practically equal to zero except st ’rcﬁ“’
for the immediate vicinity of the origin G. 2
The disturbances produced by breaking the
bonds between the rod and the found ation T Statis .
are transmitted along the rod at the elastic _ %) THHHUT ‘é‘?‘a{ ofx)
wave velocity ¢, and with 9 —¢ they are unable
to overtake the propagating fracture. FIG. 8

3., FRACTURE CRITERIA

From the solution of the static case derived in Sect. 2 it is seen that the maximum
horizontal displacement of the foundation occurs at x=0 and equals —a, x/E;
stress 7, (x) attains its maximum value at the same point. With increasing values
of o,=Py/A, it 1s only natural to assume that the fracture process should start
also at that point. The simplest possible criterion of initiation of the process of
fracture seems to be the assumption that there exists a certain critical value of dis-
placement, #°", which cannot be exceeded at any point of the rod within the elastic
- medium (foundation). Then the critical value of stress g, is found:

(3.1) o=

If this assumption remains unaltered in the conditions of steady-state motion
{that is, if the foundation is perfectly elastic-brittle and fracture does not depend
on the velocities & or ), then the formula (3.1) is transformed to

Euer
‘The oy =0 (v) diagram (solid line shown in Fig. 9) may be compared with anal-
ogous diagrams obtained from the analysis of brittle ¢rack propagation problems
in two- or three-dimensioval problems, The dashed line shown in Fig. 9 iflustrates
the variation of critical loads P in the antiplane strain case of an elastic layer

«containing a semi-infinite crack, [4]. Both o and P° tend to infinity with » appro-
.aching the elastic wave speed ¢, (which in the antiplane strain case equals cr=

(3.2) oo =

=y G/p, the shear wave velocity). The limiting values, ¢ or Cr, can never be achiev-
ed in this way, since theéy require infinite loads,

‘Rozprawy InZynlerskie —. 13
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The notions of critical values of displacements, strains or stresses cannot be
used in classical fracture analysis owing to the well-known fact of infinite stress
and strain concentrations encountered in elastic media in the vicinity of crack
tips. The fracture criterion as proposed by GrusmTH [5] was based on the energy
balance evaluation: the elastic energy released in the crack propagation process
must be equal to the surface energy required for the creation of new boundaries.

sﬁo l [
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t
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In order to compare those two approaches in the one-dimensional case under
consideration, let us analyze the power balance of the steady—state fracture prop-
agation discussed in Sect. 2 The foilowmg, phiysically obvious assumptlons must
be made:

a) The work W done by the external load P0=}IJO applied to the left-hand
end of the rod moving at a constant velocity —wo/E, is transformed into three
types of energies: kinetic energy K of the rod, its elastic strain energy U, and the
dissipated energy D which is expended solely on breakmg the bonds between the
rod and the elastic foundation.

b) The amount of energy D needed for detaching a unit lateral surface of the
rod from the foundation is equal to e, (surface energy), and is independent of the
fracture propagation velocity.

Eet us calculate the power balance of the process of steady-state fracture propa-
gation. Fig. 10 presents the configurations of the system at two instants of time,
t and 7+ dr. '

The work done by Py is equal to

(3.3) AW = (o) ('z: % a’t) ,

woo/E being the constant velocity of motion of all rod cross-sections for x<wvt. The
total value of work done by the shearing forces 7, (x) on the respective displacements
{(x>wr) is easily found to be equal to zero in the process of steady-state motion.

The strain energy increment dU is calculated as the product of the uniform elas-
tic energy density, o, &,/2, and the volume of the element exfracted from the medium,

1 1 ol
3.4 dUu= 5 Goto (Av) =— A@— dr.
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The kinetic energy of the system increases by the amount:

Ty

2 v dt,

(3.5 dK= (; pflz) Ao = é- Ap
pir?[2 representing the constant kinetic energy density of the rod. Note that the
strain and kinetic energies of the right-hand portion of the rod immersed in the
elastic medium remain unchanged during the steady-state motion of the system.

