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ON SOME BASIC PROBLEMS OF THE THEORY OF SHAKEDOWN

JLKARCZEWSKI AND J.A. KO NIG (WARSAW)

The paper presents the observation that discrete structures of the global condition of shakedown
does not need necessarily require that the shakedown condition of each element should be satisfied.
A simple exampie illustrates the thesis. The practical importance of further research work on shake-
down analysis of structures with unstable elements is emphasised.

1. PRELIMINARIES

Shakedown of structures (notion introduced by GRUNING and Breicu [i, 2],
(see also [3, 4, 5, 0]) begins to be recognized as a proper criterion of structural safety
in structures designed with a plastic range accounted for an subjected to variable
repeated loads. For example the new Polish Engineering Standard PN-76/B-03200
Konstrukcje Stalowe (Steel Structures) adopts this concept.

The criterion of shakedown (Cf. [7, 8], apart from unprecise workings which can
be found in some handbooks, can be formulated in the following way. Shakedown
denotes boundedness of the local energy dissipated:

o

(1.1) ' ‘ [ ol dit<oo
Q .
or, equivalently, boundedness of variation of plastic strain:
1]
(1.2) o [ dt <o,
0

If the condition (1.1) or (1.2) are substituted by more stringent conditions of the
same form but with finite values on their right-hand sides, then such criteria are
equivalent to the known criteria of low-cycle fatigue (Cf. [9, 12]).

In the literature on shakedown hitherto it has always been assumed that if the
shakedown condition is not satisfied at one point of a structure does not shake down.
Such an approach seems self-evident for incremental collapse. Namely, unlimited
strain increments at one point of a body should result in at Teast locally unlimited
displacement increments and should be responsible for the unserviceability of the
body (though not necessarily its failure), '

If low-cycle fatigue is considered, local failure of the material will result in
the propagation of cracks and cventually in overloading adjacent points due to
stress concentration at the ends of the cracks.
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However, as it will be presented further on, there exists a class of structures
(discrete structures) for which such a rule does not hold. In these structures the
fajlure of one element {or a whole group) does not necessarily make the whole
structure inadaptable, at least in the sense of being incapable of carrying prescribed
variable repeated loads.

2. DISCRETE SYSTEMS

By discrete systems we mean structures composed of elements connected and
interacting at special points called nodes. External loads act exclusively at the nodes.
In many cases it is admissible to assume that every element of the structure remains
completely in one of the following two states: elastic or plastic. :

" For brevity of formulae let us introduce the following matrix denotations, follow-
ing paper [8] (the number in brackets denotes the respective number of column
and row)

vector of actual values of load factors [w, 1],

rectangular matrix [r, w],

vector [r, 13 which, together with the matrix A, defines the domain of
variations of the vector g )

rectangular matrix expressing nodal loads in terms of load factors [w, ml,
vector of nodal loads [m, 1], :

vector of nodal displacements [m, 1],

vector of generalized stresses [vm, 1],

vector of generalized strains [on, 1},°

rectangular matrix of statical and kinematical compatibility [on, m],
nonsingular, positively definite matrix of elastic modulae [vn, vnl,
vector of plastic modualae fpn, 11,

rectangular matrix of plastic flow [pn, orl,

vector of plastic multipliers {pn, 11.

g T

P2 RN O T -

Now, the fundamental relations for clastic-plastic structures can be written
down in the following form;
equilibrium equations

@.1) . F=CTQ,
geometric relations
(2.2) q=Cu,
Prandtl-Reuss assumption
(2.3) g=e+p;
the terms e and p are elastic and i)lastic parts of the generalized strain q and are
defined by
Hooke’s law
2.4 . e=E7'Q

and the associated flow role
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the generalized yield condition

(2.6) © NTQ-K<0,
the active process condition ‘

@7 AT[NTQ-K]=0.

Limits of the variations of load factors and the dependence of nodal loads on the
load factors:

(2.8) Ap<a, F=fp.

Formulae (2.1) and (2.2) follow the Virtual Work Principle (which is equivalent
to them)
2.9 ¢ Q=0Q0"q=FTU=u"F,

The safety factor against inadaptation can in this case be calculated (on the
basis of the static shakedown theorem, cf., [8, 10]) by solving the following problem
of linear programming:

max §

subject to

' Ap<sa,

(2.10) NTIQE +Q]-K <0,
CT)=0.

