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NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS
IN A TWO-DIMENSIONAL COMPLEX DOMAIN

E.L. MATEEVA-COLLINS (SOFIA) *

The paper is devoted to the numerical solution of the Navier-Stokes equations in the case of

planie motion when the area for which we are seeking the solution can be distributed over
adjacent to rectangles. For the rectangles one can find the “partial” solutions by the A. A, Dorod-
nitzyn method, from which one can construct the solution for the whole area. Numerical examples
of the application of this method are given,

E. INTRODUCTION

In many cases it is easier and faster to find the solution of a complex problem
as a limit of the sclutions of simpler problems. Sometimes this is the only possible
way. When partlal differential equations are solved numerically, the relative simplic-
ity of solvmg second-order equations in standard domains (rectangle, circle) is
well known. In this case the already well investigated finite-difference schemes may
be used. The numerical solution is reduced to solving three-diagonal linear algebraic
systems, where the number of the required arithmetic operations is proportional
to the first power of the system’s order and not to the third power as in the case of
ordinary linear algebraic systems. _

For that reason it is desirable to construct the iteration process which is to be
used because of the nonlinearity of the Navier-Stokes equations, in such a way ihat
during. each step only partial differential equations of second order in standard
domains are solved. This can be achieved by making use of the smail parameter
method proposed by Dorodnitzyn for the numerical solution of equations of mathe-
matical physics [1]. The effectiveness of this approach has already been shown in
Dorodnitzyn’s and Meller’s papers [2, 3]. Numerical results have been obtained
for the plane flow of a viscous incompressible fluid in a widening channe! and for flow
around a semi-infinite plate. To approach simpler problems special boundary condi-
tions were infroduced at the rigid wall. In this manner, during each iteration the
problem is reduced to solving the Helmholtz equation for the vorticity @ and the
Poisson equation for the stream function .

It will be shown how this methed can be used for solving problems in complex
domains. ’

2. SMALL PARAMETER REPRESENTATION

Let us assume that it is possible to subdivide a given domain into several
simpler domains (e.g . ,rectangles). Thus we have the classical prablem of transmission
the vector functions u={u,, u,} satisfies the matrix equation du=f in each sub-
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domain and the conjugate conditions (of the transmission) at the common bgundary
(the dashed line in Fig. ). : '
Let us assume that the conjugate conditions are of the form

2.1) Dy =Dyuy, i=0,1,2, .., 2r~1,
where u,, u, are the solutions, in the subdomains 1 and 2 respectively, D, =&'/cx! is

the i~th normal derivative at the common boundary and 2r is the order of the
equation. It is natural to try to modify these conditions in such a way that each

3
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iteration solves the given problem in each domain separately. This can be achjeved
by introducing a small parameter ¢ in the following manner. Instead of the 2r
conditions of system (2.1) at the common boundary, we introduce r conditions
for each subdomain:

sd. 1
(22) Doy uy=e [o; (Dyy iy =Dy tta) + Doy y 11},
s.d. 2
Doy ty=e{o; (Dot~ Doy a) +D5, 4 112],
where o; are relaxation parameters assuring the convergence of the iteration process.

The introduction of the parameter & allows one to seek a soluticn of the problem in
the form of a series in this parameter:

w C]
’ 1 E
(2'3) ' = Z Ui g 2 Uy = u?,, n g"
n=10 n=0

If, for the zero-order coefficients of the series, the values Du;iq v, 03 D211 U2, 03
i=0,1, .., r—1 are taken so that Dy, 1 #y, o =011 42 0, then the equality between
Dyipqvy,, and Dyyyqty 5, =0, 1, .., r—1 will be satisfied for each g; moreover,
at e=1 the conditions D,; vy =D ts .y i=0,1, .., 7—~1 will also be satisfied.
1t is assumed above that the series are convergent, what evidently must be proved.