Finally, the fracture energy is calculated as the product of e, and the free lateral
surface of the rod created in the time interval dt:

(3.6) dD =Sve, dt .

On combining the Egs. (3.3)—(3.6), we obtain the power balance equation

W=U+K+D,
in' the form; :
: oq 1 oy 1 oy :
3.7) A“"é"v=?A?JjE,*f3*ApF‘Z?3+S€.,7J.

Rearranging the terms in Eq. (3.7), and making use of the notation

I_ﬂZP/E:ﬁZ,

we obtain the formula expressing o, in terms of the fracture propagation velocity »:
1 / 2ESe,
(3.8) o _F] T

Eet us now return to the original concept of a critical displacement criterion,
The specific surface energy ¢, could also be expressed, in terms of %", as the amount
of energy necessary to displace a unit surface area of the foundation by the distance
u™. Straii energy of the perfectly elastic foundation equals (1/2)ku? x (surface
element), and hence ‘

1
=—k (u")* .
&= e (1)
Substituting this value into Eq. (3.8), we obtain a relation identical with the result
(3.2). Hence the two criteria, the critical displacement criterion and the power
balance criterion prove to be entirely equivalent.

4, WAVE PROPAGATION

The equation of longitudinal wave propagation in a rod supported on elastic
foundation (2.4),

A u u 1 &%u

®.0) xR
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may be solved by ‘the method of Laplace transforms. Let us denote by i (x, p) the
Laplace transform of u (x, £);

ol
alx, )= {u(x, )} = f u(x, e " dt.
0
The inverse transform is given by the formula:

1
u(x, N=2""{i(x, p)} =5 f ii{x, pYe®tdp,
r

the contour of integration representing a vertical line in the complex plane and
“extending from y-—ico to y+icc (p>0, cf. e.g. [6]). Using the well-known formula

o

Pulx, 1)
— e M dr=p>a(x, p)—pu(x, 0)—i(x, 0},
at?

]

where u (x, 0), @t (x, 0) denote the initial displacements and velocities, respectively,
Fq. {(4.1) may be written after transformation as

a2a(p)  r? 1

(P =~ [ @)+ O)].

4.2)

Here the abbreviated notations are used

a(p)=i(xp), u@=ulx0)),
and

) 2mp? f—
(4.3) rr=ptteg

Let us now assume that a semi-infinite rod extending from x=0 to x=c0 is
supported on an elastic foundation and is at rest for £<0: u (0) =it (0)=0. At =0,
the stress o, (t)=P, (t)/A is applied to the free end of the rod at x=0. The solution
of Eq. (4.2), written for homogeneous initial conditions,

2a  r? '

. ——4=0
(4.4) PRCR #

has the form:
(4.5) i (x, py=B(p)e~°,

the other term containing the exponential function exp (+x/c) being disregaded due

to the requirement of finiteness of the solution at x—oo. From the boundary con-
dition

di(x, p)

E —_—

ax x=0=00(p)s

we determine the constant 8(p) and obtain:

=g 22

e—rx/c )

[
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After inversion:

(4.6) uix, )= —}; Pt {_____&"r(p) e—rx/c,} ,
and
@) 70, =2 (G0 (p) e}

Application of the convolution theorem enables us to write the solution (4.6)
in the form: :

¢ r ¢ : x_z_
48 _Efag(t“g)-]o(? Bz“cz)dg, x<ct,

u(x, )= xle

0, x>ct,’

which may further by simplified by using the dimensionless variables introduced
in Sect. 2

K

| GO L V-8, <,
(4'9) u(és T)= EJ

07 §>T.

The speed of propagation of all disturbances transmitted along the rod immersed
in an elastic medium is equal to ¢, as in the unsupported rod; however, the form
and amplitede of such disturbances are not preserved in the process of their prop-
agation.

