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DYNAMIC BUCKLING OF A SANDWICH BAR COMPRESSED
BY PERIODICALLY VARIABLE FORCE

W. M o r z u c h

Wrocław University of Technology
Wrocław, Poland

The paper presents an analysis of dynamic buckling of a sandwich bar compressed by
a periodically variable force. In order to determine the stability of the bar transverse motion
equations of its transverse vibration were formulated. From the equations of motion, differential
equations interrelating of the bar dynamic deflection with space and time were derived. The
partial differential equations were solved using the method of separation of variables (Fourier’s
method). Then an ordinary differential equation (Hill’s equation) describing the bar vibration
was solved. An analysis of the solution became the basis for determining the regions of sandwich
bar motion instability. Finally, the critical damping coefficient values at which parametric
resonance occurs have been calculated.
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1. Introduction

Sandwich constructions are characterized by light weight and high strength.
Such features are highly valuable in aviation, building engineering and automo-
tive applications. The primary aim of using sandwich constructions is to obtain
properly strong and rigid structures with vibration damping capacity and good
insulating properties. Figure 1 shows a scheme of a sandwich construction which
is composed of two thin facing plates and a relatively thick core [4, 5]. The core,
made of plastic and metal sheet or foil, transfers transverse forces and maintains
a constant distance between the plates. Sandwich constructions are classified into
bars, plates and beams. A major problem in the design of sandwich constructions
is the assessment of their stability under axial loads causing their buckling or
folding. The existing methods of calculating such structures are limited to the
assessment of their stability under loads constant in time [3, 5].

There are no studies dealing with the analysis of parametric vibration and
dynamic stability (dynamic buckling). This paper presents a dynamic analysis
of a sandwich bar compressed by a periodically variable force, assuming that
the core is linearly viscoelastic. Differential equations describing the dynamic
flexural buckling of bars are derived and regions of instability are identified. The
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dynamic analysis of sandwich constructions is of great importance for automotive
vehicles and aeroplanes, since most of the loads which occur in them have the
form of time-dependent forces.

Fig. 1. Scheme of sandwich construction 1 – plates , 2 – core.

2. Dynamic buckling of a sandwich bar

A simply-supported sandwich bar compressed by time-dependent force F is
shown in Fig. 2. Force F can be expressed as follows:

(2.1) F = F1 + F2 cos(pt),

where F1 – constant component of the compressive force, F2 – amplitude of the
variable component of the compressive force, p – frequency of variable component
F2, t – time.

Fig. 2. Sandwich bar compressed by force F .



DYNAMIC BUCKLING OF A SANDWICH BAR COMPRESSED ... 219

The cross-section of the sandwich bar is shown in Fig. 3. The basis for de-
scribing the dynamic buckling of a sandwich bar is the differential equation of
sandwich beam centre line. The equation can be written as

(2.2) B
∂4y

∂x4
= q − k

B

S

∂2q

∂x2
,

where B – flexural rigidity of the bar, q – load intensity, k – a coefficient
representing the influence of the transverse force on the deflection of the bar,
S – transverse rigidity of the bar.

Fig. 3. Cross section of sandwich bar.

In sandwich constructions the core is merely sheared and does not transfer
normal stresses whereby coefficient k is equal to one (k = 1).

(2.3) S = 2bcGc,

where b, c – dimensions of the core (Fig. 3), Gc – modulus of rigidity of the core
material.

Load intensity q can be written in the form:

q = q1 + q2 + q3,(2.4)

q1 = −F
∂2y

∂x2
, q2 = −µ

∂2y

∂t2
, q3 = −ηr

∂y

∂t
,(2.5)

where µ – unit mass of the sandwich bar, ηr – damping coefficient of the core
material.

After substituting Eqs. (2.5) into differential Eq. (2.2), the following differ-
ential equation is obtained:

(2.6) B

(
1− F

S

)
∂4y

∂x4
+ F

∂2y

∂x2
− B

S
µ

∂4y

∂x2∂t2
+ µ

∂2y

∂t2
+ ηr

∂y

∂t
− B

S
ηr

∂3y

∂x2∂t
= 0.



220 W. MORZUCH

The above equation is a fourth-order homogeneous equation with time-dependent
coefficients. It was solved by the method of separation of variables (Fourier‘s
method). The solution can be presented in the form of an infinite series:

(2.7) y =
∞∑

n=1

Xn (x)Tn (t) .

Eigenfunctions Xn(x), satisfying the boundary conditions at the supports of
the bar at its ends, have the following form:

(2.8) Xn (x) = An sin
(πnx

l

)
.

Having substituted Eqs. (2.7) and (2.8) into the differential Eq. (2.6), one
gets the following ordinary differential equation describing functions Tn(t):

(2.9) T̈n + 2hṪn + ω2
on (1− 2ψn cos pt) Tn = 0,

where

(2.10) 2h =
ηr

µ
, 2ψn =

F2

(πn

l

)2

µω2
on

.

