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THE STABILITY A:AND_. POST-BUCKLING STATE OF A RECTANGULAR
DISK UNDER UNIDIRECTIONAL BENDING
AND SIMULTANEQUS SHEAR

W. WALCZAK and S. JAKUBOW SKI (RODY)

The problem stated in the t1tle concerns an isotropic, rectangular disk, simply supported along
its edges. In order to obtain an approxunate solution of the problem, the deflection function w(x,)
describing the middle surface of the disk after stability loss is assumed in the form of the series
which satisfy the boundary conditions of the problem. The Airy’s stress function @ (x,)} was also
introduced.

To determine these functions, the Karmdn differential equations of the nonlinear theory of
plates were used. The parameters in the deflection function w (x,y} were determined by means of
the Bubnov-Galerkin method.

As a result of this, equations from which the stress and strain components could be determined
by dimensionless coefficients were obtained. These equations were then used for detatled computa-
tions of the disk for which the ratio of the edge lengths 1=a/p=0.9,

The results of computations were presented in the form of graphs prepared in a form useful
for practical calculations.

1. INTRODUCTION

Thin-walled rectangular disks as the principal load- -carrying elements of
sheet-iron girder constructions, usually work in conditions of complex state
of loading. \

From the point of view of practical engineering applications, the case ‘of unidi-
rectional disk bending and simultaneous shear is espacially important. This case of
loading occurs in almost each load-carrying construction.

The number of papers devoted to investigations of the stability and post-buckling
state of rectangular disks under simultaneous bending and shear is relatively small.
In this domain I. I. AARE’S and S. I. INDURMS papers [5] and [6] deserve particular
attention.

However, a more detailed analysis of disk behaviour in the posi-buckling state
cannot be carried out on the basis of these papers. The latter mainly present the
results of numerical computations. This is why there is still a need for more exten-
sive discussion and explanations. .

In this situation it seems purposeful and necessary o analyse' more closely the
stability and post-buckling behaviour of a rectangular disk under the loading con-
ditions mentioned in the tltle coe




634 W. WALCZAK AND S. JAKUBOWSKI

2. ASSUMPTION AND GOVERNING DIFFERENTIAL EQUATIONS

The subject under consideration is a thin, rectangular, isotropic disk of dimen-
sions ax b and a constant thickness k, simply supported along its perimeter. It is
assumed that the edges of the disk are reinforced by suitable ribs stiff enough to
maintain the rectilinearity of these edges. A Cartesian coordinate system x, y, z
(Fig. 1) is assumed.

Fii. 1. Scheme of the disk loading.

-All the disk edges are subjected to the action of uniformly distributed shear
stresses of a constant value 7, and, moreover, the edges x=0 and x=a (Fig, 1) are
. additionally loaded by normal stresses #. The loads are applied in the middle surface
of the disk. |

The distribution of normal stresses ¢ along the mentioned edges is expressed
by the following formula:

(2.1) . G’=O’0(1f“0\’-"£—);

o, being the maximum value of ¢. For the coefficient = the value «=2 is taken.
It corresponds to the case of pure disk bending. It is assumed that the loading para-
meters o, and 7, may reach values exceeding the critical values.

The problem was solved on the basis of the nonlinear theory of plates. This
theory provides the two governing nonlinear, partial differential equations beeing
called Karman's equations [3]:

: D
(2.2) 5 VY )-L O, @)=0
and
(2.3) L veye &)+ ! L =0
-3 EVV() 2(w,w—,
: ER®. L .
where E— Young’s modulus, D=W—ﬂexural rigidity of a disk, v—

Poisson’s ratio. These cquations contain two unknown functions: the Airy’s stress
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function @=@ (x, y) and the deflection function w=w (x, y) describing the shape
of the middle surface of a disk after buckling. The symbol L (w, ®) refers to the
nonlinear differential operator defined as follows:

arw 32§D+32w 2P 2a=’-w P
ax® oy* oy ox? dxdy dxady’

(2.4) L{w, #)=

A solution of the system of equations (2.2) and (2.3) which may be obtained only
by approximate methods enables to determine the stress function & (x, ) and the
defiection function w (x, y). A knowledge of these functions makes it possible to
determine all parameters of the strain and stress states of the considered disk after
buckling. Then, with the aid of the stress function @ (x, y) we can determine all the
components of the membrane stress state and, by means of the deflection function
w (x, p), all the components of the bending state. This makes it possible to carry out
an analysis of the critical and post-buckling states.

