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SHOCK WAVE STRUCTURE IN A BINARY MIXTURE OF GASES WITH
A ROTATIONAL DEGREE OF FREEDOM AND .COMPARABLE MASSES

W. FISZDON AND T. PEATK O WSKI (WARSZAWA)

Plane stationary shock waves in a binaty mixture of gases are considered. The first componen't
of the tnixture is monoatomic and the second is diatomic with a rotational degree of freedom.
To obtain hydrothermodynamic. quantities, the modified BGK equations are solved using the
Mott-Smith assumption. To close the set of equations,.two moments of the BGK. set of equations
are taken. The hydrothermodynamic quantities are computed numerically and shock wave pro-
files are found for different mass and density ratios of the two components. To investigate the
influence of the rotational degree of freedom, a similar procedure is performed for the case of a
binary mixture of monoatomic gases. The dependence of the shock structure on mass and density
ratios as well as the rotational degree of freedom effects are shown.

1. INTRODUCTION

Although shock wave structures in gas mixtures. of monodtomic components
have not as yet been fully explored, it seems to be of interest to investigate the
influence of the rotational degree of freedom on the shock wave structure in mixtures
of different gases. Most theoretical and experimental works concerning shock waves
in binary gas mixtures dealt with mixtures of monoatomic gases [1—9]. There
are several papers on shock wave structures in a single diatomic gas, e.g., [10—13].

The scarcity of data on collision cross sections between monoatomic and dia-
tomic particles and the complexity of the Boltzmann equations for mixtures of
gases led us to use the simpler model kinetic equations, which proved to be successful
for the case of binary gas mixtures of monoatomic gases {4—8] and for one diatomic
gas [10--13]. Our considerations will be restricted to the case of mixtures of gases
with comparable molecular masses, for reasons which will be further shown.

2. SIATEMENT OF THE PROBLEM

We consider plane satationary shock waves in a binary mixture of gases. The
first component (1) of the mixture is monoatomic and the second (2) is diatomic
with a rotational degree of freedom. Both gases are assumed to be perfect and chem-
ically inert. We denote by m, and m,, respectively, the molecular masses of the
components. The mixture is at room temperature, i.e., vibrational degrees of free-
dom are frozen and neither dissociation nor ionisation occurs. In our case the
dassical approach will be used.
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A shock wave is propagating in the x direction with a uniform velocity u_
through a mixture of two gases. The mixture is initially in a steady uniform state
of mean velocity zero and temperature 7. The number of densities of the compo-
nent gases are n; and a3, respectively. The x axis is in the direction opposite to
that of the propagation of the shock wave and an opposite velocity u_ is imposed
on the system. In that frame of reference the shock wave is at rest.

Qur aim is to determine the number densmes velocities and translational tem-
peratures of each component as well as the rotationai temperature of the diatomic
component as a function of position in the shock wave.

We denote by F, (x, v) and F, (x, v, ¢) the particle single distribution functions
of the monoatomic and diatomic gases respectively, where: x is the coordinate in
the direction of the shock propagation, v=(z,,v,, v;) is the velocity vector of the
particle, e is the rotational energy of the diatomic particle. We denote by m, and
m, the molecular masses of the monoatomic and diatomic component.

To obtain the desired hydrothermodynamical quantities, the modified BGK
equations will be used. The modifiecd BGK equations for the distribution functions
of components of a binary mixture are written as follows:

aF,
xa V11(M11“F1)+V12(M12—F1)s
aF, A
‘3 =Va2 (Mg~ Fy) V3, (Mo, — Fa) 4 vy (M~ F),
where the Maxwellian distribution functions M,,, M,,, M,, and M,, are defined
as follows: o
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The gas constants R, and R, are the ratios of the Boltzmann constant k to the molec-
ular mass s, and m,, respectively. N, and N, are the number densities of the two
species, U; and U, are the flow velocities, T, and T are the translational tempera-
tures, Ty is the rotational temperature of the diatomic component.