The square of frequency ωon can be expressed as follows:

(2.11) ω2
on = ω2

o −
F1

(πn

l

)2

µ
,

where ωo – natural frequency of vibration of the bar when F1 = 0, ηr = 0.
The square of frequency ωo can be expressed as follows:

(2.12) ω2
o =

B
(πn

l

)2

µ

[
1 + B

S

(πn

l

)2
] .

Differential equation (2.9) is Hill’s equation in the form [1, 2]:

(2.13) T̈n + 2h Ṫn + Ω2
n [1− f (t)]T = 0.

If there is no damping in the core (h = 0) and assuming f(t) = 2ψ cospt, one
gets the following classical Mathieu equation:

(2.14) T̈n + ω2
on (1− 2ψn cos pt)Tn = 0.



DYNAMIC BUCKLING OF A SANDWICH BAR COMPRESSED ... 221

In order to solve Eq. (2.13), a change of variable was made and the solution was
expressed in the form:

(2.15) Tn (t) = e−htϕn (t) .

In this way, a new differential equation for function φn(t) was obtained:

(2.16) ϕ̈n + ω2
n [1− f1 (t)]ϕn = 0,

where

ω2
n = Ω2

n − h2,(2.17)

f1 (t) =
Ω2

n

ω2
n

f (t) .(2.18)

Equation (2.16) is the Mathieu equation without damping. Therefore for the
analysis of this equation one can use the solution of Eq. (2.14), substituting f1(t)
for f(t) and Ω2

n − h2 for ω2
n.

Let us now analyze the stability of solutions of the differential equation (2.16),
limiting the analysis to the first (most important) region of instability. First
the Mathieu equation without damping, i.e. Eq. (2.14), should be solved. Here
the author’s original method has been used for this purpose. The solution of
Eq. (2.14), containing the first region of instability, can be presented in the
form:

(2.19) Tn (t) = A (t) cos
pt

2
+ B (t) sin

pt

2
,

where A(t), B(t) – slowly variable functions of time t, satisfying the following
conditions:

(2.20) Ä ¿ Ȧ ¿ A, B̈ ¿ Ḃ ¿ B.

Expression (2.19) was differentiated and substituted into (2.14), whereby the
following differential equation describing function A(t) has been obtained:

(2.21) Ä (t) +
1
p2

A (t)
(

1
4
p2 − ω2

on − ψnω2
on

)(
1
4
p2 − ω2

on + ψnω2
on

)
= 0.

The solution of the above equation has the form:

(2.22) A (t) = C1e
λ1t + C2e

λ2t

where λ1, λ2 – the roots of the characteristic equation:

(2.23) λ2 +
1
p2

(
1
4
p2 − ω2

on − ψnω2
on

)(
1
4
p2 − ω2

on + ψnω2
on

)
= 0.
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Unstable solutions are obtained when λ2>0, i.e. when

(2.24)
(

1
4
p2 − ω2

on − ψnω2
on

)(
−1

4
p2 + ω2

on − ψnω2
on

)
> 0.

Introducing

(2.25)
(

ωon

p

)2

= z,

one obtains condition (2.24) in the following form:

(2.26)
(

1
4
− z − ψnz

)(
−1

4
+ z − ψnz

)
> 0.

The relevant quadratic equation which results from the above inequality has
the following roots:

(2.27) z1 =
1

4 (1 + ψn)
, z2 =

1
4 (1− ψn)

.

The solution of inequality (2.26) has been presented graphically in Fig. 4 and
expressed as:

(2.28) z1 < z < z2.

When substitution (2.25) was taken into account, the following relations de
scribing the boundary lines of the first region of instability have been obtained:

(2.29) 2
√

1− ψn <
p

ωon
< 2

√
1 + ψn.

The above relations are identical with the generally known expressions which
can be found, for example, in [1].

Relation (2.29) is illustrated graphically in Fig. 4. On the basis of the solution
of differential Eq. (2.14), differential equation (2.13) was solved and reduced to
Eq. (2.16). Finally, the following condition of instability was obtained:

(2.30) λ2 > h2.

When solving the above inequality, the relation for λ2 (formula (2.23)) was used,
substituting Ω2

n − h2 for ω2
on, and the following inequality has been obtained:

(2.31)
1
p2

[
1
4
p2 − (

Ω2
n − h2

) (
1 +

Ω2
n

Ω2
n − h2

ψn

)]

·
[
−1

4
p2 − (

Ω2
n − h2

) (
Ω2

n

Ω2
n − h2

ψn − 1
)]

> h2.
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Fig. 4. Solutions z1 and z2 of inequality (2.28)

By solving the above inequality, the following condition for the occurrence of
parametric resonance for a system with damping has been obtained:

(2.32) ψn > 2
√

ξn − 2ξ2
n,

where

ξn =
(

h

Ωn

)2

.

Also the following condition for the relative damping coefficient ξn at which
parametric resonance occurs was derived:

(2.33) 0 < ξn <
1
3
.

