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OPTIMAL DESIGN OF MULTI-PURPOSE SANDWICH BEAM-COLUMNS

" R.D.PARBERY and B.L. KARTH AL O O (NEWCASTLE)

The paper deals with the minimum-weight design of pin-ended members that have to act as
a beam in some situations and as a column in others. The space of design constraints is divided
into regions in which the optimal design is governed by either one of the two design requirements
ot both, The method is illustrated by the example of a member having a linear relationship between
stiffness and cross-sectional area (mass). The economy achieved by optimization is discussed.

1. INTRODUCTION

We study the problem of minimising the volume (mass) of a pin-ended member
of given length that is to serve as a beam for a part of its design life and as a column
for the rest, but nct both at any given time. Such optimization under multiple design
requirements can lead to a rationalised design of mass produced structural/mechan-
ical elements. At the very least it should point towards a rational use of materials.

Optimal elastic design for a single design requirement — maximum fundamental
frequency, maximum buckling load, etc. — has been investigated by many authors
(see, e.g. [1-4]). Likewise, minimum-weight design of multi-purpose prismatic mem-
bers was studied in [5 and 6]. PraGER and SHIELD [7] gave the ninimum-weight
design of a beam-tic of a given length under specified constraints on transverse and
longitudinal stiffness. The present work is an extension of this technique to the more
frequently met beam-column situations.

The problem under consideration consists in determining the cross-sectional area
(mass) distribution of a pin-ended member along its length that has its Euler buck-
ling Toad under axial compression greater than a specified minimum value maximum
deflection under a transverse load less than a specified maximum value. Moreover,
the member is to use the minimum possible material. The mathematical problem
is formulated in Sect. 2, wherein the necessary optimality is also derived.

The specified values of the minimum Buler buckling load and of the maximum
transverse deflection are the design constaints. In the optimization of multi-purpose
structures it is not unusual (see, e.g. [S]) that under certain conditions the optimal
design is governed by only one of the design constraints. It is important to examine
the space of design variables in order to delineate possible regions of single-variable
optimal design. This is done in Sect. 3. Finally, in Sect. 4 we present numericai
results for the simple case when the member has a linear relationship between stiff-
ness and cross-sectional area (mass) and discuss the economy possible due to op-
timization.
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2, FORMULATION OF THE PROBLEM AND OPTIMALITY CONDITION

In order to formulae the mathematical optimization problem it is conveniem
to consider individually the design requirements of the structural member.

2.1. Beam action

Consider a beam of variable cross-section and of a given length, 2L, pinned at
its ends and subjected to a transverse load 20 at its midspan. The transverse deflection
» (x) satisfies the following differential equatlon and boundary conditions in non-di-
mensional form:

2.n &" (x) Ve +0x=0, Ogx<l;
(22 2 (0)=v, (1)=0,

where the spatial variable and deflection are non-dimensionalized by L, =0Q/EcL>"~?
® (xX)=4 (x)/L* and it is is assumed that the second moment of area I(x) and
the cross-sectional area A (x) of the member are related through

2.3) F(x)==cAd" (x),

where ¢ and # are constants defined by the shape of the cross-section. In Egs. (2.1)
and (2.2) the subscript x denotes differentiation with respect to the non-dimensional
linear variable, and the boundary conditions (2.2) imply symmetry about the midspan.
The variation in « (x} has to be such that the following design requirement is met:

1 1
2.4) v(1)= ) f ot (x) w2, dx<v,,
[H]

where v, is the given maximum allowable deflection.

2.2 Column action

If the member considered in §2.1 is subjected to an axial compressive load P,
the deflection u (x) in elastic buckling satisfies the following differential equation
and boundary condition in non-dimensional form:

2.5 a” (x) thy + Pru=0,
(2.6) # (0)=1, (1)=0.

We are looking for the variation in « (x), that meets the following design require-
ment :

(2.7} P¢,=f oF dx/fu dx=Pg,

0

where Py=Py/EcI**~2 is the minimam permissible Buler buckling load in non-
dimensional form.
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The optimization problem under consideration reduces to finding the variation
a {x) that satisfies Eqs. (2.1), (2,2), (2.5) and (2.6) and the inequalities (2.4) and (2.7)
and minimizes the volume (mass) of the member

(2.8) | & (x) dx—min.
[1]

In writing the functional (2.8) the constant multiplier 2L has been omitted.