Using the equipartition assumption of translational and rotational degrees of
freedom for diatomic particles, it follows that:

5 3

35 ch=~2—~T2~{-kTR.

M,, and M, can be considered as local Maxwellian reference states with unknown
parameters U and T. 7 and U are the same in the cross-collision terms M, and
M,,. This assumption is one of the important assumptions and limitations of the
method used.-

v,y (x) and v,, (x) are the frequencies for seif-collisions, v,z (x) and v,y (x) are
the frequencies for cross-collisions between the species | and 2. We assume that
the collision frequencies are independent of molecular velocities.

The boundary conditions which have to be fulfilled can be written as follows:

lim N, (x)=n7,

lim Nz(x)=n;,
lim Uy (x)= lim U, (x)=u_,

and
lim T, (x)= lim T, (x)= Hm T(x)=T_.

X-r— 00 xX+—w X - 0

The total number of collisions between species { and 2 should be equal, i.e.
Nyvia=Nyvyy.
Taking the m, v moment of the first BGK equation and the m, v moment of the
second one and summing up, one obtains the relation
' Vuf(Mu —F)mv+vy, f (M, —Fyymo+v5; f (MY, —Fy)myv+
+5s [ (M3, Fymyutvay [ (May—Fa)mav=0,
which states that the change of the total momentum is zero.

Using the relation N;v,;=N,v,,. the conservation of the total momentum
yields the relation

()= f"; U, (%) +my Uz (x) (*).

i +my
The relation (») is the same as in Morse’s paper [10], where it is required that the
ratio of the momentum difference relaxation time to the temperature difference
relaxation time should be the same as the one obtained from the full Boltzmann
equation for Maxwell molecules, '
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The total energy conservation law (which is derived by taking the m, v* moment
of the first BGK equation, m, @*>--e moment of the second one and summing up,
gives the relation between U, T, and other macroscopic quantities; :

8k T =3k (Ty + o)+ 2kTa+my U2 +m, U2~ (g +m,) U2 .

For the self-collision frequencies we use the followmg expressions which can be
computed using Maxwell distribution functions [17]:

vig (X)=4N, (x) ‘7§1 VaR T (x),
Vo=V, + 1V =AN, (X) 02, VR, Ty (x),

where o7, and ¢, are hard-sphere collision cross-sections between the particles
1-1 and 2-2, respectively. The ratio of translational to rotational collision frequencies
is not well known in most cases and in order to obtain a quantitative indication of
the influence of rotational degrees of freedom we will use the experimental value
a=v%,/v;,=4.3 corresponding to a rotational collision number ZR~5 3 at temper-
ature T=300°K, ‘as given in [I15).

To determine the cross-collision frequencies v,, and v,, one additional equation
(apart from the balance equation N, v;, =N, v,,) is needed. The following assumption

is used:
2
vii Ny oy

T 2z >
via Ny 0%,

where o7, is the cross-section for cross-collisions and ¢2, is the cross-section for
1-1 self-collisions, obtained from hard-sphere approximation [16].

3. SOLUTION OF THE SET OF EQUATIONS

To solve the set of the two BGK equations, the Mott-Smith assumption for the
gas distribution functions is used [14]:
Fy (6, o) =w (0 f1T @+w () /T @),
Fy (6,0, ) =w3(x) f3 (0, ) +wa () [3 (0, 0),

where f7 (v) and [ (2} are the upstream (—) and downstream ( +) Maxwell distri-
bution functions for ¢ species (7=1, 2)

. : (2—u_)?]
ST @=QrnR, T_)"*exp XL
@)= Caz gy | - @)
1 @)=02QnR, T,) exp | R, T, )

2R, T kT T

o L (—u_)? e 1
f2 @ a=0CQrnR,T ) *Pexp| —— 7 |exp| — kT

o WECE
o+ — —3/2 B - .
Ja(e,e)=QrR,T,)"* exp | 2R, T, 1P KT, | k7.~
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w, (x) (=1, 2, 3,4) are unknown functrons of position in the shock wave, with
suitable boundary conditions:

Hm w (x)=n7y, lm wi(x)=n;,

x>—0 X 0O

CHm ow(x)= lim w, (x)=0.
X+ + X+ o
The parameters 7'y, u,, ny, and nJ in downstream Maxwell steady state have
to be determined from the Rankine-Hugoniot’s type conditions for the mixture.
To obtain Rankine-Hugoniot’s type conditions, we write mass, total momentam
and total energy conservation equations for the upstream and downstream steady
equilibrium states; the resulting equations are then solved and yield the following
relations: .
ny=syny, nf=sny,

where .

S-l-y_l[ 2 +1]
©orillo-Dar D

e

(y+1)?
7x+5

543’

_ s
K="

Hy
and the upstream Mach number is defined:

(my e,y u®

2:
M kT~

To make all variables nondimensional we introduce the following notation:

o ox . Ny . N, Wy . Wy
= = = W _—— W, = ——
l._ 37 1 nl- H) 2 _712 H 1 ni 3 2 ny 3
W Wy ~ Ty T T, T_ Tr 7 Tc
Wa=——" Wy = — = 2= = = :,
3 nz L] 4 nz > 1 T_ H T ] R T_ ¥ < T_ .
= T U1 ~ U2 fr 17
T=—.w..._ = ES = ——
T= 3 1 u_ > 2 " L] u_ >
%y %o Ay - Ay ~ B, o~ B,
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yeM?{1+K) y M2(1+x) m,
! L+xm G T M
et !
Y Vas . Va2 LV . Vit L Y12
[ P ;= v ty = P ) a,.= Il ] ds ™ P
where

A, =3kT_4m
Ay =3kT, +m, W,
wy=A;—4s3,
oy =kT_.—kT,,
B, =kT_+m; u?,
B, =kT, +m .

The upstream mean free path for the mixture of hard spheres A_ is defined as
follows [6]: '
' (7 +n3)Ao=Alny+iZny,
where
At=n-t{ny o2, V2405 o, Vitm 1}
and ‘
22 =1~ {ny 02, V2 +n7 o2, V1 +m}.

The mass conservation of each species in the shock wave gives us two relations
between the w, (x) functions: ’

wy (x)=[n7 —wi ()15
wa(¥)=[nz —w3 (X1 Sy .

To close the set of equations two additional moments of the considered equa-
tions are arbitrarily chosen: we take the m, v moment of the first equation and
the ¢ moment of the second one. We then obtain a set of two first-order ordinary
differential equations for wy (x) and w; (x).

After introducing nondimensional variables the set of equations can be written
as follows: ' ‘

(we omit the tyldas for convenience):
dw,

T (ay+as) (Bywi+Bawy)+aa Ny (CL UT+T)+as Ny (€ 7+,

dW3 -
di = —(ay + a3+ a3) (Wa+wa S} +a  No Tr+ayNa Tt as N,y T

%2
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with the boundary conditions
wi(—co)=wy(—o0)=1,  w,(+o0)=w,(+00)=0.

This set of equations was solved numerically, using the fourth-order Runge-Kutta’s
procedure on the CDC-Cyber computer. The typical computation time for one set
of initial data was about 1 minute.

Once the w, (x) and w; (x) functions are found, all required macroscopic quan-
tities can be computed by taking adequate moments of the distribution functions
which, in accordance to the Mott-Smith assumption, are linear combinations of
the w, (x) functions. By definitions we have:

i ]

Ni()= [ doFi(x3),

—+ o o
N;(x)= f do J deF,(x, v, €),
-0 L]

M@ U= [ dooF, (9),

o o

N2®) Uz ()= [ do [ deFa(x,5,¢), *

— 0

3 e omyyt - L
5N () KTy ()= f do —=F, (x, 0) where v,=v— 0, ,

3 o4} _ a0 mlvcz _ B B _
2 M2 KT, ()= [ do | de T F(xve where v.=0-T,,
Q

-

o0 oo

N T ()= [ do [ deeF,(x,0,¢).

