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EDDY VISCOSITY IN ACCELERATED AND RETARDED CASCADE-WAKE
- FLOWS

JW. ELSNER and 1. WILCZY NS KT (CZESTOCHOWA)

The paper presents the results of both theoretical and experimental analyses of the eddy visco-
sity evolution behind the row of symmetrical bodies in a cascade flow with a longitudinal pressure
gradient having a constant value in a downstream direction. The investigations have proved that the
eddy viscosity coefficient decreases decidedly with the growth of the coordinate %,. For X, > 11 it
appears Lo be the increasing function of the longitudinal pressure gradient,

NoTtaTIONS

I aerodynamical pitch of the cascade fiow,
P, P, g static, total and dynamic pressures,
¢ cascade pitch,
U, mean velocity components,
U, undistorbed flow velocity upstream of the cascade plate
U; space average value of the cascade-flow velocity,
I

turbulence velocity components,

pu ;. turbulence stresses, turbulence stress tensor,

X Cartesian coordinates,

o relative aerodynamical pitch of the cascade flow,
£ parameter of mean flow nonuniformity,

y dimensioniess average velocity,

# dimensionless coordinate (5=x,/1),

p fluid density,
vy eddy viscosity coefficient,
g initial turbulence of oncoming flow.

1. IntrRODUCTION

In spite of many investigations carried out in the domain of turbulence, the
problems of turbulent flows continue to be of major interest in a number of scien-
tific laboratories.

One of the particular questions in this vast and interesting field of knowledge
is undoubtedly the evolution of turbulent wake flows. Although the wake problem
related to the single isolated body has been the subject of a great deal of scientific
research, this topic is not covered by a large bibliography and literature which would
discuss significantly the evolution of the velocity behind the arbitrary airfoil cascade.
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In particular, there is a distinet Jack of analysis concerning the influence ¢xerted on
the macro- and microstructure of the cascade-wake flow by the longitudinal pressufe
gradient with a constant value in a downstream direction.

The development of the wake shape behind a single isolated body has been the
object of studies of numerous scientists. As an example we can quote here the works
of ScuticaTiNG |1], GORTLER [2], REINCHARDT [31, Kovasznay [4], and above all
TOWNSEND 5, 6, 7, 8] whose studies, especially in the period 1940-60, considerably
enlarged the actual state of knowledge of the structure of turbulent shear flows.

Far less numerous are the works dealing with the flow pattern behind the cascade
of aerofoil blades. One of the first investigations in this field was undertaken by
Orsson [9] who, on the basis of the mixing length concept, derived the relationships
describing the process of mean velocity field equalization in cascade flow without
any longitudinal pressure gradient.

The evolution of the cascade flow was also studied by STewart [10], SaTo [11]
as well as by Tamaxi and OsHmMA [12], authors of experimental analysis of the
turbulence structure in a flow behind the row of parallel rods. The empirical data
obtained by Sato pointed out that the distributions of turbulent shear stresses in
any flow cross-section were similar to the variations of the mean velocity gradient;
this suggested the mutual proportionality of the quantities mentioned above.

Consequently, in all the planes perpendicular to the main flow, the cocficient
of eddy viscosity vy was nearly constant, slightly increasing with the growth of the
distance from the rods.

On the contrary, the experiment of TAMAKI and OsmiMa [12] found vy to be
a decreasing function of the coordinate xy, approximately according to the 1¢lation
pp~x; L :

Discussion on this subject was continued in the works [13] and [14], dealing
with the development of the wake flow behind the cascade of symmetrical bodies.
The theoretical considerations were based herc on the assumption that the overall
velocity field may be described by means of two velocity scales, different for the -
mean and for the turbulent motion. Moreover, the eddy viscosity coefficient was . |
found to be constant across the wake and to decay in the downstream direction
according to the relation yp=cxy *, with the parameler ¢ dependent on the turbu-
lence intensity of oncoming flow. |

An interesting study of a flow field behind the grid of parallel bars was present-
ed by Krarr [15]. In his analysis of the relations between the production and
dissipation of turbulence, Klatt stated that the production was noticeable in a close
vicinity of the grid only. Eddy viscosity in a flow cross-section was expressed by the
Fourier series and supposed to be a power function of a distance from the bars.

The presented rewiev states that none of the quoted papers has analysed to what
extent the eddy viscosity in the cascade-wake flow was affected by the longitudinal -
pressure gradient.