2.3. Optimality condition

To derive the necessary optimality condition for the optimization problem
(2.1)(2.8) we use the standard Lagrange muitiplier technique to include the given
design constraints (2.4) and (2.7) and write an auxiliary functional

1 1 1 1
2.9 ]I=f adx+ piy (Qwo—f " (x) 02, abc) + 1y (Pg f u> dx— foc" (x) ul, dx) .
0 43 4} 1}
The necessary optimality condition is obtained by setting the variation of # with
respect to « equal to zero, whereupon

(2.10) A"t (py ulo+ py 02 )=1,

It is worth noting that the solution u (x) of the homogeneous boundary value problem
(2.5)12.6) is only determined to within a constant multiplier. Accordingly, the
Lagrange multiplier y, could be incorporated into # (x} as a normalisation factor.
However, in the numerical solution procedure used here it was found convenient to
normalise u (x) in a different manner (see Sect. 4), and hence the multiplier g, is
retained in the optimality condition (2.10). '

For the sake of definiteness we present below the sclution for the case when
n=1, i.e. when the stiffness and the mass are linearly related. This is true, in partici-
lar, of sandwich members and universal rolled sections. In this simple case the ne-
. cessary optimality condition is independent of the control variable « (x). Before
presenting the proper solution it is important to examine the space of the design
constraints Py, vy, @ to delineate any possible regions of single-variable optimal
design,

3. POSSIBLE SINGLE-VARIABLE OPTIMAL DESIGNS

As mentioned in Introduction, it is quite likely that under certain conditions the
optimal design of a multi-purpose structural member is governed by only one of the
design constraints involved. Accordingly, we need to examine the maximum de-
flection of the optimal sandwich column [2] under a transverse load, as well as the
buckling load of the optimal sandwich beam [3] under axial compression.

3.1. Maximum deflection of optimal column under transverse load

The minimum-weight design of a pin-ended sandwich column was obtained
in [2]. In this case the optimality condition (2.10) reduces to u,, = — 11/ i1, whence
it follows that u (x)=x (2—x)/2)/t,, which satisfies the boundary conditions (2.6).
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Finally, the variation of cross-sectional area along the length of the column is given
by Eq. (2.5) (with n=1) to be « (x)=Px (2— x)/2, which satisfies the design constraint
(2.7) identically if P==P;. The same result was obtained in [2].

If the optimal sandwich column were to be used as a beam, then the deflection
at the point of application of a transverse concentrated load 2Q would be v ()=

i
= ) f aw’, dx. Substitution of o, from FEq. (2.1) with n=1 and o (x), gives v(1)=
L]

=0.77260/P. Thus, if the given design constraints v,, @, Py in the multi-purpose
optimization problem satisfy the inequality P, v/0>0.7726, the optimal sandwich
column will have suificient flexuaral stiffness to meet the deflection requirement.
In other words, the optimal sandwich column is also the optimal design under
constraints on both the Fuler buckling load and the maximum deflection under
a transverse concentrated load.

3.2. Buckling load of optimal beam under axial com};ression

The minimum-weight design of a pin-ended sandwich beam under a given con-
straint on maximum deffection was obtained in [4]. In this particular case the opti-

mality condition reduces to vxx-_-#-lll/ﬁ;. 1t follows from Egs. (2.5), (2.6) and
(2.7) that, when n=1, a(x)=0x/2v,.
=Y If the optimal sandwich beam were
to be used as a column the critical
buckling load is given by the solation
of Eq. (2.1) and (2.2). The differen-
tial equation has a closed form
solution in the Bessel function J,.
It transpires that for the optimal
beam p<<0.7229 Q/v,. Thus, if the
given design constraints vy, Po, O
in the multi-purpose optimization
problem satisfy the inequality P,
2o/0<0.7229, the optimal sandwich
A beam will have sufficient stiffness
Fi1G. 1. Plane Po, Qfve of design constraints. to meet the buckling load require-
ment. In other words, the optimal
sandwich beam is also the optimal design under constraints on both the maximum
deflection due to a transverse concentrated load and on the Euler buckling load.
From the above inequalities it follows that the optimal design is governed by
both design requirements only in the narrow region ‘

(3.1 0.7229< P, 1,/0<0.7726.

MR
The plane of design variables (P, Qf,) is thus divided into three regions as shown
in Fig. 1. In region I, bounded by the straight line Py 9,/Q=0.7726, the optimal
design of the beam-column is identical to the optimal sandwich column, whereas
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in region III, bounded by the straight line P, vo/@=0.7229, it is identical to the
optimal sandwich beam, Only in the narrow region IT bounded by Eq. (3.1) is the
optimal design dependent on both the design ré’guirements. In: this region the opti-
mality condition (2.10), with =1, has to be solved in conjunction with the boundary
value problems (2.1)-(2.2) and (2.5-(2.6) and the constraints (2.1} and Q7.