Assuming that 0<z—<¢ <1, and that o, (f) may be expanded in the vicinity of
=0 inte a power series :

i
(4.10) oo ()= 4100+ 126+ .,

the integral in Eq. (4.9) may be replaced by the approximate expression:

J o0 =) dix (=00 (0),
é s

and thus, for 1—&—0 (close to the wave front), the following approximate formu-
lae hold true:

I | c X ’
u(l, O~ —E(T—é)ao(() = ‘E(f—c) oo (0);

(4.
( 11) J(éj: T)zgo(o)-

This means that the value of stress (or stress jump) at the wave front remains con-
stant in the process of propagation; the corresponding displacement is always
zero, and satisfies the continuity requirements.
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Two particular cases of wave propagation will be of special interest. If o, (1) =
=04 1 (1) (n (f) — Heaviside function), then Eqs. (4.8), (4.9) yield the solution:

oo : ¢ x*
u(x,i):*? JD(? 92—“;2")(,1'(9,

xfe
Koo VR 02, (0)d8
(4.12) (&, )= ———0 f e
’ ]/‘: — g2
J1(0)do
a(&.t)=ao[l—é = 2]
. Gf V&E+o

Here, again, the stress discontinuity at the wave front £ =7 is constant, and equal
to the original value o,

In the case of an impulse excitation g, (£)=a, 6 (1), the corresponding displace-
ments are expressed explicity by a single Bessel function Jy:

r

0y S
(4.13) @)= SV P ~E)

This solution is of a rather formal character: the function o, (¢#) cannot, in this
case, be expanded into the power series (4.10) and, consequently, the condition of
continuity of u(x) is violated at the wave front the dlsplacement suffers a jump
Koo/E. However, this solutlon proves to be very useful in d1scussmg the problems
of wave superpos1t10n presented in Sect. 6 of this paper.

Aﬁe% - | UQ,ﬁl

s

~#G,/E

Fig. 11

Some of the solutions derived here are illustrated by Figs. 11—13. Fig, 11 pre-
sents the variation of displacement (4.12) at the free end of the rod, {=0; u (0, 7)
oscillates and tends asymptotically to the limiting (static) value of —wap/E (cf.

Eq. (2.10)). The distribution of u (£, 7) at a certain fixed value of 7 (z=3) is shown
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in Fig. 12. The slope of this curve at the wave front (here £=5) is constant and
independent of 7, which reflects the property of a constant stress jump propagated
along the rod. ‘

ufgT)
-3, /E

FiG. 13

Fig. 13 presents four consecutive phases of propagation of the u (£, 7) — wave
produced -by the stress-pulse, Eq. (4.13). The displacement jump at the wave front
remains constant here. N

5. SUDDEN .STOPPING OF THF FRACTURE PROPAGATION

One of the most typical problems frequently discussed in papers dealing with
non-uniform crack propagation phenomena is the crack arrest problem. Imme-
diately after a propagating crack is stopped (which might be caused, e.g., by cer-
tain inhomogeneities located on the crack path), the stress intensity factor usually
Jincreases and then, more or less rapidly, approaches a certain limiting value; the
SIF-variation may also involve oscillations. An example of such analysis is given
in a paper by F. NiLsson [7]. Due to considerable mathematical difficulties induced
by non-uniform crack propagation, closed-form solutions of such problems are
extremely difficult to achieve. o

Let us consider an analogous problem for the model considered in this paper |
{Fig. 7). Let the system undergo the steady-state motion as apalyzed in Sect. 2,
Egs. (2.15), (2.16), due to the action of a constant force Py=Ag,. The process,
which is assumed to have started at #=—oco, is suddenly stopped at the instant
t=0, exactly at the common origin of the two coordinate systems ox and OX
(upper configuration shown in Fig, 7). Force P, is assumed to remain constant,
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and the reason for stopping the fracture propagation may be e.g., the increased
strength of the portion of the foundation adjacent to 0. '
The solution may be derived from the analysis of the following initial and bound-
ary value problem for u (x, 1) and o (x, {}=FE du (x, }/ox.
Determine the displacements u; (x, 1), uy (x, £) and the corresponding stresses
oy (x, 1), oy (x, 1), satisfying the differential equations (2.5), (2.4):