3. CONVERGENCE FOR THE CASE OF THE POISSON EQUATION

As an example, we will briefly describe the proof of convergence of the proposed
method for second-order equations.

We wish to obtain the solution of the problem
Au=f in a,

.10
By =g, of I3,
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where A is a second-order differential operator, B, are differential operators which -

can be different on various parts of the boundary I, We assume that the two-dimen-
stonal domain G consists of two rectangles (see Fig. 1).

We introduce an additional boundary y which divides the domain G into two
rectangles Gy; i=1,2. A necessary and sufficient condition for representing the
§oll1tion i (x,1) of the problem (3.1) as a vector function

[ a6, 0), (x,med,,

DT ), weG.

where u;, u, are solution of Eqgs. (3.1) in each subdomain respectively, is the
satisfaction of the conjugate conditions at y

(3.2) Uy =y,
i, iy
6 o

We obtain the following transmission problem:
Ay =] in G, Auy=f in G,

Byu, =y, on 'y, i=1,24, B u, =, on” I T i=1,2,3,4,

Uy |?=u2|? 3
duy Ju,
ax |» dx v ’

The introduction of a small parameter & info the conditions of the common boun-
dary y leads to separate problems as folfows:

Awy=f i Gy, Au,=f in G,
(3 4) B. ”i=l/ji o1l Fl:') i:I)Q! 4) Bi u2=l1’7i cn FZi: 1.21,2, 3: 4:
ouy du, .
=h, =h,
dx ly : ox |

.
h=glo (uy—u)+——| .
x v

The second conjugate condition (3.3) is satisfied for every valug of the parameter
¢ and for ¢=1 the first condition (3.2) is also satisfied. '
We wish to obtain the solution of the problem in'the form of a series

oD

(3.5) uy (x, s 8) = Z " (x, ) &, uy (x, p; &)= Z u? (x, 1) ¢,

n=0 n=0
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In order to find the coefficients, we formally substitute Egs. (3.5) into Egs. (3.4).
Fquating the expressions in front of the respective powers of &, we get

AL in Gy, A =f in Gy,

B @@=y, on Iy, i=1,2,4, BuD=y, on [y, i=1,2,34,
> oy 0
Cax ax v

For u" and w% the problems have the following forin:

AuP=0 in G, C Au=0 in G,,
(3 5:) Bi i”"?1'1):0 on F}i', 17 2543 -B:' ug.)=0 on ng, 121, 2, 3, 4,
8:1&") \ Bug')
_E;___ xk(”' , o =h(n) ,
X ¥
where
au(‘ng 1)
A = =) - e

Therefore, knowing the preceding terms, we can determine every following one
in the series (3.5). _

Let us designate as R, and R, the operators of each function /4, determined at 7,
which are compared with the solutions of the problems (3.5) respectively, e.g.,
u, =R, k, =R, h. The values of the solutions u;, i=1, 2, at the common boundary
y will be designated as #;, i=1, 2. The modified boundary conditions can then be
expressed as .

I - (a{ls— 1)__1’—[gsﬁ 1))+h(s—1) s

or WS =g (ﬁg-nl)_ﬁgs—l))JrRl—i u(lsw D
B =g (ﬂgh 1 _1-,(;— 1))_|_ R; 1 ug’ .
Thus for the solutions u, we have the following relations:
=R, KD =R, (@~ —a5"") Fuls ),
W =R, K9 =R, (ﬂgs— D_pe Oy puGmD . §=2,3,
uiD =R, @0 —a),
P =R, (@0~

Then, by indoction

5-1
WP =aR, ' @P-af),
k=0

5—1
M(;) — DiRz Z’ (u"(lk)__ agi))
k=0
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we substitute the expressions obtained for the coefficients #{, u®i=1, 2 in (3.5)

n—1

1h~ Z ul =P+ aR, Z [2’ (u(a u“‘))] y
=] n—1
wy= 3 = 1 R, Z [ > - m)]