4. SOLUTION OF MULTI-PURPOSE OPTIMIZATION PROBLEM

If the. given design constraints are such that they satisfy the inequality (3.1), then
the optimal design is governed by both the coltmn and the beam - action. In -
this general case, the optimality condition (2_.10);’ after substitution for v, and Uy,
from’ Egs. (2.1) and (2.5) respectively, takes the following form: n

.1 [/ Qfwo)F=p1, (Poo/QY v?+ i, 0 x2,
Moreover, from Eqs. 2.0, 2.9 and (2.10), it follows that
(4.2) vo V=[xV 1= 2, dx.
. T _
The differential equation of cohtmn buckling (2.5) m:iy be rewritten as

Pﬂo H
(4.3) . B ™ ™ ——

Q " P‘Ug 2 T,
i ) u2+y2vox2

and the constraint (2.7) (on- buckling load) as

§0 1 1 ;

(4.4) [ Qo2 ax) [u2 dx>Poyjo.

. S0 : 0 ST

Before presenting the numerical procedure used to solve the optimization pro-
‘blem, it js worthwile examining the behaviour of the buckling deflection funcion.
i (x) as x—0. To do this, let us assume that as x—0, i varies as Ax+ BXx,. Substitu-
ting w=Ax+Bx, into the optimality condition (4.1} and equating the coefficients
of like powers in x, we find that the lowest order term corresponds to p==2. From the
optimality .condition (4.1) and the differential equation (2.5) it follows that, near
x=0, - : _ . : . T

(45 ' 0=li =;(PU‘;) u: (0) -
IR L7 = et
V 4\ ] %Ot

x—+0
Which'i_s. a finite quantity. C__onsequently,:to satiéfy the cbndition that the bending
. moment vanish at x=0, the area must vanish, i.e. o (0)=0. ' '

P

Ty
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The following iteration sequence was followed to solve the multipurpose optimi-

zation problem: '
(i) Assume g, >0

(ii) Estimate p, v

(iii) Estimate K—Pfaﬁ/Q, and hence find the variation of «f(Qfo,) from the
optimality condition (4.1).

(iv) Integrate u,, (expression (4.3) twice to find v, and u using the fourth-order
Runge-Kutta method from x=1 (e (1)=1, u(1)=0) to x=#, where & is the step
size. (Note that the deflection function u (x) in buckling is normalised such that
# (1)=1, which means the other boundary CO]]dI‘th]l 1 (0)=0, cannot be simul-
taneously satisfied).

{v) Extrapolate from x=~hto x= 0 by Taylor’s series, and check whether # (0}=0
is satisfied within permissible limits.

(vi) Calculate a fresh value of K=Pu,/Q from Eq. (4.4), and repeat steps (iin)-(vi}.
(vii) Calculate a fresh value of g, v} from Bq. (4.2) and repeat steps (ii)-~{vii)..
The value of u (0)=0 in step (v) was-used as a check on the accuracy of compu-

tations. The error was less than 1.5x 1077, Typlcal requirements were 5—6 inner
loops (steps iii-vi) and 3 outer loops (steps ii—vii).

f%) pr=000, K-07229,
1 ! ' =005, K=07361,
— p, =010, K=07470,
| e arad
=02,
04 , ‘!ﬁ,’ 025, K=077%.
a3 -
0.2 - b
ar - - -
[ 1 | |
a 02 o4 a8 a8 10

F1G, 2. Variation of « with x.

The variation of the non-dimensional area « (x) is shown in Fig. 2 for various
values of K=P, v,/Q within the range 0.7229<K<0.7726. The corresponding val-
ues of y, are a so given. Actually, the value of g, was assumed and the correspon-
ding value of K calculated in step (vi) from the relation (4.4). Also shown are the
extreme cases — the optimal sandwich beam (linear variation in a (x)) when K=

=0.7229 and the optimal sandwich column (parabolic variation in o (x)) when
K=0.7726.
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In order to estimate the economy achieved by optimization (efficiency of opti-
mization) let us compare the volume of the optimal beam-column with that of
a prismatic bar of the same length, as well as with that of the optimal sandwich
column and optimal sandwich beam.

4.1. Comparison with prismatic bar

The deflection at the midspan of a prismatic (x=constant) pin-ended bar of
a length 2L under a transverse load 20 is given by » ()=0/3x. Thus, a=0/3v,,
if the design requirement v(1)=w, is met. The critical buckling load of the prismatic
bar is given by P=x?, so that if Py wo/O<72/3 (as in our case), the maximum de-
flection as a beam is the governing factor. Tn other words, «/(Qfvg)=1/3. .

For a given value of Qfv, the volume of the prismatic bar V. is therefore
equal to 1/3 except for the constant multiplier 213, ‘

The volume of the optimal beam-column Voot to within the constant multiplier
213 is easily evaluated numerically. 'The efficiency of optimization as evidenced by
the percentage saving in material, (1 - Voot! Visiam) 100, may be judged from Fig. 3.