3. SOLUTION OF THE PROBLEM

In order to obtain an approximate solution of the problem mentioned in the
title, the normal deflection w of the disk was defined by a function describing as
closely as possible the shape of the middle surface of the disk after buckling. On
the basis of the result of [3, 4, 5 and 7], the function w (x, y) is assumed as follows:

: . ®mX | my . 2ax | 2my . o®mx | Z2my
(3.1) w(x, y)=11, sin — 31n—l~;+f22 sin —— sin T+f]2 sin—-gin ——,
where f4, f22 and f, are unknown coeflicients of the normal disk deflection. This
function fulfils the boundary conditions of a simple support of the disk edges.

Equation (2.3} is used to determine an approximate form of the Airy’s stress
function @ (x, ). The general solution of this equation with w (x, y) given by Eq.
(3.1) has the following form:

El ) ny f121 2zy  fis fiz 3zy
(3.2 @ (x, y)= 452 }‘_fufuCOST‘i' 3 cos 5 + 5 ~ COS b +

4f. 222 +f 122 ny [ 4 /i1 3wy
+ —+d2* fo | —Ffiat +
D) cos b 42* fool — fiz (i 1o12y coS 5
9 fin 4773"] X [f121+4f122 i1 f1s y
—_ R 4 ..i_ T
(111612 COS8 5|08 + 4 3 G+ 12 cos +

fi1 /12 37’-’)’] 2mx [fufzz 414 ny
—_ h . 4 r2 7
(44977 cos 5 cos p + 44t £, 9 + 1372 cos b +

fiz 47!}?] 371:x+ /12} oy ¥? (1 2 y)
cos — 3 2 — = 5 Toxy.

TTOr6 5T
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where, A=qa/b. The last two terms of the above stress function @ (x, y) constitute
the solution of a homogeneous biharmonic equation. They fulfi the conditions of
disk loading in a pre-critical state, i.e. when the coefficients f,=f;,=F;,=0. The
assumed conditions of rectilinearity of the disk edges are also satisfied. The analy-
tical concept of these conditions consists in determining mutual transition of the _
edges, parallelin the initial state. The relative displacements of the disk edges, parallel
to the axes y and x and determined by the formulae [4]

1 ”[azas o o E(c‘}w)"]d
“TTF PR s

"[32@ 3245 E(awﬂd
= = ay Y,

(3.3)

are, respectively, a linear function of the coordinate ¥, for the edges x=0 and x=a,
constant value for the edges y=0 and y=b; it results from the following expressions

g y 7'_'2 '
(.4) |

ey= *%(f11 +4f22+4f1z)

In order to determine the unknown coefficients f1,, f5, and fi, appearing in the
assumed deflection function w(x, ) and also in the determined stress function
@ (x, y), the Kédrmdn equation (2.2) has been made use of. This equation was solved
by employing the Bubnov-Galerkin’s method. Thus, in the case considered the
following system of equations is used:

a

4 X my
f f X(w, &) sin-w‘-; sin—~ dx dy=0,
o 0O

oaR . 22X 2my
(3.5) f f X (w, @) sin— sln——dvdy—-
0 ©

- mx | 2wy
f f X (w, &)sin — Sin—— dx dy=0,
(LI |

where, by the symbol X (w, &), the left side of Eq. (2.2) is denoted. For further
considc rations the following dimensionless coefficients are introduced:

the deflection coefficients

(3.6) 1y =——
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and the disk loading coefficients

__U'o(d)z _To(a)z

(3.7 s=z\%)> = IAVIE

Then, after integrating, Eqs. (3.5) are reduced 1o the following system of three
nonlinear, homogeneous, algebraic equations:

1 z
(7?+ }‘) 32 8 1+4*
(8 Ay S op s T ggag S st St

PE 81 : ) .
e . 2 2 - 3 —0-
+ i [8+ 4+ 12y 1 (4+922)2J§11 1244 [(14_912)2‘5‘ (9_{_12)2]{11 £5,=0;