Bzzr,_l 9wy Puy uy 1 Py

) R T R R O

the boundary and continuity conditions:

gi(—o0, )= —0o, un {oc, 1)=0,

(5.2)
z":I(O5 t)=ull(03 I)a JI(O’ t):G-lI(Os t):!

and the initial conditions:

Go . [
w (x, 0)= —?(Kﬁ—x), uy (x, 0)= ﬁE"Kﬂe‘x"""",
(5.3) .

#, (x, 0)= -&w ' iy (x, ) = _ﬂue—xma
1 ] E H 11 3 E .

The latter conditions are formulated on the basis of the solutions (2.15), (2.16)
by substituting x—=f for X. .

Applying the Laplace transforms to Egs. (5.1) and (5.3), and using the formula
(4.2), we arrive at the system of ordinary -differential equations for # (x, p) and
iy (x, p):

321?1 p2 TJg

T @ m= g mp(x-xf)l,  x<0,
iy r? Ty ‘
W“‘?H“:Té(ﬂﬁ-pkﬁ)ekx!w, x>0,

Solutions of these non-homogeneous equations are written in the form:

= A4erxic — & vte (Kﬁ X)
E

» ’

B —-rx,"c‘__fi Kﬂ
= He E p-#h

(5.4)

L

Here, 4, B are constants to be determined from the conditions (5‘.2), r is given by
Eq. (4.3), and % is an additional parameter:

o
(5.5) h=—:>:.
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Let us now consider the right-hand portion of the rod shown in Fig. 7 —i.e.,
use the solutions uy and o The Egs. (5.2) yield:

B aalr(-v-}-c) 1
E p(p—h)y(p+r)’
and hence
Gy h{v+c) xf
= —_—prrxfe— e—xikﬁ .
plp—h)y{(p+r) p—h

TInversion of this formula is possible by means of the simple decomposition:

1 o l R ]
plp—M(p+tr) p-hipr (p+r)r]
by application of the formulae given in [6], and by the convolution theorem:
g (D (n) = f ROVAGLIE

Here, f;())=2"*{g: (1)}, igl 2.
The result is written in dimensionless variables, £=X/k, T=ctfic:

1y (&, T)— [(1+ )F](E g (t— 6)ﬂF2(_§,r)],

(56 Fig0= {{ew“““—lwa(ifﬂiyw
3

e =exp| ~(¢= 1) /o]

with the additional notation w=gjcf. The formula (4.6) is the exact, closed-form
and complete (for x>0) solution of the fracture stopping problem. The solution
consists of two terms: the exponential term F, (£, 1), which is different from zero
in the entire range of x>0 from the very beginning (f=0) of the process. The other
tertn, F, (£, 1), represents a wave radiated from the point of fracture arrest and
propagating along the rod at the usual velocity c.

Setting t=0 in the formula (5.6}, we obtain the obvious result:

9_‘:_ {x—0} ‘2 x2 }
o2 ev J / 027 2 dg
W € 1) ¢ )

67 (&, 0)= a—"n Kcpeéln,

which coincides with the initial condition (5.3).

Particular attention should be paid to the behaviour of u (£, v) at the point
£=0, the counterpart of the crack tip in crack propagation processes, On substi-
tuting =0 into the Eq. (4.6), and performing simple transformations, we obtain:

To
2581 (0, T) = _EICF(T) 5

1 v\ ~J(0 ’
Fi{n)= (1+—-m)f—{—(§)ﬂ+[ﬁ"‘(i+7) Jé ) e‘“’"dﬂ}e“”.