— G0

The results of numerical computations will be shown on diagrams,

4, BINARY MIXTURE OF MONOATOMIC GASES

: The BGK set of equations for that case can be written as _follbws:

Uy ””3}_3"11 (—F, +M(1)1)+V12(_F1+M?1)r
dF, o o
Uy Wﬂvzz(“‘Fz‘;'Mzz)‘i'vzi (—F,+M3,).
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The notation is the same as in the previous case. The internal state variable does not

m, (v— Uy (x))? ]
2R, T (x) |’

come in now, and |

Mgl(xs 2)=N; (x) [Zﬂkl T1 ()1 % exp [_

(-0 ]

12 (x 9)=N; (X)) {2z R, T(x)]_ i eXp[ 2R, T(x)
2R, T, (x)

(v— U(x))-"]
2R2 T(x)

M3,(x, T—J)=N2_(x) 2R, T, (x)]~%/2 exp'[ -

MY (xy, »)=N,(x) 2R, T<x)}w3/z €xp [

For that mixture y=>53 for both gases, and Rankm-Hugomot s type conditions
can be written as follows:

T, (MPHDEMP-1) o w o MPH3

7. =57 16M°? C T ST e

The total momentum conservation equation is the same as in the previously consid-
ered case. As shown in [16], the existence of the rotational degree of freedom doesn’t
influence the diffusion coefficient.

The total energy conservation law yicelds the equation

6kT=3(kT +kTo)+m; Ud4my Us—(m, +m,) U2
The Mott-Smith assumption results in:
Fy(x,0)=f{ @wi (D)+ 1T @ws (x)
Fy(x,0)=f37 @)ws () + 27 @) wa(x),

where
l 00— o5 _ 27 R - 32 [_w]
[T @=@nR, Ty exp) = p

ST (@)=Q=aR T,)~ %2 ex [ M]
2 (o HALOR A P__ IR T,

The resulting set of equations was, after nondimensionalisation, solved numerically
as in the previous case.

1

5. RESULTS

First, we focusses out attention on the separation of the gas miixture compo-
nénts in a shock wave. We found that when the difference between masses of com-
ponents is too big, the method used didn’t give any reasonable shock structure.
This is probably due to the assumption that the cross-collision parameters ]
and T are the same in both cross-referrence Maxwellian functions M,, and M,,.
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“This assamption should correspond to an easy transfer of energy in cross collisions,
which is not the case in disparate-mass cases. :
We investigated cases of four density ratios x=n5 /n; =10.0, 2.0, 1.0, 0.1, and
three different mass ratios m=1.5, 0.72 and 0.22, which correspond te the mixtures
of O,/Ne, N,/Ar and N,/Xe, respectively. Some of the results will be reported below.
All results are computed for the shock wave Mach number M=2.0.
It was noted that the position of maximum separation in the shock wave (as
well as the magnitude of separation) depends on the mass and density ratios of the
components, as can be seen in Figs. 1 and 2.

ﬁq/l‘?z 8
448

14 |-
e |-
140 |-
108 |-
106 -
104 }-

1702 -

100 S
0

Fra. 1. Separation of gas rm'xturc.in shock wave for_rc:%zﬁzt).l(“rotaﬁonal” case), m:i’?—.
: ‘ T ny ‘ .
Comparing the magnitude of separation obtained for a mixture having an inter-
nal degree of freedom with that for a mixture of monoatomic gases, it can be seen
that the magnitude of the separation depends on the existence of a rotational degree
of freedom. Fig. 3 shows this dependence for the case of density and mass ratios,
x=1.0 and m=1.5. :

- Figures 4, 5, 6, 7, 8 show density profiles for mixtures with and without a rota-
tional degree of freedom. We see a broadening of the shock wave thickness measured,
for example from the “maximum slope” definition for the mixture with rotation,
when compared with the monoatomic gas mixture.
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FiG. 2, Separation of gas mixture in shock wave for x=1.0 (“rotational’ case) k=——, m =2,
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Fic. 3, Comparison of the separation of gas mixture for “rotational” and “nonrotational™ case
(x=1.0, m=1.5).