2
32 . (T+ A) +1+;{,4 - 2 [1+16,14 81 .
(3.9) 97_{4 Ilél] i 3 (1 _vz) 522 412 622 4 41,4 (1_*_16]‘2)2
1 1
t T 2, +4A? + 2 _0-
o+ 16/12)2](522 ISP [(1_*_912)2 (9_1_12)2}622 &11=0;
(o)
P 1+162%

8 -
S + 3
@10~ Cust g Ty e e o

2

+——[4(1+A4)+

64 (44?:‘2)2 + (4_;_9,12)2]5?1 Szt
A2l 1+ 164% 81 1
T[ T a6 T 162 ]cf“, &7,=0.
These equations contains contain five unknown values, namely the coefficients

$11y €22, §1p, sand ¢

To determine the critical values of the dimensionless disk loading coefficients s
and ¢, the same system of equations (3.8)~(3.10) may be utilized, These critical
values are determined from the condition that the principal determinant of the
linear part of the equation system be equal to zero.

1 )
(71_+ ’1) 32 8
481  9n*al 9r* 42
1 2
(3.11) W= 32 (T+ ’3“) =0.
9 i ! 3 (L—17) 0
1 2
—+
(JL 4”“)
8s ——
Ot 12 0 48 (1—v?)
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After this determinant has been expanded, the following relation for determining
the critical values of the disk loading coefficients ¢ and s is obtained:

978 (14122 (1 +442)2 i+4421\2
61y 2 97 (R ( ) _,12( )t2

256.64 (1—v2)? 1+42
On the basis of the above formula, the diagrams of the relation ¢=¢ (s), for different

values of the disk form coefficient 2, have been made up (Fig. 2). The value of the
Poisson’s ratio has been assumed to be v=0.3.

10+

1} 15 . S

FIG. 2. Curves of critical states of the disk for different values of the disk form coefficient (for v=0.3)"

The critical values of disk loading in limiting of the disk under pure bending
(1=0) or pure shear (s=0), determined from the curves and presented in Fig. 2
have been compared with the literature data given in [3, 7, 8]. These values are
practically equal to accurate critical values given in the literature; the maximum
error is smaller than 39 for the accepted range of the coefficient .

The dimensionless coefficients ¢ and s of disk loading for the post-buckling state,
i.e. when the coefficients &, 20, &,,70 and &,,3€0, were determined by the follow-
ing formulae resulting from Egs. (3.9) and (3.10):

1 2
—+ )
9t 1 (}L ) 1425 &, A2 [1+1624 81
G13) 1= Sz IHH o MY LHIGN —
2 Gaow &, T &, 4l e N avieny

1 ] a2 &5 I

£y A [(1 +942)2 + (9+,12)2] Ci1 Caz

(9+1642)
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and
1 2
- 4]
9t A2 (l ) Cia 141644 32 ’12[ ’
= 22y It ———+
Gl == HaTw &, ez &, 16 U+ gy
[ 1+1624 81 1 ] £1285,
S — 2 + +
+(4+912)?] Ev1€22+4 [ 41 (1+1623)2 (9+1647)2 &y

To determine the unknown coeflicients &, ,, &€,, and &,, of a disk deflection for the
post-buckling state, Eq. (3.8) was utilized. This equation, after eliminating the
dimensionless coefficients ¢ and s by means of the expressions (3.13) and {3.14),
has the following form: '

. ,
—+
1+164% &%, (;L-‘”“) 11—t

T iz S
G o E lwaowy & e o0t

A2 [ 14162% 81 1 32},
4 — - + 53 |2 (612
2 4% (1+164%)*  (9+164%)* | &£,
1 2
N :
+ (/1 A) ( 166%2”5?1 )+ 1424 ( 165;2_ ‘1‘1 )“_0
48 (1—v)? $11 644* Eir B

To solve the equation above, the successive pairs of the dimensionless coefficients
£1; and &5, were assumed.. Then Eq. (3.15) becomes for each of these pairs a bi-
quadratic equation for theunknown coefficient &,,. The solition of this equation
consists of two real roots with equal absolute values, but opposite signs. In further
computations a positive value of the coefficient £,, was taken. Then, the values of
the disk deflection coefficients &,,, &;, and &, ,;, being known, it is possible to deter-
‘mine from Eqs. (3.13) and (3.14) the values of the disk loading coefficients s and ¢
and, next, the components of stress and strain of the disk considered.