#=0
From the recurrence relations (3.6) for the differences 77—, =1, 2, ..., we get
0~ i = [T+ o (R~ Ry)] (G~ —a ™Yy,
_ #0—i5) =a (R, — Ry) (817 —5”)

or, inductively, _
P —ad =11 @Y — "y,
B - = (R, — R) (@7~ #”)

where we have introduced the operator T=7I+« (R, —R,). Summing over to k, we

obtain for the differences of the s partial sums of the series (3.5) at the common
boundary with =1, we get

5

M @P-aPy =15 @ a”).
k=0
In this manner the solutions have been represented in the form of infinite series
p
depending upon the initial approximation

=t b aR, (F4eT+e2 T4 .) (@0 —a®),
u2 =l L aR, (I+eT+e* T2 +..) (@ —a™).

The convergence of these series depends upon the behaviour of the operator 7.

So far we have not used the specific form of the domain G, If A=4, iec, it we
solve the Poisson equation in a domain & composed of two rectangles, it is
easy to prove the convergence of the iteration process. For a sufficiently small
negative value of the norm of the operator T in L,-space is smaller than | and
the series (3.7) are convergent. The value of the parameter = depends upon the
dimensions of the rectangles and has the form

/ 2y/2ma, 2/ 2 mas
i /(( a2 V16b%+ 72 ] ) i

where ; are the dimensions in the x direction, &, are the dimensions in the y
direction.

4. FORMULATION OF THE PROBLEM IN TERMS OF NAVIER-STOKES EQUATIONS

The proved convergence for the simple model equation — the Laplace equation —-
shows that we may also hope to use the proposed method successfully in more
complex cases of nonlinear systems.
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Let us consider the Navier-Stokes equation for plane flows of an incompressible
viscous fluid in a channel with a cavity (Fig. 2) written in dimensionless cooridnates:

(4.1) AAr//:Z(-di —a}h{~a—w Eéw—)
dy dx ox  ady

This is an equation of fourth order for the siream function y in a complex domain,
The channel walls are parallel to the coordinates axes and extend to infinity in the
x-direction, We assume the channel width at infinity H, (H, =H,) to correspond
to the volume flow rate w,. The channel has a horizontal axis of symmetry and there-
fore we consider its upper half only. Along this axis the boundary conditions have
the form

4.2) w=0, Ay=0.
At the rigid walls the conditions for the stream function are given as
' . , yr
{4.3) w =const., on =
and at infinity
dy oAy
(4.4) P a, o 0.

We will construct an iteration procedure for determining the solution of the
Navier-Stokes equation as a limit of the solutions of second-order équations for
simple domains. |

Introducing the vorticity w = Ay we can write Eq. (4.1} as a system of two-second-
~order equations:

dy dw oy dw
{4.5) Aa)=2(g ax x E_]T)’ Ay =,

The complete reduction of this system to separate second-order equations is
hindered by the boundary conditions at the rigid walls, Egs. (4.3). There is no
boundary condition for the vorticity w. Leaving one of the conditions in Egs. (4.3)
unchanged, we introduce into the other one a small parameter e. Therefore, two
types of boundary conditions are possible:

a) the condition for wall impermeability is unchanged w=const.,

Sw }
=glpy—+twl:
® a[/,z o Fen
b) the condition for no slip is unchanged

ay
om0
o l +3a)]
on E By —wo) - ol B
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Here ¢ and f are relaxation parameters introduced to assure the convergence
of the iteration process. _

‘We hayve assigned boundary conditions of the type a) at the rigid horizontal
walls I'y, i=1, 2, 3, and of the type b) at the rigid vertical walls I',, j=1, 3 (Fig. 2).

Y
o 24
|
Fo1 73
fa : f34
H, | ;
H O ; ¥ Gz ; &z Gy /33
| |
|
| I3 | 72 ! f22
e EELNTE— -
k2
FiG, 2.

The next step toward the simplification of the intermediate problems was solving
the problems in simpler domains.