The existence of a rotational degree of freedom is obviously responsible for the
slow relaxation to downstream equilibrium conditions and, what follows, for an
increase of the shock wave thickness. The increase of the shock thickness depends
on the mass and density ratios, as can be easily seen from Figs. 5—8. The shock
wave thickness increases when the density ratio x=n; /n7 increases and when the
mass ratio increases, i.e. when the diatomic gas is prevailing and is heavier.
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Fi1G. 4. Translational temperatures of monoatomic gas in mixture with diatomic gas (*rotationat™
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Fic. 5. Profile densities in shock wave.

As an example of calculations we choose x=10.0 and (m==m,/in,) m=0.22, i.c.
_the case where the diatomic gas is prevailing and the monoatomic gas is heavier.
The resulting density and temperature profiles are presented in Figs. 9 and 10.
For comparison we plotted on the same diagrams the case of a mixture of mono-
atomic, gases (we shall call these two cases “nonrotational” and “rotational”,

respectively.
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Fic, 6. Density profiles in shock wave.

It can be seen from the above figures

that for the “‘nonrotational” case there

is a retardation- of the heavier monoatomic component in the shock wave, which

is obvious from the physical point o

N &
10~ Ny oz
08 —
a6 |-
m=15
o4 =01
— rolational ” case
02 . »
—~—— honrolational ” case
L1 j N N SN S S I
z 4 & 8 10 */A_

Fra. 7. Density profiles in shock wave.

f view.
The “rotational” case is quite different.

For comparable molecular masses of
gases, the diatomic component lags behind
the monoatomic component. This may be
due to the Jarge proportion of the shock
wave energy contained in the rotational
degree of freedom. In the “nonrotational”
case the whole shock wave energy incre-
ased the translational temperatures of
the mixture.

For comparison we considered the
case m=1.5 and x=10.,0 (see Fig. 8). In
this case the ‘“nonrotational” profiles
show retardation of the heavier (m,)
component.,

For the case of ©x=0.1, i.e., when the
monoatemic gas is prevailing, the differ-

ence between the shock profiles obtained for different investigated mass ratios is
small. This corresponds to the negligible role of the rotational degree of freedom in
~ these cases, independently of the mass ratios(¥).

*) The negligible role of rotation in that case can also be cledfly seen from & comparison between

“rotational” and “nonrotational” cases. There
in the “rotational” and “nonrotational” cases.

is good agreement between the density profiles
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Figure 4 shows translational temperatures of the monoatomic gas as functions
of position in the shock wave for the “rotational” case. We note a translational
temperatures overshoot of the heavier gas for x =10.0 and x=2.0. It decreases with
the decrease of the density ratio. For x=0.1, i.e., when th¢ monoatomic gas is pre-
vailing, there is no temperature overshoot, independently of the considered mass
ratios. i

10

og

— , rofational” case
—-— , honrotational” case g6

=100

— , rofational” case
———  aonvotational " case

g
“ L [ N S SN N NN (U RN SR SO NP
g 0 72 P, 16 2 20 22 x/a

¥16. 9. Density profiles in shock wave.

The magnitude of temperature overshoot also depends on mass ratio. For
m=1.5 and m=0.72 there is no temperature overshoot (for comparable number
densities). This probably results from a guicker energy transfer in these cases, com-
pared with the case of mass ratio m=0.22,

Hozprawy InZynierskie — 11
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For the case of a monoatomic gas mixture there is no temperature overshoot. '
m=0.72 and m=1.5 as it is expected for mixtures with comparable molecular
masses of components.