The first attempt at an empirical penetration of ihe cascade-wake flow problem
in complicance with the longitudinal pressure gradient was undertaken in the work
[16]. In particular, it was found that the negative pressure gradient accelerates the
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mean velocity field equalization and damps the turbulent fluctuations of the ﬂoWing
medigm,

The presented paper, being the sequence of the previous one, is devoled to the
theoretical and experimental analyses of the eddy viscosity evolution in the cascade-
-wake flows with a constant value of dp (¥,)/éx, in a downstream direction.

2. THEORETICAL CONSIDERATIONS

The starting point for the theoretical description of the type of flow considered
here is the equation of turbulent motion in which the influence of compressibility

as well as molecular viscosity may be disregarded as negligible. On the basis of the
assumption mentioned above, this equation can be presented in the form

@.1) Ujgm= ~— e —

The flow behind the cascade of symmetrical bodies may be treated as a two-di-
mensional one (U, =0). Moreover, when the coordinate system is assunted in accord-
ance with Fig. 1, the component U, of the mean velocity becomes predominant

Deo Xz( pixs)

(U:/U, <1).

FiG. 1. Mean velocity field behind cascade plates.

The mean velocity profiles in the cascade flow (see Fig. 1) may be, according to
[91 or [14], expressed by the relation

B
{2.2) U (xy, x2)=U,(x,) [1 — 5 cos 2un|,
where the parameter of the mean-flow nonuniformity f js defined as
(2 3 - _ Umax_ Umin
3) Flag=—,

The velocity U, from Egs. (2.2) and (2.3) can be acquired from the continuity
equation according to the formula

12

Uy t= f U, (xy, X;) dx,

—~H2
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and stands fcr the space-average value of flow velocity behind the cascade
plates.

The term in Eq. (2.1) including the longitudinal pressure gradient may be re-
placed by the suitable combination of the velocity field components, what demands,
however, additional analysis of the type of flow under consideration.

Tt is quite simple to solve the problem in the case of a boundary layer or in the
wake flow behind a single, isolated body where, in ihe outer region characterized
by the undisturbed flow velccity U, the velocity field may be treated as a potential
one and where the formula

p
pi(x)=p(x)+ 5 U2 (x;)=const
is to be fulfilled.

In the cascade flow, however, due to total pressure losses, the total pressure p, (xy)
cannct be treated as an absolute constant value along any of the streamlines.
Undisputed experimental evidence observed in a number of cascade flows proves
that there is a faster equalization of the static than the total pressure in the down-
stream direction. Thus, at a relatively soall distance behind the plates, the static
pressure distribution becomes practically independent on the coordinate x,. In such
circumstances the space-average value of the total pressure (p,,) may be determined
in several different ways, depending on the assumptions taken into account:

P
P:rn=p+ 'E_ sz (xl) [
12673

p
*#z +____ o
ptm p 2l(x1)
0

1
(2.5) UZ(xy, xz)dxz=P'_*“ 5 U32(1+‘8—Bz):

I{xs)
#**_

P 3
Py =P U (xy, x2) dxz*‘ﬂ’"‘? Uf(1+—8—ﬁ2),

L P
20 H(xy) p
It is to be noticed that all the formulae guoted above differ from each other only .
by the factcr comprising 2, the influence of which decreases rapidly with the growth
of the coordinate x,. Since in the considered region of flow (£>9) the value of
3/8f* does not exceed 0.00375, this allows us to accept the expression (2.6) and
assume that the quantity p¥, is practically independent of the coordinate x,:

(2.6) Pemlx)=p", =p(x,)+0.5p U} {x,)=const
what yields
1 dp dU,
2.7 — ==l
( ) - P 3x1 $ dxl

In the two-dimensional flow analysed here, the coefficient of eddy viscosity in
conformity with Boussinesq concept may be defined as

Uy Uy
V1T < 3U L fox,

and assumed to have a constant value across the wake flow (cf. {7, 11, 14]).

(2.8)
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Substituting Eqs. (2.6) and (2.7} in Eq. (1.1), the latter, after bilateral multipli-
cation by x, dx,, can be presented in the integral form ‘

”2( 8U, . 90, dUs) i 2 87 g,
(2.9) f U, x, U, pg U’dxl X3 c,\’.2=vrf ?x—zz—xz dx,
(1] [+

The lateral component U, of mean velocity may be evaluated fromt the conti-
nuity equation for two-diniensional, incompressible flow as

(2.10) Uy= f (~ U, 8x,) dx,.
Applying the relations (2.2) and (2.10) in Eq (1.9), one may easily find the ex-
pfe‘;Slon
21y 12 (4+ whox )+U1 dB(] +”2)+
(2.11) dx, 8 2 dx, \f 8
dl n?  n? E)
—_— e = ¥3
+Usldx1(2 ST 472 vy,

which, after some simplificaticns, leads to the asymptotic equation

,dU, Ui 1* a’B Uldl )
dxl ﬁ dl 3 d _'471' VT.