Q o

(5.8)
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The diagrams presented in Fig. 14 illustrate the variation of F(7) in two partic-
ular cases: a) 9/c=0.6 (f=0.8), and b) v/c=0.8 (F=0.6), At the beginning of the
process (r==0), F () assumes the value § in compliance with Eq. (5.7). However,
an interesting result of the analysis of Eq. (5.8) and Fig. 14 is the limiting value of
u (0, 7) at T—oo. Instead of the static value — g, x/E (that is, instead of lim F(z)=1),
a greater value is obtained:

T—>o0 4

ggic o
{(5.9) . lim u(O 7)== — I (1 + —)

The same result may be derived’ dlrectly from Eaq. (5.8); with 7—c0, this formula
yields:

0o K ] . L ‘
(5.10) (&, e — (1+ ;) ec, T3 00,

te. a result differing from the static solution (2,11) by a constant factor (1 +w/c).

‘ From the graphs shown in Fig. 14, it is
_ufo) - seen that the greatest concentration of
oo |0 /E ’ u(0, 1) (and, consequently, the greatest
7,-5tress concentration, since r,=kw) occurs
at the approximate time #=3.5 r/c after
stopping, the stress concentrafion factors
(referred to the static values) being 1.75

in case a), and 1.95 in case b).

This result seems to be due to the
inertia effect of the infinitely long portion

. of the rod x <0, which is assurmed to move
at constant speed at the instant preceding
the fracture arrest. A similar effect is

1MWt a1 L - ghserved in the case of a longitudinal
? £ 7 g § t impact of a long elastic bar striking an
Fig. 14 y elastic support. Let us assume that a bar of

length /, compressed by forces P,=Ag,,
strikes at time #==0 a support characterized by the elastic constant % — j. e., at the
point of impact u=~Kko/E. Simple analysis shows that deﬂectton of the support will

s
E c ¢ ’

valid for all times #<r,=2//c — that is, before the elastic wave produced by the
impact is reflected from the free end of the bar and returns to the supported end.
I ¢, is large enough, Eq. (5.11) yields the static deflection kaG/E multiplied by the
factor 1+w9/c.

be equal to

(5.11) - u(0,1)=
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It may be supposed that the result (5.10) follows from the assumption of in-
finite length of the rod under consideration. If the left-hand postion of the rod were
finite, multiple reflections of elastic waves generated at =0, and travelling along
the rod would reduce the deflection (4.10) to its static value:

kayg

E

u;il.’ll (0) —_ u;sllat (O) [ —

0. START OF THE FRACTURE PROPAGATION. WAVE SUPERPOSITION

Let us consider the infinite rod resting partly (for x> —7) on an elastic founda-
tion, and loaded by quasistatically increasing force Py (Fig. 15). Assume that at
the instant r=0 the maximum displacement of the foundation u (0)= -0, K/E

. Ay
iy S

e
‘0) |

UI(X, i UH'(X.G)

<] e,

/A

g b

Aay

- i

Fic. 15

exceeds the critical value 4", As a result, the bonds between the rod and the founda-
tion are broken over a small portion S/ of the lateral surface of the rod. The re-
sulting motion u (x, z) may be determined as the solution of the following initial
and boundary value problem:

Determine the displacements i (x, £), wy (x, 7) and stresses oy (X, #), oulx, 1)
satisfying the differential equations: : '

ez {x, #) 3 1 8%y, 1)
oxt ¢ dt, ’

x<0,

(6.1)
9* ty (x, 1) g (x, 1) _ 1 *ualx,t)

dx? x? c? or* ’

x>0,

the boundary and continuity conditions:

gi(—oo, t)=a,, (00, 1)=0,

(6.2) .
(0, =uy(0,6), (0, =0, (0,17),
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and the initial conditions (cf. Egs., (2.10), (2.11)): i (x, 0) =0,

Jo

u!(xﬂ 0):— E {K—(X+])}, x<—l?
To
(6.3) u (x, 0)= i?rce‘f””"", —l<x<0,
Tg . -
ty (x, 0)= ‘—~E-~Ke‘('” ik x>0,