WA T
iz T
Pl
/ -~
ol ) &
. /-
174
o8 - (
/!

o6 - /1

I8

il

I
w ,’ / m=022

I} / =700
o /] . ,
- /’ /! ,, ratational Uease
LA Lnonrotational ' case
=TT 1 et e
8 10 12 14 1 ] 20 22 2 x/a_

, FiG. 10. Temperature profiles in shock wave.

Further investigations of this model are in progress. We are exploring the possi-
bilities of introducing different *“velocities’ and “‘temperatures” in cross-collision
Maxwellian functions which would hopefully allow to investigate the strongly
disparate —- mass cases.
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STRESZCZENILE

STRUKTURA FALE UDERZENIOWEJ W DWUSKLADNIKOWEJ MIESZANINIE GAZOW
POSIADAJACYCH OBROTOWE STOPNIE SWOBODY I POROWNYWALNE MASY

Rozwazane sy plaskie stacjonarne fale uderzeniowe w dwuskladnikowef mieszaninie gazéw.
Jednym ze skladnikéw mieszaniny jest jednoatomowy gaz, drugi natomiast gaz dwuatomowy
z obrotowymi stopniami swobody. W celu otrzymania wielkoéci hydrotermodynamicznych rozwia-
zane sg zmodyfikowane rownania BGK wykorzystujac zatozenie Mott-Smith’a. Pelny uktad rownan
otrzymuje si¢ biorgc dwa momenty ukladu rownan BGK. W wyniku obliczed nemerycznych zna-
lezione zostaly wielkodci hydrotermodynamiczne oraz profile fal uderzeniowych dig réznych sto-
sunkow mas i gestodei skladnikdw. W podobny sposdb okreslono wplyw obrotowych stopni swo-
body dla dwuskiadnikowej mieszaniny jednoatomowych gazow. Pokazana jest zaleznodé struktury
fali uderzeniowej od stosunku mas i gestosci oraz od efektow wywolanych obrotowymi stopniami
swabody. _

PeszomMme

~

CTPYKTVYPA VJIAPHOH BOJHDLI B JBYXKOMIIOHEHTHOM CMECH FA30B
OBITAJATOINUX BPAIMATENLBHBIMIA CTEIEHSMIA CBOBO/Ib]
1 CPABHHUTEJNLHBIM MACCAMH

PaccmaTpupaloTcA IHIOCKHE CTATNHOHAPHLIE VAAPHLIE BOJHEI B IBYKKOMIOHEHTHOH CMeCH
rasos, OaEMM H3 KOMOCHCHTOB CMECH ABISETCH OMHOATOMHbIH 123, BTOPHIM XK€ IBYXATOMHBIH
raj ¢ BpamaTelbHbIMM CTememaMy crobompl. C LEABI0 IONYYEHHs TRAPOTEPMOIAHAMMAYECKHX
BEMMMUH pemenbs MoyufEnupoBanaele ypaswenes BI'K, mcnomesys nmpeanonoxeduse MoTT-
Cwmmra, Honias cucTeMa YPABHCHHN NONMYYAETCS IPREMMAS ABA MOMEHTA CHCTEMBI YPAaBHCHUI
BI'K. B pesynbraTe HMCIEHHBIX PACYETOR HallACHS! MMADOTEPMOMNHHAMEYCCKHE REIHIMHDL, 4 TaK-
e NPOGHIH yOapRoi BONHEL A0R Da3HsIX OTHOMICHWH MACC M HIOTHOCTEH KOMIoHeNTOR. AHano-
FHYHBIM  00pa30M ONPEAETCHO BNHAHME BPAIIATCILELIX CTEMCHEH cBOGOSM [T HBYXKOMOO-
HEeHTHOH cMecH OAROATOMEEIX Ta3zoB. ITokasaHa 3a3BECHMOCTL CTPYKTYPH YAAapHOH BOAHEI OT
OTHOINEH M MacC # TACTHOCTEH, a TaKke OT 3¢eKTOB BHI3BAHELIX BPALIATENLHLIME CTCICHIMEA
ceoboas,
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