We divide domain G into three rectangles (see Fig. 2). Such a division provides
two additional boundaries -— sew- up lines — », and y,, along which are satisfied
the conjugate conditions ‘

Wi=Wg, Wr=40g

(o= Co-57)
ax ln \ox /x’ BX_L_ ox e’

where the indices L and R designate the function’s boundary values assigned to the
left and to the right of the sew-up lines. By introducing the small parameter &, the
system of four conditions is replaced by new boundary conditions replaced in

each subdomain:
) e ]
(ab_ak%“wwwﬁﬁq

oo e ‘ dw
(c'bc)L - (E)R =g [U (wp—eg) + E] i

where « is the relaxation parameter,
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For ¢=0 the boundary conditions are expressed in the following form:
at the rigid horizontal walls

W=¥o, w =0 E] i
at the rigid vertical walis
d daw
i ~0,
0% dx

at the sew-up lines
(e h-orho (22~ (22)
EL_E“R_O’ Ox /. \éx /e~

The solutions to the problems for ,,ideal” flow are y; = i=1,2,3 in

Ya
e
each of the rectangles G, which we also took as an initial approximation. At ¢=1
we return to the basic problem,

The introduction of the parameter & makes it possible to use the method of
representing the solution as a series in ¢ or the method of successive approximations.
The second method is more convenient for a numerical solution. Substituting
for the stream function  in the system (4.5) the complementary stream function

W . . s .
P = 1//1—?0 v and then setting £=1 in the boundary conditions, we obtain the
following system of equations for the (#+ 1)th iteration for ¢, and w,:
Wo aa)(u+1) (5¢‘") 360(") a(P(n) 3(0(")
—)—=2
ay ox  dx Iy )’

A¢’§"+1) :wgl{-l) .

ACO_E'H— [)_2
(46) HS dx

with the following boundary conditions:
at the rigid horizontal walls s 5=1,2, 3:

Vo 5(0(") )
i+ 1)__0 (u-}-l)w (____{_ ).
Py » = Hs Hs ay +

at the rigid vertical walls 7, i=1,3:

5 1

(r+1) {n4 1) {n}
o oy ( Wo - dew;
. = I 0} S .
(47) ax O! ax ﬁ! sz ‘//0+¢7 ax )
at the sew-up lines y, s=1,2:

dpl D H Wo ) ] o9
_re | R, (] - -

ax s Hz 1 y+€0s+1 ng o ax ]
B+ o)

| = (n) — oy
ax e~ @i et

where s=1, 2, 3 is the number of the respective rectangle. Here we have not written
the boundary conditions (of the symmetry axis and at mﬁmty) which are independent
of ¢.
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Thus in each of the rectangles G; we have to solve the classical equations: the
Helmholtz equation for o’ and the Poisson equation for ¢™. Everywhere we have
boundary conditions of the same type: at the horizontal boundaries the values of the
functions are assigned and at the vertical boundaries the values of the first derivatives,
Therefore it is possible to organize a standard computing procedure for each
subdomain.

5. DIFFERENCE EQUATIONS

Let us introduce in the domain & a difference ntet so that the straight lines forming
the boundary I” belong to the family of lines which form the net. The whole interval
along x {(L=L, UL, UL;) is divided into N equal parts and y (H,), into M equal
parts. Thus for every rectangle G, we get {x, =ik, i=0, 1, ..., N, »,=jk, j=0,1, ...
vy M} (relative to the lower left angle to G,). The derivatives in the basic system
of equations (4.6) are approximated to second degree accuracy on a five-point
»cross” templet. For the first derivatives in the vertical boundary conditions we use
one-sided difference approximations to first degree accuracy. When approxi-
mating the boundary conditions for o at the rigid horizontal wall, one should not
neglect the second derivatives 8% p/dy%, because they are included in the formula
determining the vorticity. Therefore, an asymmetric one-sided approximation of
second-order accuracy was employed for the first derivative dep/dy:

Yok,

(3_49) . 4oy -1~ P r—2— 39
OV im 2k

Let us designate by £2, and @, the vectors which have as components the values
@@t and ¢"*" on the line x=x;=ih, i=0,1,.., N, s=1,2,3:

Qf:{m_ﬁ"“) ey p1)s @8 (x4 y2)s eens @0 (g, )"M_s—l)} )

D, ={p 7 G, 0, 08T (50, ¥2), e 00T (i, Yar- 1)} -

We have not included here the values w®*" and " at y=0, and y=H
because they are already given. Using the vectors £2; and ®; the difference equations
are expressed in vector form

(1 —h) R, ,+BR,+(1+0h) @, =F,,

(5.1}
2, +8P,4+®,_, =1"Q,,

where o=wo/H,, B is a matrix of (M,—1)-th order which depends only upon
- the, steps of the net, and F; is a vector defined by the solutions of the preceding

iteration.
To these relations we add the interconnections between the terminal vector
values which are derived from the boundary conditions (4.7):

Qo=8,~hP,, Qy =Ry +hPy,

(5.2
‘I__)o:“q’l—ths, Dy =By +hQy,.
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Only three adjacent vector values aré interconnected in the difference relations
(5.1} and (5.2). Therefore it is convenient to solve the system unsing the matrix factor-
ization method, initially for the first equation and then for the second one.

6. NUMERICAL CONVERGENCE OF THE ITERATION PROCEDURE

The convergence of the iteration procedure for the sewing-up of domains when
using the Navier-Stokes equation was numerically demonstrated- for the following
simple problem. We consider an abruptly widening channel (Fig. 1) of a width of

‘ . 2y =4, which corresponds to a Reynolds
i number of 8, The differencein width at 4-o0
Ho¥ : and —ocois equal to the step-size of the differ-

‘ence net. Here we have only two relaxa-
tion parameters g, and «,. The investiga-
tions of A, A. Deorodnitzyn and N, A,
: : Meller have shown that the optimal value

e of the parameter g, is — 3/w,. Figure 3
e _ - shows the convergence of the method (y; —
/\ 1y ),-+0 in the mid-point of the sew-up
et - line at-«,=0.1 and «,=0.5. It is evident

that at «=0.5 the convergence is fast
and oscillatory and at «,=0.11it is slow
and one-sided. |,

7. NUMERICAL RESULTS
014
r For the numerical solution of the basic

problemtheflow of a viscousincompressible
fluid in a channel with a cavity, it was
necessary to choose six relaxation parame-
ters. In the case of a square cavity (with
~ a width to depth ratio of A=1) and Re=8,
FIG. 3 various groups of parameters were inve-
stigated to achieve fast convergence of

0o 1 2 2 4 5 &  NeIT I7r

an oscillatory character. After a sufliciently large number of iterations, the iteration
process became divergent (Version 4, Table 1), which testifies to the strong interde-
pendence between the parameters. Slowest convergence was obtained at the
rigid vertical walls; this evidently is connected with a Jarge change in the cavity
flow pattern with respect to the initial approximation. Such a convergence behav-
iour of the iteration process might also be explained by the specific form of
the boundary conditions assigned to the rigid vertical walls,

Version 5 (Table 1) was used as a base to investigate the behaviour of the para-
meters as & function of the Reynolds number and the relative depth of the cavity.
The groups of parameters for which convergence was obtained for various 1 are
given in Table-2. " : '
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Table 1.
Version ’ Re { i i Hz ‘ oy i oy | N ‘ B l
1 8 | —15| —0375| 03 |08 ~0.5 ~0.5 Divergence
2 0.3 0.3 —-0.5 —0.5 Divergence
3 01 |03 | -05 | —05
4 0.2 0.3 -0.5 —0.5 Divergence
5 0.2 0.2 -0.3 —0.3 Convergence
6 : 02 |03 —0.3 —0.3 Convergence
7 16 —0.75| —-0.18 0.1 4015 -0,0375 —0.0375 Divergence
8 0.05 § 0.075 —0.018 —0.0i8 - | Divergence
9 —0.0047 —0.0047 Convergence
Table 2
A E Hi I a2 i oy | %2 ] B l B2
05 | —15] —067 | 04 | 06 035 | —0.53
1.0 -1.5| —0.375 0.2 0.3 -0.3 —0.3
2.0 —1.5| —0.17 0 0.15 —0.02 —0.03