(2.12)

Introducing here the quaniities

@ (e)=I(x)t,
(2.13) yr)=U(x, U, ,
X =xft
and keeping in mind that wy= , Eq.(2.12) can be expressed in the dimensionless form
1 df 2 dy 4n? |

e T,
214 By dx,  y* d®, . v U.t'

If, furthermore, the reduced static pressure is defined by

P~ Pw
0.50U2

(2.15) . p=

then, after utilizing the rel tion (2 6), the longitudinal pressure gradlent will be
expressed as

{2.16) G=——= —2y——

e Tl
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which, when integrated within the limits %,, (,)o and J, B, leads finaily to the relation

. - i
(218 B=Bo exp[ f (“EZ”* ;m : vr) df‘n]

K Y
(xt)o

expressing in the most general case the parameter of the mean flow nonuniformity f
as an implicit function of the quantities @, y and vr. Since the latter depend in a cer-
tain unknown way on the coordinate %, it is impossible to obtain the analytical
solution of Eq. (2.18) in a closed form.

Let us assume, however, that along any streamline: ®=dp/dx,=const and that,
according to experimental evidence, the parameter B may be treated as the power
function of the distance from the cascade

R
{2.19 —-—=[ — .
) Bo (*1)o
Substituting Bq. (2.19) in Eq. (2.17), the resuit may be expressed in the form
22 vrp 1 (¢+rc)
) Ut 4x2y\y* %[

which describes the eddy viscosity evolution in a wake flow with the longitudinal
pressure gradient having the constant value in a downstream direction. By applying
the last relation, it is possible to determine the eddy viscosity coefficient 1n a rela-
tively simple way by using the measurements of the mean-velocity field parameters,
which makes the “metrological” solution of the problem easier.

Tt should be noticed here that the longitudinal pressure gradient 9p/o%, may be
realized by the flow spreading in the x; x5 plane as well. In such a case ! (x)=/=const
and after neglecting the third term in the left-hand side of Eq. (2.12), one can easily
find

Vr y [ & di)
2.21 R LA
@21) Uyt 47:2(931 2y%

To be precise, the relations (2.20) and (2.21) are valid only at a sufficiently far
distance behind the cascade, where the approximations made during their derivation
may be assumed to be fully justified.

Nevertheless, even in the nearer wake region the above formula gives a quick,
though not so accurate estimation of the eddy viscosity coefficient.
In particular, for cascade flows without the longitudinal pressure gradient (&=
=0 and y=1) Eq. (2.20) is directly transformed into the relation '
v ®
(222) te— it

=—%
Ut 4n?™t

already given in the quoted paper [14].
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3. ORGANIZATION GF EXPERIMENT

In order to verify the theoretical considerations previously presented, a suitable
program of experimental studies was set up and realized in an open-circuit, subsonic
wind-tunnel in a wake flow behind the row of parallel flat plates. The constant
value of a longitudinal pressure gradient downstream of the plates was secured
by means of the elastic, suitably formed walls of a measuring channel, the cross-sec-
tion of which could be varied approximately according to the relation

. Xy —-1/2
(3.1 A=4d, (A2/A1)2*[(A2/A1)2”‘“I]f} .
It enables us to obtain the static pressure and its gradient from the equations
r _'Pw
n= —-21—=
and
dp‘ —=(d,jA)

In order to estimate the influence of the inflow turbulence lev 1, the experiment
was performed with two different values of the initial turbulence intensity g,=0.9
and 8.2%.

The test stand and the measuring equipment applied have been described in
more detail in the paper [16]. '

Since the relative error of the Reynolds shear stresses #; #, was :stimated to be
at the level of 10%;, the uncertainty of the eddy viscosity coefficient could be eval-
uated to be of the order of 15%,.

4. EXPERIMENTAL RESULTS

As it has been previously menticned, the main aim of the investiga ions was to
check to what extent the cascade flow evolution was affected by the longitudinal
pressure gradient of a censtant value in a downstream direction. The initial stand
testing showed that the linear dependences p=p (x,) were achieved with satisfactory
accuracy and, consequently, the condition #=485/9%;=const could be fulfilled
exactly.

The picture of a mean flow evolution is shown in Fig. 2 where for five different
values of the pressure gradicnt @ the maxin:um and minimtm velocities of a cascade
flow have been plotted in a dimensicnless form against the coordinate %,.