Here QF denotes generalized stresses in elastic state:
(2.11) , QE=EC[CTEC] 1 ip=Gp,

whereas ) denotes the steady generalized residual stress which can be expressed
in terms of plastic strains:

(2.12) O=E{CTEC]""CTE—1} NA=HA.

Let us denote the solution of the problem (2.10) by s,.

Let us consider now the following process. Assume that load variations exceed
safe shakedown limits and that incremental collapse does not occur but an element
(or a whole group) is endangered by low-cycle fatigue. Then, after a sufficient number
of cycles this element (or the group of elements) fails and is no longer capable of
carrying any stress.

This is usnally followed by excessive overloading of other elements which results
in the ,,accelerated” failure (due to low-cycle fatigue) of subseqiient ¢lements, or
in incremental collapse. ' ‘

However, it is also possible that the structural resistance of the remaining elements
turns out to be sufficient to shake down to given variable repeated loadings. The
formulae (2.1)-(2.12) deseribing the behaviour of such a modified structure remain
formally the same if we put vanishing componentsin the matrices E, Q, K in positions
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appropriate for the elements which have failed. Let us denote the modified matrices
by E’, ' and K’'. The safety factor against inadaptation can now be calcufated from
the following linear programming problem: .

max s
subject to
Ap < sa,
(2.13) N7 [G'u+Q']-K <0,
CTH =0.
Here
2.14) G'=E'C[CTE'C]"1f.

It is casy to see that the inequality constraints of the problem (2.13) relating to the
elements which have failed are satisfied identically as the respective components
of QF, and Q vanish. Therefore it is possible that the s,—solution of the problem
{2.13) may happen to be higher than the so—solution of the problem (2.10).

This analysis confirms the anticipated possibility of having shakedown occur
even after the failure of some elements.

Such a fact means that the withdrawing of an element may sometimes improve
the shakedown of a structure. A similar phenomenon is also possible in perfectly
elastic structures for which the maximum stress in an elastic structures without
a reinforcing” rib or sharp wedge peak may be lower than in an original structure.
Obviously the withdrawal of an element cannot increase the load carrying capacity
of the structure {Cf. [11]).

N

3. SPACE TRUSSES

In the case of trusses, the vectors Q and g contain only one component for each
clement of a structure. The classical method of shakedown analysis does not hold
precisely for truss-like structures. The reason for this is that buckling of compressed
elements cannot be neglected as it is the main factor of their dimensioning, In the
case of buckling the generalized stress-strain curve possesses a part with a negative
slope (see Fig. 1). This is why the classical shakedown theorems can be neither
‘demonstrated nor generally applicable in this case. Therefore, in this section we
restrict our analysis to load histories given explicitely in the form of known cyclic
functions. :

But the main idea of the considerations presented in Sect. 2 can be repeated.
H the loading sequence is known, then stresses, strains and displacements can be
calculated by means of the step-by-step method. It may also happen that after
a sufficient number of load cycles an element (or a whole group) can fail due to
low-cycle fatigue if plastic strain increments of opposite sign occur. By using well-
known formulae of the low-cycle fatigue theory we can calculate the exact number
of load cycles to the failure [12].
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By continuing the step-by-step analysis we can conclude whether plastic strains
tend to stabilize (shakedown) or whether an accelerated” failure of further elements
occurs, Incremental collapse may also take place.

. Let us note that sometimes the final stabilization (shakedown) can be attained
after more than one series of element failures,

4. EXAMPLE

It is not the aim of this paper to present any complete shakedown analysis of
any particular class of discrete structures but solely to focus attention on the possibili-
ty of the occurrence of the described effect. The example shows only its importance
for the proper shakedown analysis of discrete structures. Therefore as an illustration
et us consider a simple plane truss (Fig. 1). For simplicity let us assume that defor-
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Fig. 1

mations of elements do not exceed the horizontal part ‘of the stress-deformation
diagram 1. Under this assumption the considerations in Sect. 2 are applicable in
the analysis. ’

Matrix equations of equilibrium (2.1) and the geometrical compatibility (2.2)
. assume the following form in this case: N
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g, ] 0 =1 0 0 0 "y
q, —1 0 1 0 0 i,
qs 0 0 0 -1 0 U3
@2 gl 0 0o o o 1 ||uw
1 -1
g5 0 0 U s 0 |Lu
-1 -1
el Lve vz "

‘Let us assume identical cross-sections of the bars 1,2,3,4,5 and a weaker
bar 6 taken, say, by mistake, with the same diameter but with a wall thickness twice
as small:

Qo1 =Q02:---:Q05=Q03 QOG:O'sQﬂs
Qel =Qe?. =Q83 :Qed- zQe ZO-SQOl » QES :0‘4Q0 3 Qeﬁ =0'2Qe .