After stability loss the state of stress is represented by the superposition of two
states, namely: 1) the membrane state with the components o, o, and 7,,, constant
across thickness, and 2) the bending state in which the components o,,, o, and 1,
change linearly across the disk thickness, assuming maximal values at two outside
surfaces, and vanishing at the middle surface of the disk.

The shear stresses v, and t,, are disregarded as} small. In further considera-
tions, dimensionless stresses are introduced:

for the membrane stress state:

. *m_"i(_f’_)z *:,&(1)2 . _‘”_w(,_‘.‘;,)z
(3.16) Ux E h L ay E h ] Txy E h ?
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for the bending stress state:

(045)

. z=+% a\? , (ayg)z=+_2_ al\? . z=+-—2— al\?
=T L=
where '

oM, Eh 2w P w
(ny)z=+_g_: h = 2(1-v?) ( v ay* )’

. 6M, Eh P w 0% w
(3.18) (Jyg)z =+_;|2_= FER (1—v?) ( oy ty az_)a

6M,, Eh  Pw
B 2(1+v) dxay’

1: ==
@), _,»

M,, M,, M, are the sectional moments referred to the unit length of the cross-section
element, cut from the disk.

In the considered case, the dimensionless components as, cr and 7., mentioned
above of the membrane stresses and o " 0' and r of the bendmg stresses state
are expressed by the following formulae

292 45 2
3y
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(3.19) 0':=—-(—) {611 €12 €OS ; +—&hy cos—— 4 +

E\h b
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* 1 (i)z 3245 _ 372 A2 {[3611 612 . 2nx
h

G2 = -F axay 2 N@spep o, *
+8§11 $a2 sin 3nx]sin y [8611 £az ,nﬁ_ Eyaban | Zthl . 3my
(9112 A+9222 " g T @yoaE Mg [T T
g [ 3 . omx 1 ) 3nx]_ 4rmy
+ 8822 <1z ari6y Sy T e T eEeE St s + ¢
and
322 + _J_i_ 1 22 4 1 ﬁ M ..it.:],.;.,+
3.22) U“"_?.(lﬂﬂ) {(14+vA?) &, sin p sin -
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o b a b
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(3..3) o,,= 2(1 2) [(11 +v) &y sin— p sm~3~*+
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+4{(A2+v) &y, smT sm—_—-+ (4i24+v) €0, sm7 smT
(3.24) *=~*—7Fl-[¢’ cos g'mc ﬂ—y-l-
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2nx 2ny X 2y
+ 4, cos— 4 cosT+2£12cos cos——|.

On the basis of the formulae (3.19)-(3.24), the reduced stresses bave also been de- -
termined according to the Huber-Mises hypothesis. The maximal values of these
stresses appear on the upper (z=—#/2) or on the lower (z=h/2) surface of the
disk. Introducing the dimensionless coefficient of these stresses

Trea a 2
(3.25) Orea™ "5 (7),

the dimensionless reduced stress in any point of the upper or lower surface of the
disk is expressed as follows:

(3.26)  ola (%, Y= [o3£03)* +(o) +05 Y — (0} +0%,) (0} £0))+3 (e, +7,)°1. 1%
The signs “plus” (+) in this formula refer to points of the lower disk surface (z=

= 4 /f2), whereas the signs “minus> (—) to points of the upper surface (z= —#/2);

The deflection of the disk in the posi-buckling state have also been determined
by means of the dimensionless coefficient

(3.27) _ wr=r
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The computations which were to determine the maximal values of the dimensionless
reduced stress coefficient (). ;) max Were performed in the following manner: a hundred
uniformly distributed points were chosen on the disk middle surface and for each
of them, for assumed values of the coefficients 5 and ¢, two values of the coefficients
(Grea)max Were determined according to the formula (3.26): one for the upper sur-
face and the other for the lower surface of the disk., Next, the greatest of the deter-
mined values, that is (6], ). Was chosen, the maximum of (67 ).« was found
numerically with different combinations of the disk loading coefficients s and ¢.