In order to simplify the initial conditions (6.3), we may make use of the assump-
tion that / is small with respect to x. Since

e—(x-:—t)rc,\_,efx!x _— e—-x,frr
~ ]
i

Egs. (6.3) may be approximately replaced by

o
t (x, 0)= — g Ge=x)+e, x<0,
{6.4)
To
g (x, 0) = — f e~ ¥ gpln ,
with the notation
g=0, l/E

Note that the first right-hand terms in the EQS. {6.4) represent exactly the static
solutions, and hence they can be excluded from further considerations. The Egs.
(6.1), (6.2), and the dynamic components of conditions {6.4)

u;(x, 0)=¢, x<(,

(6.5)
up (x, Oy=ge~**, x>0

(superscripts « are refferred to the second right-hand terms in (6.4)) are now solved
by the Laplace transform method. The transformed version of Egs. (6.1), (6.5) is:

2

aa p pe
- T =

dx? e ! ¢’

2 = 2 "

ariag 1 . PE
) g = i
ax? 2 Un 2

On using the conditions (6.2), we obtain:

. [1 _c EXP(p'x/Q}
dy(x,p)=¢ 7k plptny )’
 exp(—x/r) _c exp(—mrx/c)]

(6.6) .
ﬂ‘s‘(x’PFs{ P K p(p+r)
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The inverse transforms of (6.6) are derived by means of the decomposition:
i 1 1
p(pr)  pr r(p+n)’
and by applying the convolution theorem and formulae given in [6]

g (E))do]

T8

i (&, TY=¢ [1 ﬂ(r+é)f

3

(6.7)
uy (&, D=ele ¢z U ),

with the notation
yo-g

' 0J, (9) do
(6.8) U, 7)= J (.i l/ =< (1/7 oy

A complete solution of the problem must include the static components of
u (the first right-hand terms in Eqs. (6.4)}

E.g. for £>0 we obtain:

gok |

I !
T l(} - 7;) et +;n(f~“é) (& f)]-

Thus the solution (6.9) consists of two parts: the static component containing
the term exp (—¢&), and the wave-type component U (&, 1) # (1—£), transmitted
through the rod with the speed of elastic waves ¢, For 7=0, the latter term vanishes
and uy (£, 0) satisfies the initial condition {(6.4). For t—o0, on the basis of the for-
mula [6]

(6.9 up &, )= —

GJO(O)dO
U, o0) = j Vv
we obtain
o
U (& 00) = ———we” ¢, :

which represents a new static solution referred to the new position of the founda-
tion. .
Close to the wave front, for (r—¢&)—0, the approximate formula holds true:

1
Uf (és "‘:) ”‘\‘j? (T_'é) 2
leading to the conclusion that the wave front displacements are continuous, while
the stresses o (x, f) suffer a jump of magnitude:
oo 8Uf &, o0 E |1

_—— — — =0y lfK,

E Ei‘vf k2

independent of the time 7.
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Fig. 16 illustrates the time-variation of U (&, 1) at £=0; it is seen that the maxi-
mum displacement occurs at the point at time ¢~ 3.5 x/c {similarly to the case shown
in Fig. 14). The distribution of U (£, 1) at a certain fixed value of time (z=>5) is
shown in Fig. 17.

Let us now imagine the continuous process of fracture propagation as consisting
of a series of consecutive “elementary fractures” similar to those described above.
Let us assume that the “elementary fracture” occurring at time 7=0 and point
x==0 produces a wave, '

(6.10) ‘ u(x, y=u,L(x, Oy lct—xy. .