25 -
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Fi1G. 3. Saving compared with prismatic member,

As noted above, it is instructive to Judge the efficiency of optimal beam-column
design against the optimal sandwich beam (linear variation in « (x)) and the optimal
sandwich column (parabolic variation in « (x)).

42, Comparison with optimal beam (linear tapering)

For given values of P,, Q, v, the size of the optimal sandwich beam of a length
2L is governed by P, since the resulting Q/v, will then be larger than any specified
value. of the volume of the optimal sandwich beam ¥, to within the constant
muiltiplier 2L3 is given by

V Vheam=0'25 (Q/ﬂﬁ)beam=0'3458 (PO 7"l]."Q):»‘ as (PO wO/Q)beam=0'7229'

The efficiency of optimization in comparison with the optimal sandwich beam,
{1 = Vopu/ Vieam) * 100, may be Jjudged from Fig. 4. ’
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.4.3. Comparison with opnmai column (parabolic tapering)

For given values of Py, O, 2, the size of the optimal sandwich column of a lcngth
2I, is controlled by Q/v, since the resulting Euler buckling load will then be greater
than any specified Py, The volume of the optimal sandwich column, ¥, to within'
the constant multiplier 2L3 is given by Voo =0.2575 (Qf0) : ‘

The officiency of optimal bmm~column design in comparison with the optlmal
cotumn, {1 — VeatlVeor) - 100, may be judged from Fig. 4.
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TG, 4, Savings compared with lapered members,

5 DISCUSSIQN

The minimum- wctght (voiumc) demgn of a mulu -purpose pin-ended member.
that is to serve as a beam for a part of its design life and as a column for the res:
is 1llustrated by a member having a linear relationship between stiffness and masst
The space of design consiraints is closely examined to delineate any regions of
single-variable optimal design. It is shown that the regions where both the design
constraints are active is rather narrow. The efficiency of optimization is measured
by comparing the volume of the optimal multi-purpose ‘member with that of a pris-
matic bar and a bar with linear (optimal beam) and parabolic (optimal column)
tapering. It is shown how much (or rather how little) can be gained by m nlti-purpose

optimization over single-variable optimal designs. However, one can anticipate
a substantially bigger gain for other relationships between stiffniess and mass (n=2
or 3). The present formulation is directly applicable to these situations, although
the numerical solution procedure will be further. complicated since the control
function (o (x)) will appear in the optimality condition, too. Moreover, the single-
-variable optimal designs (optimal column or beam) are not available in a closed- .
-form, although the bquthﬂS could easily be obtamed w:thm thc multi-purpose
opt!mlzatlon scheme. : '
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STRESZCZENIE

OPTYMALNE PROJEKTOWANIE WIELOZADANIOWYCH PRZEKEADKOWYCH
TR ' BELKO-KOLUMN

. W pracy rozpatruje si¢ problem projektowania zakoniczonych sworzniami elementéw, o mini-

. maluym cigzarze, kiére w pewnych sytuaciach muszg dziata¢ jako belki, a w innych jako kolumny.

" Przesirzen wiezow projektowania podzielona jest na rejony, w ktorych projekt optymalny okre§lony

jest przez jeden z dwu wymagan projektowanych lub tez przez obydwa jednoczeinie. Metoda jest

. zilistrowana przykladem elementu o liniowym zwigzku pomiedzy sztywnoscia i polem przekroju
" poprzecznego (masg). Przedyskutowano tez oszczednodé osiggnicty przez optymalizacje.

Pesrome

OITUMAJIBHOE TIPOEKTHPOBAHWE VHUBEPCA JIBHBIX
- MPOKJTAROYHBIX EAJIKO-KONOHH

B jjaﬁbm pdccma’l_'pnnaercsl npobiema t{pocxmposam OKOHTEHHEIX TITTRIPAME JNMeMEHNTOR,
¢ MEHHMATLHbIM. BECOM, XOTODHE B HCKOTOPHIX CATYAUMAX IONAHE NEfCTBOBATE - KAK Gairky,
& B ApYrEx Kak xomaonusl. IIpocTpaEcrBo cessel Hpoemponam pasfieNcHo na ma'a pakiona,
P XOTODLIX ONTHMAILHBLH IPOEKT OHDEASNEH KaKHM-HHOYHD I3 HBYR TPOEKTHRIX TpeGonamui
W Fe oboma TpeGoBiEMEMA OAHOBpeMeHHe. MeToxn HIIOCTPHPOBAY TTIPHMEPOM  3NICMEETA
C MEEHTEM COOTHOMEEHEM MeRy HeCTKOCTRIO H JONeM IOREPeTHOTo ceveHua (Maccol). Obcyx-
ACHA TOXKS HKOHOMYA HOCTATHYTAY OYTEM ONTAME3AIMM, '
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