Figures 4-6 show the streamlines. The values assigned to the stream function y
are related are the results obtained from the machine computations by the
relaxation y={(y —w,)10*. For comparison, in the upper part of Figs. 4 and 5 are

~
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shown the flows for Re=8 and in the lower part for Re=16. The presence of
dead-water regions is comunon to all flow patterns. For a shallow cavity 1=0.5
-and Re=3§, the fluid flow in the cavity occurs along closed stream-lines and internal
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domains of smaller recirculatory regions can be observed. An increase in the Reynolds
number makes the vortex intensity rise and in the left caved-in corner the stream
function changes sign; this shows that a secondary vortex has occurred,

‘Figure 5 shows the constant value curves of the stream function in a square
cavity for Re=8 and Re=16. The changes in the flow patterns due to an increase
of the Reynolds number are as follows: 1) the vortex intensity is increased, 2) the
centre moves in the direction of the flow, 3) a secondary vortex occurs.

It should be noted that an increase in the Reynolds number to twice its value
led to a corresponding decrease in the convergence velocity of the iteration process
to one-and-a-half time the value. '

The number of dead-water regions depends on the relative cavity depth 4. In
the case of the maximum possible depth A=2 (Fig. 6) the vortex intensity decreases
at the deeper part of the cavity. This reduction of the intensity can evidently
be explained as a consequence of an increased influence of the cavity walls upon
the fluid velocity, ]

The data obtained allow one to conclude that the method under consideration
can, in principle, be used for the numerical solution of problems in complex do-
mains.

The numerical results presented in this paper were obtained on the BESM-6
computer in the Computing Center of the USSR Academy of Sciences.
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STRESZCZENIE

NUMERYCZNE ROZWIAZANIE ROWNAN NAVIERA-STOKESA
W PRZYPADKU PEWNEGO OBSZARU DWUWYMIAROWEGO

Praca jest podwigcona numerycznemu rozwigzaniu rownafi Naviera-Stokesa w przypadku
ruchu plaskiego, gdy obszar, dla ktérego poszukuje sie rozwiazania, moze by¢ roztoiony na przyle-
gajace do siebie prostokaty. Dla prostokatow znajduje sic rorwigzania »Czesciowo™” metody A, A.
Dorodricyna, z ktdrych buduje si¢ rozwiazania dia calego obszaru. Podaje sig rowniez przykiady
zastosowania tej metody.
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PeswowMme

"II/ICJ'IEHHOE PEIMEHWE YPABHEHWA HABLE-CTOKCA B CHO}KHOI/I
IBYXMEPHOW OBHACTH '

Pabora TOCEAMICHA HHCIIGHIOMY DSLISHHIO ydeHeHHM Hagpe-Crokca 5 cmyyae ILIOCKOTO
Tedenns, Korga ofIacTe, TR KOTOPOH WINETCH peueHEe MOWeT GBITh paa,z[edI(:Ha HA CMEXHBIE
APYE X APYLY UPAMOYIOABHHIG. [INA NPAMOYrONBHAKOB HAXOAATCH ,,UACTH4HEE” DPellleHuA Me-
TogoM A. A. JIOpOOEAOMHA, M3 KOTOPHIX CTPONTCA pemesdne ans ueaol obsracru. Tlpesenenss
TOME NPHAMEPLl YHCICHHBIX PACYETOB 3TAM METOAOM.
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