Here, u, denotes a term proportional to o,/E, and L (x, £) — an as yet unspecified
function analogous to U (x, r) but different from.it; in the process of fracture prop-
agation the initial conditions (6 3) vary with £ and x; in' particular, all cross-sections
of the rod move at a certain velocity,

L U(07) _and the actual distribution of 1 (x, 0)
51 '  must influence the form of L (x, 7).
The procedure of superposing
the individual “‘élementary fractures”
ol I s ST e — would be as follows. Assume that the
' ' system is at statical equilibrium at time
t<<0. The first fracture (at =0 and

“sr x=0) produces the wave (6.10), in
whach U, L(v t) 1 (ct—x) should be

Y SRR W N R R A replaced by the function (6.8). The

g 2 7 & 8 ® T gsecond fraclure occurs at time f,, at
Fic. 16 f which the displacement (0, ¢,) reaches

the critical value #*. This procedure
rust then be repeated, the time of the fuﬂOWiﬂU fracture being determined from the
condition that the sum of all waves produced by precedmg fractures plus the static
solution lead to critical displacements at the corresponding points of the founda-
tion. The final solution (after n “elementary fractures™) will have the form:

1(x, )= (x) - ' (x 1),

(611} udyn(x f)— 5‘ u(f)L(l (_x X, E— [)W{C(f f) (x X)]

i=0

This procedure is evidently extremely complicated and cumbersome in view of
the necessity of determining the consecutive values of #; from transcedental equa-
tions of increasing complexity. )

Let us now assume that the process is running Iong enough to become steady;
consecutive fractures occur at times ¢=0; ¢, 2¢, ..., it and at- points 0, x, 2x, ..., ix}
all the functions L9 (x, 1)=L (x, ) and their coefficients u*'=u, are equal; and,
finally, that the force P, is large enough to produce fracture. The ratio x Aty =7
is the fracture propagation velocity. A similar approach was proposed by Z. Weso-
lowski in a recent paper [8].
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Under these conditions, the sum in Eq. (6.11) is considerably simplified to:

i
(6.12) 1070 (x, 1) = Z L(x—ix,, t—it )y le(t—it ) —(x—ix,)].
i=0
This formula is valid for r>kt, and x>kx,.

At any time ¢ =s¢,> kt,, the wave radiated from the point x=0 at £=0 has
covered the distance ct,, and the wave produced at the point x, =kx, and at time
t,=kt, reaches the point X¥=~kdot,+c (s—k)t, The displacement u (%, 1,) Is then
equal to: : '

. K
(6.13) . u" (%, 1) =1, Z L(x—iuvty, t,— ity)
=0

(all the corresponding #-functions are equal to 1. The last term of- {6.13) has the
form:

Llc(s—K)ts, 5=kt

(e, 5)

Tig. 17

Reversing the order of summation in Eq. (6.13), we obtain:.

K
(1) =y Z Lic(s—k)ttivty, (s—k)t4+ita].

' i=0 : .
Denoting the difference st,—kt, =7, we have:

k

(6.14) W (R, T4kt =uy Z‘ (cit+ivt,, F+ity).,

i={1
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Under the usval continuity conditions, the sum (6.14) may now be replaced by the
integral with ¢; tending to zero:

Ty
Lo
(6.15) un (s, 1) ==" { Lle(t,— 1)+, (t,— 1,)+ 0] db.
A
0

This formula expresses the displacement measured at the distance ¥—vf, from the
actual position of the “crack tip” as a function of time t,, elapsed from the begin-
ning of the fracture process. Denoting the distance X—wt, by X (this was the no-
tation used in the analysis of steady-state motion in Sect. 2) and taking into account
that X=%—vt,={c—v) (t,—1,), Eq. (6.15) may be rewritten in the form:

T5— X}e—1)

U, cX X
(6.16) um (K, 1)=-" f L [ o0, ——+ 9] o .
' o

A c—v

Consider now a cross-section of the rod located far from the origin, and suffi-
ciently large values of r,. With t;—co, we obtain the time-independent formula:

uy cX X
(6.17) u"”“=u“y"(X)=—A* fL[—+v9,L+ HJd{).
1y . c—v c—u
b .