4. RESULTS OF DETALLED COMPUTATIONS FOR A DISK WITH THE FORM COEFFICIENT
A=0.9 '

A detailed analysis of the post-buckling state of a disk under unidirectional
bending and simultaneous shear was carried out, as an example, in the case of
which the form coefficient 1=0.9. Detailed computations were made on the com-
puter ODRA-1204. The results of these computations are presented in the form

t)
B

-
1% %9

14

?

|
0 ' 30 EE

F1G. 3. Curves £;;=const of the dimensionless disk deflection coefficient for 1=0.9 and v=0.3.

of the diagrams shown in the successive figures. And thus, in Figs. 3, 4 and 5 are
presented, successively, the curves & =const, {,,=const and £;,==const in the
coordinates system s—¢. Owing to this, if the values of the dimensionless disk load-
ing coefficients s and # are known, the values of &, &,, and &, can be easily
read directly from the corresponding diagrams, or determined from these diagrams
through interpolation.

A knowledge of the coeflicients mentioned above then enables one to carry out
an analysis of the disk deflections on the basis of the formula (3.27), In order to
present more clearly the character of deflections in the post-buckling state of the
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Fi1G, 4. Curves &;;==const of the dimensionless disk deflection coefficient for 1=-0.9 and p=0.3.

F16. 5. Curves &2, =const of the dimensionless disk deflection coefficient for 1=09 and y==0.3
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disk, the layer diagrams of deflections with different ratios of the loading coefficients
were made up. These diagrams are presented in Fig. 6 by way of examples for the
three foilowing cases of the disk loading, pamely: A4 — 5=25.95 and ¢=0, i.c. in
the case of pure bending, B — s=2298 and ¢=5.04, C — 5=23.51 and t=11.33,
e, with considerable share of the shear loading,

5-2595 . 5=22.98
y t=0 fy =504

=¥

5=2351
vy 121133

Fra. 6. Layer diagrams of disk deflections for different values of disk loading coefficients s and #
for A=0.9 and v=0.3,

Such a selection of the coefficient values s and 7 allows to estimate the influence
of shear, combined with bending on the form of the deflected middle.

For the purpose of determing easily the maximal deflection w,,,,, the diagram
presenting the curves w', =const in the coordinates s — ¢ was made up. This diagram
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(Fig..7) for the given values of the coefficients s and 7 makes it possible to determine
directly the suitable value of the dimensionless coefficient Wy and, next, to calculate
the real value of the maximal disk deflection on the basis of the definition {3.27).
In order to determine maximum of the assumed deflection function w (x, »), values
of this function were computed in a hundred points uniformly distributed over
the disk surface.

x=05a
=03b

35 s

Fi6. 7. Curves wi,,—consi of the dimensionless coefficient of the maximal disk deflection for
A=0.9 and y==0.3,

From the computations it follows that the maximat deflections of the disk after
stability loss may appear in the three different points of the middle surface, depend-
mng on the values of the loading coefficients s and ¢ The coordinates of these points
are: Xp,,=0.4a and p..,=0.4b —when the shear prevails in the loading of the
disk, x,,,=0.4g and y,,,,=0.36 — when the share of the shear in the loading of the
disk is smaller than bending, x,.,=0.52 and y, ,,=0.3b — when bending prevails.

In connection with this, the plane of the graph shown in Fig. 7 was divided into
three arcas. In each of these areas appear the same values of the coordinates Xmag
and y.., of the points of maximal disk deflection. The values of these coordinates
were determined with the accuracy of 0.1a and 0.15.

For the case under discussion, i.e. when the disk form cocficient A=0.9, the
values of the reduced stress (g),ax Were also calculated by such means as the
ones described in the previous section. On the basis of the results obtained, the
next diagram was made up, presenting the curves (o) dmax=const (Fig. 8) also
in the coordinates system s- 7. ,