The influences of 8p/d%, is manifested not only by the retardation or acceleration
of the mean flow but also by the changes of intensity of mean velocity ficld equali-
zation. It is easy to notice that with increasing distance from the cascade plates,
the mean flow nonuniformity decays more rapidly in accelerated than in retarded
flows, :
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Moreover, the experimental data confirm the validity of a power functional rela-
tion (2.19) — see also [16]— and prove that the exponent x (Fig. 3) is a function
of both the pressure gradient @ and the initial turbulence intensity &.
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Fic. 2. Bvolution of mean velocity in a downstream direction.  Fra. 3. Bxponent x in terms of re-
lative pressure gradient &,

The evolution of normal (;z—f, u2) and shear (u; u,) turbulent stresses is cited
after [16] in Fig. 4. As it can be seen, all the components of the turbulent stress-tensor
are strongly affected by the longitudinal pressure gradient. It is worth noticing
that at 8p/6%, =const the turbulent shear stresses decay in a downstream direction
more rapidly than the normal ones; this fact points at the overall tendency towards
the state of isotropy noted in the majority of turbulent free flows.

Functional dependence between the eddy viscosity coefficient v, and the longi-
tudinal pressure gradient @ is presented in Fig. 5. The empirical results obtained
during the experiment were calculated from the Eq. (2.8) and compared with the
results obtained from the theoretical equaticn (2.20) previously derived.

It is easily seen that in the mearest control plane x,==11 considered here, the
maximum difference between the values given by the both methods does not cxceed
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2095, However, it sheuld be remembered that the above relation based on theoretical
considerations is of an asymptotic character what means that its accuracy increases
in larger distances from the cascade where approximation made when Eq. (2.20) was
derived have a great precision. Beginning from the distance %;>15, the relative
discrepancy of both methods does not exceed 109 and fails completely within
the limits of measurement accuracy which, for the quantity vy, has been estimated
at bout 15%,. This statement verifies the validity cf the functicnal relation

vr=vr [P, k (P, 50)1

formulated befcre and, at the same time, confirms the correctness of the theoretical
analysis of the phenomena considered here. Further analysis of the data showed in
Fig. 5 leads, moreover, to the conclusicn that in the far regicn of the cascade flow
the eddy viscosity coefficient appears to be an increasing functicn of the longitudinal
pressure gradient.

5. CONCLUDING REMARKS

Theoretical considerations and the experimental data presented in this paper
confirm the existence of the influence exeited by the longitudinal pressure gradient
on the evclution of the overall flow pattern behind the cascade of symmetrical
bodies. In particular, in the type of flow considered, the eddy viscosity coefficient
may be evaluated with satisfactory accuracy from the fermula (2.20) which enables
the value of vy to be divectly obtained only from the measurements of the mean
flow parameters. Moreover, in the region %, >11, eddy viscosity appears to be an
increasing function of the longitudinal pressure gradient,
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STRESZCZENIE

LEPROSC WIROWA W PRZYSPIESZONYCH 1 OPOZNIONYCH STRUGACH
ZAPALISADOWYCH

Praca przedstawia rezultaty teoretycznej i eksperymentalnej analizy ewolucji lepkodci wirowej
za palisada cial symetryczoych w strugach z podiuznym gradientem ci$nienia o stalej wzdhuz przeply-
wh warfosci.

Badania wykazaly, Ze wspolczynnik lepkosci wirowej maleje ze wzrostem wspohzednej X1,
stajac sie jednoczeénie (dla x, > 11) rosnaca funkcje podhuinego gradientu cisnienia.

Pesrome

BHUXPEBAA BA3KOCTDb B YCKOPAEMBIX W B 3AMEIJIAEMBIX
SAPEMIETOUYHBIX CTPYAX

Pabora npelcTapisieT pe3ylLTaThl TEOPOTHYECKOTO B SKCOEpEMEHTANEHOTD AHANM3A SBO-
JIFOTIRH BEXPEROM BHIKOCTH 32 PEIICTKOH CHEMMOTPHICCKHX TEJL B CTPYSX C IPOJONLERIM IPATRCHTOM
DJABNCHAA O NUWOCTOARNHOM 3HAYCHME BHOMH TCUCHHSA.

Hiccnenopanpa TIOKA3AMM, YT KO3(hOhRIMEHT BHXPECROM BAKOCTH YORBAET € POCTOM KOODIE-
BATH ¥;, CTAHOBACL ONHOBPEMERHO (nns x;> 11) Bospacraromeli JyRENEEH HPOLONEROTO TPaf.
HeHTA I{&BJE\EHHH.
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