The roots of the appropriate quadratic equation which can be derived from
inequality (2.32) were expressed as follows:

z1 =
1− 3ξn −

√
ψ2

n − 4ξn + 8ξ2
n

4
[
(1− ξn)2 − ψ2

n

] ,(2.34)

z2 =
1− 3ξn +

√
ψ2

n − 4ξn + 8ξ2
n

4
[
(1− ξn)2 − ψ2

n

] .(2.35)

When z1 = z2, the coordinates of a ‘wedge’ of instability in system
(
ψn,

p

Ωn

)

are obtained. The equality of roots z1 and z2 occurs when the discriminant of
inequality (2.31) is equal to zero.

After performing appropriate transformations, the following equation is ob-
tained:

(2.36) z = z1 = z2 =
1

4 (1− ξn)
.
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Substituting

(2.37) z =
(

Ωn

p

)2

,

the following result is obtained:

(2.38)
p

Ωn
= 2

√
1− 3ξn .

Hence the ‘wedge’ of the first region of instability has the coordinates:

(2.39) ψn = 2
√

ξn − 2ξ2
n ,

p

Ωn
= 2

√
1− 3ξn .

The boundary lines of the first region of instability are shown in Fig. 5. In
a similar way as in the case without damping, the following relations for the
boundary lines of the first region of instability are obtained:

p

Ωn
< 2

√
(1− ξn)2 − ψ2

n

1− 3ξn −
√

ψ2
n − 4ξn + 8ξ2

n

,(2.40)

p

Ωn
> 2

√
(1− ξn)2 − ψ2

n

1− 3ξn +
√

ψ2
n − 4ξn + 8ξ2

n

.(2.41)

Relations (2.40) and (2.41) describe the upper and lower boundary line, respec-
tively.

Fig. 5. First region of instability (ξn = 0, without damping; ξn 6= 0, with damping)
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3. Example of calculations

This section presents calculations of a simply-supported sandwich bar com-
pressed by variable axial force F . The bar dimensions: b = 25 · 10−3 m, c =
7.5 · 10−3 m, t = 0.5 · 10−3 m, l = 0.5 m and the following data describing the
physical properties of the plate and the core material were assumed.:

Et = 68.67 · 103 MPa, Gc = 6.867 · 103 MPa, µ = 14.5 · 10−2 Ns2

m2
.

The flexural rigidity of the plates is expressed by

B = Et · I = 96.6 Nm2,

where I – moment of inertia of the plates’ cross-section with respect to the z
axis (Fig. 3):

I = 2btc2 = 14062.5 · 10−13 m4,

The transverse rigidity of the core was calculated from relation (2.3):

S = 2bcGc = 25751 · 103 N.

From relation (2.11), after equating ωo to zero, the first critical force F1kr

was calculated:
F1kr = 3809 N.

It was assumed that constant compressive force component F1 = 2000 N and
the variable component amplitude F2 = 900 N. From relations (2.11) and (2.12),
ωo and ωon were calculated:

ωo = 1018 s−1, ωon = 701.5 s−1. (Ωn)

The corresponding damping coefficient ξn = 0.01 was assumed. From relation
(2.10)

ψn = 0.25

was calculated.
From formula (2.40), the boundary value of coefficient ψn at which the para-

metric resonance occurs was calculated:

ψngr = 0.198.

If Ψn < Ψngr, no parametric resonance arises. It follows from the above that there
exist compressive force components F1 and F2 at which the bar does not lose
stability.
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Assuming that there is no damping (ζn = 0), from relation (2.30) the fre-
quencies of the exciting force at which the bar loses stability are calculated:

p′ = 1567 s−1, p′′ = 1215 s−1, (∆p = 352 s−1),

where p′ and p′′ are the frequencies corresponding to respectively the upper and
lower boundary line.

For damping described by coefficient ζn = 0.01 the following values were
obtained from relations (2.41) and (2.42):

p′ = 1487 s−1, p′′ = 1270 s−1, (∆p = 217 s−1).

The above calculations show that the frequency range ∆p in which instability
of the bar occurs is smaller when damping is present. Then the calculations for
F1 = 2000 N and F2 = 1500 N were performed. From formula (2.10)

ψn = 0.4

was obtained
The following boundary frequency values were obtained:

p′ = 1660 s−1, p′′ = 1086 s−1 (if ζn = 0),

p′ = 1606 s−1, p′′ = 1108 s−1 (if ζn = 0.01).

The following frequency ranges ∆p were obtained:

∆p = 574 s−1 for ξn = 0,

∆p = 498 s−1 for ξn = 0.01.

4. Conclusions

If the sandwich bar is compressed by a time-dependent force, there are several
ranges of the frequency of its variation in which the bar loses stability.

Damping reduces the force variation frequency range in which instability of
the sandwich bar occurs.

Owing to damping, there are certain values of compressive force components
(F1, F2) at which the sandwich bar does not lose stability.
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