In the course of computations the coordinates x,, and y,, of the point of the disk,
revealing the maximum of the dimensionless reduced stress, were also determined.
It turned out that the maximal reduced stresses appear at the points of the disk a)
— X,=0.5aand y,,=0— when the disk is under pure bending i. e. when 7==0, b) —
Xm=0 and y,,=0 — when the disk is under combined loading, i.e. when 5320 and #540.
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With regard to the accepted division of the disk, the coordinates x, were deter-
mined with the accuracy of 0.1a, and the coordinate y,, with the accuracy of 0.1,
If shear occurs in the loading of the disk, then, except for simultaneously applied
bending, rapid displacement of the point takes place and this leads to the maximal
values of the reduced stress. The point shifts from the middle of the disk (the point

t
14 |
12

10

Boundary of .
sfahility region

¢ 5 10 15 25 a 35 40 S

Fia. 8. Curves (of.s)ma=const of the dimensionless coefficient of the maximal reduced stresses
for =09 and v=0.3,

I-xnu.num‘.;‘(:
g T T

*y
Cyly g

FiG. 9. Normal stresses at the disk edges after stability loss for 1=0.9 and v=0.3.

X%,==0.5a, y»=0) to the corner {x,,=0 and y,,=0). Within the range of the pe'rformed
computations with the accuracy assumed, it was impossible to determine in a con-
tinvous way the displacement of the point of maximum stress.

After stability loss, a change of stress distributions at the disk edges takes place.
The stresses at the disk edges in the post-buckling state were determined on the
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basis of the formulae (3.19), (3.20) and (3.21) for certain combinations of values
of the loading coefficients s and ¢ The results of the computations are presented
in the form of diagrams in Fig. 9.

From the stress distributions shown in this figure we see that: at the edges y=0
and y=0 loaded before stability loss only shear stresses 7o, in the post-buckling
state the normal self-equilibrated distributions appear; the distributions of the
dimensionless stresses (0)),_o and (6,),=» are symmetrical to the axis x=q/2
when the disk is under pure disk bending only (=0). If the disk is under unidirec—
tional bending and simultaneous pure shear, the distnbutlons of the stresses o,
cease to be symmetrical to that axis.

The distributions of the dimensionless stresses o along the edges x=0 and
X==q become nonlinear in the compressed part of the disk in the post-buckling state,
and this nonlinearity increases with an increase of the values of the loading coeffi-
cients. The distributions of the dimensionless stresses o in the post-buckling state
of the disk are identical at both disk edges x=0 and x=q when the disk is under
pure bending only (i.e. when #=0). However, when t5£0, the distributions of the
normal stresses a* on the edges x=0 and x=a are different. These differences in-
crease with an increase of the d;mensmn]ess coeflicient ¢ of the shear loading. The
maximal values of the stresses o* appear at the two mentioned edges of the disk
in the points y=0.

On all edges of the disk the components cr:g and afg due to bending are equal
to zero. However, on these edges the shear.component ‘l‘: is not equal to zero,

5. CONCLUSIONS

All the relations describing the post-buckling state of the considered rectangular
disk have been presented in the form of respective diagrams in the coordinates
system (s, ) of the dimensionless loading coefficients. Owing to this, these diagrams
can directly be made use of in practical calculations of the stability and post-buckling
state of rectangular disks, like thin-walled structures. These diagrams yield informa-
tion about the stress or strains in a disk subject to known external loadings. In the
case when loadings exceeding the critical values may appear, such information is
essential in estimating the load carrying capacity of a construction in conditions of
local stability loss. -

Moreover, these diagrams can be used for: determining admissible values of
external loadings for a given disk, either on the basis of the maximal reduced stresses,
strength criterion, or on the basis of the maximal deflection criterion, obtaining
fundamental parameters of disk dimensions for some given external loading on the
basis of the criterion mentioned above.

Formally, all the relations presented here being the approximate solution of
the considered problem, are true for any value of a disk form coefficient 2. Practi-
- cally, however, with the assumed form of the deflection function, according to the
formula (3.1), the error will be small only for a disk whose shape is almost square,
ie. for orientation, when the disk form coeflicient is 0.4<1<0.95.
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For a more thorough analysis of the problem, compuiations presented in this
paper for the disk form coefficient 1=0.9 were also performed for some other values
of the disk form coefficients A, namely for i=0.4, 1=0.6 and A=0.8. In all these
cases the character and the form of the fundamental curves, namely &, =const,
&y, =const, & ,=const, wh_ =const or (5},5)m==const presented also in the coor-
dinates system s —¢, weré similar to the corresponding curves obtained for the case
A=0.9. .