Influence of the static component of the displacement in (6.17) is disregarded,
since it decreases exponentially with the coordinate ¢ according to the Eq. (6.4),.
The problem now consists in proper selection of the function /: {x, #). The func-
tion U (x, 1) given by Eq. (6.8) cannot be used here for the reasons already refer-
red to. It may be verified, however, that the function (5.13) derived in Sect. 4.

(6.18) u(E D) =Uddo (V=& -9), .
solves the problem and leads to the result expected. Substituting the function (6.18)
for L (x, r) in Eq. (6.17), we obtain an integral of the type:

Q= (1, [VA2002B0)]1d0,

where A% =(c? —2?)/k? and B=cX/(c?—?). The integration is performed by..means
of several substitutions, to yield the result complying with Eq. (2.16),:

K

1
6. . — —AB — —X."Kﬂ.
(6.19) 2=—-: e

Comparing the coefficients of Egs. (6.19) and (2.16), we obtain the required form
of the “elementary fracture” wave:
oo cf? | -
(6.20) wlx = ~Jo | =V (et x| 5 (ct- x).
E K

The questions as to whether the function (6.20) is the only function leading to
the steady-state solution (2.16), and whether it could also be utilized in solving
more complicated problems of variable fracture velocities, require further investi-
gations.

-
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STRESZCZENIE

O JEDNOWYMIAROWYM MODELU PROCESU PEKANIA

"Rozwazono zagadnienie wyrywania preta sprezystego ze sprezystego podloza za pomocg sity
osiowej przylozonej do swobodnego kotica preta (rys. 1). Mimo maksymalnego uproszczenia mo-
defu (w precie wystgpuja jedynie sily osiowe, podlozs przenosi tylko napreZenia styczne) okazuje
sie, e przebieg procesu jest podobny do zjawiska propagacji peknieé (szczelin) w trojwymiarowych
ofrodkach sprezystych, Omodwiono mozliwe hipotezy pekaaia, ruch ustalony preta wyrywanego
ze stala predkoscia z podloza, przypadki naglego zahamowania i przyspieszania procesu; na za-
kotficzenie przedstawiono rozwigzanie przypadku ruchu ustalonego w postaci superpozycji fal
wypromieniowanych przez «pgknigcie elementarne». )

o

1

PesomMe

OB OJHOMEPHOK MOJRE/IW HPOLECCA PA3PYIHEHMJL

PaccMoTpeHA 33244 CPEIBA YEPYTOTO CTEDRHA H3 YIPYPrOTO OCHOBAHHS NPH HOMOILH OCCBOH
CHITHI TIPHIIOMEHHMH ¥ cBOBOREOMY KOHLY crepxasd (puc. 1). HecMoTps Ha MAXCHMANBHOC yImpoO-
meHde MOZSAH (B CTEPXKHE BLICTYNAIOT TOABLKO OCOBLIC CHJIBI, OCHOBaHEHE NIEPCHOCHT TOHABKO
KACATENEHBIE BAMPaKeHuA) OXASHIBAETCA, YTO KO MPOLECCA AHANOIMYCH "ABNSHMIO PACHPOCTPA-
HeHWS TpeIImH (Imeneif) B TPEXMCPHBIX YNpyrmx cpefax. OO6CYKIEHBl BO3ZMOKHBIC THITOTE35E
paspyICHNs, YCTAHOBWBINACCH MABYXCHHE CYEPMHA CPhIBAEMOTO ¢ DNOCTOSHHOH CKOPOCTHEC M3
OCHOBAHMS, CIy4ay BACIAMHOTO TOPMOMKEHHS E YCKODEHHA HPOLECCd; B 3aKIIOUCHMH MPECTas-
NEHO PelleHHe CIYYAs YCTAHOBHELIErOCA IBHACCHAS B BHAE CYNCDIOZHRHME BO/H M3JIyuaeMBIX
wepes ,,5IEMEHTPAH0E PA3pYILCHES
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