Then the elastic modulae matrix ¥ becomes

(4.3

10000 0
01000 0
001000
000100
00001 0
00000 %

(4.4)

and the elastic generalized stresses are
O =04=04P, 0;=05=—0.6P,
4.5 -
#2 Q5=0.6)/2 P~0.8485P, (Q¢=0.4)/2 P~0.5657P.

Any residual stress state in the truss has the following form:

. A o
) T=QR=Qi=0i= -, 08=Qf=4,

Th

where A is a parameter characterizing intensity of the state. If the load program
is described by the following condition

4.7 —Pos Pl

then the maximum value P, of the P, allowing for shakedown can be found by solving
the following linear programming problem: :

max P,



ON SOME BASIC PROBLEMS OF THE THEORY OF SHAKEDOWN 245

subject to the constraints
' P, <P<P,,
~ Q<07 +08<Q0i,  i=1,2,...,6.

Solving this problem for Q.;, Qq;, OF, OF given by the relations (4.3), (4.5) and

(4.8)

(4.6) respectively, one obtains
49 P,=0.61870,

and the alternating plasticity in the Bar 6 determines inadaptation if P exceeds the
value J25].

if so, after a suflicient number of cycles, bar 6 fails and the truss works as an
isostalic structure, The stress state becomes

(4.10) Q1=0.4=0, Qr=03=-P, Qs=y2P

and, according to Egs. (4.3), the following conditions assure structural safety
(also—shakedown}: '

(4.11) —080,< —P< @y, —040Q0<)2P<Q,.

From the inequalities (4.7) and (4.11) one obtains the following shakedown
condition:

(4.12) _ Py < 0.80,.

This value is 29 per cent higher than the value (4.9), Thus, after the failure of bar
6 the truss can carry larger loads than before.

5. CoNCLUSIONS

1. The possibility of shakedown of discrete structures has been noticed even
when shakedown conditions are not necessarily satisfied in all elements.

2. Tt may be supposed that the described effect can be expected, especially in
regular structures. In such structures there are many elements with stresses much
below the yield stress. Therefore in such structures a more pronounced difference
between classical shakedown analysis modified according to the presented sugges-
tions can occur,

3. The paper indicates that further investigations are necessary on shakedown
of structures unstable elements, as well as on the behaviour of such elements under
cyclic loads. Some preliminary results on this subject have already been obtained
[13]. '

4, The reason why elements are withdrawn from a structure can be of various
origin. This can, for example, the exhausting of the maximum deformability of
extension elements,
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STRESZCZENIE

O PEWNYM PROBLEMIE TEORII PRZYSTOSOWANIA -

Praca przedstawia spostrzeZenie, ze w przypadku konstrukeji dyskretnych globalny warunek
przystosowania moze nie wymagaé spelnienia warunkow przystosowania w kazdym elemencie.
Teze ilustruje prosty przyklad. Wskazano réwniez na praktyczng waznoéé badaf nad przystosowa-
niem konstrukcji z niestatecznymi elementarmi.

Peaome

O HEKOTOPOM 3IAJIAYM TEOPYUM HPUCHOCOBIEHNA

PaboTa opescrasipieT 3aMeUYaHKe, 9T0 B Clyvae AMCKPETHBIX KOHCTPYKIEH riobalbHoe yoIo-
BHE NpHCIOCODNEHNA MOKET HE TpeGopaTh YOORIETBOPEHUS YCIOBHAM NpUCHOCObNCHREL B XQKAOM
anemenTe, Tene pnmocTpupyer npocroll npumep. Ykasada ToXe MPaxTHYECKad BaXHOCTh HCCTIC-
JOBRHHH TI0 APHCOOCOOICHEIO XOHCTPYKUMH C HEYCTONYHBLIMHE JEMCHTAMH.
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