In order to obtain satisfactorily accurate results. beyond the mentioned range
of the disk form coefficients 1, i.e. when A>0.95, one should assume the form of
a deflection function w (x, y) with a greater number of terms than that taken in the
expression (3.1). ' .
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o

STRESZCZENIE

STATECZNOSC I STAN ZAKRYTYCZNY PROSTOKATNE] TARCZY PODDANEJ
DZIALANIU JEDNOKIERUNKOWEGO ZGINANIA TARCZOWEGO I JEDNOCZESNEGO
SCINANIA

Zagadnienie dotyczy izotopowej, prostokatnej tarczy, swobodnie podpartej wzdluz obwodu.
W celu otrzymania przyblizonego rozwigzania zapadnienia przyjeto funkcje ugiecia wix,y), opisu-
jaca ksztalt ugigtej powierzchni srodkowej tarczy po jej utracie statecznofci, w postaci szeregu,
spelniajacego warunki brzegowe zagadnienia. Wprowadzono takZe funkcje naprezen Airy’ego @(x,»).

Dla okreflenia tych funkcii wykorzystano réwnania rdzniczkowe Kérména nicliniowej teoril
piyt, a dla okreflenia nicznanych parametrow, wystgpujacych w funkeji ugiecia wix,y), zastoso-
wano metod¢ Bubnowa-Galerkina. '

W wyniku otrzymano wzory, na podstawic ktorych okredlono skiadowe stanu naprezenia oraz
odksztalcenia tarczy za pomoca wspdlczynnikow bezwymiarowych. Na podstawie tych wzoréw
przeprowadzono przykladowo szczegblowe obliczenia dla tarczy o stosunku dlugosci bokow A=a/b=
=0.9. Wyniki tych obliczefi przedstawione w postaci szeregu wykreséw, opracowanych w sposéb
przydatny do obliczen praktycznych.,
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VCTOMYHMROCTE W 3AKPUTUYECKOE COCTOSHIE
OPSIMOYTOIBHOIO TUCKA HOOBEPTHYTOTO AEACTRHIO
OAHOHANPABAEHHOI'C AMCKOBOIO MI3IHWEBA W WIHOBPEMEHHOI'O CJBUTA

VinoMsaHyTad B HA3BAHHE 330aY¥a KACRCTCE M30TPONHOIC, OPAMOYTONGHOTO JHCKS CBOGOAHO
TMOANEPTOTO BHOND IepaMeTpa. C LEeTEIo MOoNyYeHHs TPROIHKEHROTO Peern 3aTaH, QYHEMH
mporeba w (x, y) — omACHEBA0Man Gopmy Hpordba CPEMUHEOA HOBEPRHOCTE HHCKS IOCIE TOTEDH
YCTOHYHBOCTH —— IPREATA B BAAS DANE, YAOBIETBODAIOETO TPARNTHNIM YCHOBHMM 22049%, Boe-
nera Takke dyaxnad ganpavenni Diips @ (x, y).

Jmst onmpenenemda 57X (yREuBE memomezopasel gEbbepeHIMaTEEEe ypapsermd Kapmana
REIMECHRON TEOpRH VAT, 4 A OTpPee/IeHAA HeH3BCCTHEIX DADAMET OB, BRICTYHAIOITRX B (JyBKIHK
nporaba w (x, ¥), npEveren, MeTon BybGroma-Ianepkma.

B pesynpTaTe DONYYCHE (GOPMYNEL, Ha OCHOBC KOTODEIX OUPEACHEHE COCTABISIONHE HALDI-
FEEHHOTO E JAeOPMANMOEHOTO COCTOSHE JHCKA OPH TOMOIM Oe3pasMEpHBIX koaddmumeHToB,
Ha ocuoBe 5THX (GOPMYT IPOBEACHR IPEMEPHEIe NogpoOHsle pacueTs!l O JECKA C OTHOMICHHASM
JUMH ¢TOPoH A= a/b=0,9. Pe3yILUATE 9THX PacIeTob OPCCTABICHE! B BEAE DAAA rpadHKos, H3E0TOo-
BICHEIX NPETOZEEIM 00pa3zoM I NPAKTHYECKEX PacieToB.
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