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.SOLUTION OF THE DIFFERENTIAI EQUATIONS GOVERNING THE
EQUILIBRIUM OF A SKEW—CURVED BEAM

D.E. PAN_AYOTO'_U'NAKQS and P_._S. THEOCARILS (ATHENS)

The pregsnt paper deals with the closed form so] ution of the differential equations, with variable
cosfficients, governing the equilibrium of a skew or planar-curved beam- This problem is associated
with a system or twelve coupled linear dlﬁ'eiennal equauons of first order, the closed form solution
of which was achieved through tow analytlcal methods.

NOTATION

Throughout the text we use a global right-handed coordinate system Oxyz
and the Frenet trihedron- A (4, n, b) corresponing to any point A of the center line
of the curve. Einstein’s summations convention is inaplied for all repeated indices.
Also; dots are used to designate differentiations with respect to an arbltrary para—
meter # and the superscupt ”T” to mdlcate the transpose of a vector.

NOMENCLATURE

=[x,y (u) z (u)]" position vector, |
K ()=[(x*+y*+2>—§3¥/82]~! radius of curvature,
T (W)=[r (+ X P)(K? §%)]-1 radius of torsion,
S arc length of the curve,
CI=[t, (1), ¢, (), ts )]T unit-tangent vector pomtmg to the direction of
_ the increase of arc S, _
n=[n, (#), n, (#), n3 W)]" unit-normal vector pointing to the center of
B curvature, _
b=[b, (u), by (1), b; (1)]" unit-binormal vector, defined in such a way that
'  the corresponding Frenet trihedron is a rlght
handed system,
R=[F, (), 1, (6), T, )]" vector of internal forces,
M=[M, (u), M, (), M, ()]" vector of internal moments,
Y=[, (), Y, (), Y, @]" vector of rotations,
W= [W. (1), W, (), W, )]7 vector of deflections, _
=[q; (), 4, (), g, W)]" vector of external continuous force, .-
== [m, (), m, (), m, (@)} vector of external continuous moment,
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P=[O: )*'0 Atb/hbs AO Atr:/hn]T

w={[l #,, 0, 0]"
Atb=t0_tu, .df,,—'—-f,.—t;

vector of temperature differences,

vector of temperature of the centroidal axis,
constant temperature differences of the limits of
the cross-section with respect to the axes b and a,
temperature of the centroidal axis,

moduli of elasticity and shear,

coetlicient of thermal expansion,

torsional moment of inertia,

moments of inrtia of the cross-section about
the axes of nand &

coefficients depending on the shape of the
cross-section, ‘

maximum dimensions of the cross-section

parallel to the axes of # and b,
F cross-section area.

1. INTRODUCTION

The problem of the linear elastic analysis of skew or planar-curved beams under
static loading has attracted the interest of many researchers. The differential equa-
tions governing the equilibrium of a skew or planar-curved arc in terms of generalized
forces and displacements have been presented in various studies [1] to [6]; however,
these equations were applied only in special cases, such as helicoidal girders and
circular arcs. In these cases the resulting differential equations are linear with the
constant coefficients since the radii of curvature and torsion are consiant. Also
the stiffness approach and the flexibility method have been used by many investi-
gators [7] to [16] in analysing skew or planar-curved beams with constant radii
of curvature and torsion. Particularly, in reference [16] based on the principle -of
virtual work the flexibility matrix of a skew-curved beam is obtained. Finally,
BERGMAN [17], McMaNUs [18] and Wasmzu [19] proposed approximate methods
for the determination of internal forces and displacement components of the afore-
-mentioned problem.

The present investigation deals with the development of 2 closed form solution
of the differential equations (with variable coefficients) governing the equilibrium
of any arbitrary skew-curved beam. The equilibrium equations of a skew arc element
based on the linear elastic analysis are given in references [1] and [6]; they are,
generally, associated with a system of twelve coupled linear differential equations
of first order with variable coefficients, parameterized to the arc length S. In this
paper these equations are converted to a new, arbitrary parameter # and, in the
sequel, the closed form solution is obtained through tow different analytical methods.
The first method consists in decoupling the previous equations ot first order so that
a new system of linear differential equations of third order with variable coefficients
derives, the closed form solution of which can be obtained. The second method is 2
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straight integration of the coupled lincar differential equations using the matrix
algebra. The main difference between the two previous methods is that in the first
one miechanical knowledge was necessary, while in the second mathematical analysis

was the tool of solution. Finally, the methodology which is followed in the first
method is succesfully applied to the case of planar curved beams.

2. MATHEMATICAL FORMULATION

Consider a skew-curved beam of uniform cross-section, whose centroidal axis
is defined in a global coordinate system Oxyz by the position vector # () and the
radii of curvature and torsion K () and % () respectively; consider also at an arbi-

Wy My Ty
BB

F1G. 1. Geometry and sign convention of a skew-curved arc under arbitrary loading.

trary point of the beam the Frenet tiihedron A (/, n, b). The differential equations

governing the equilibrium of a skew-arc element (Fig. 1) expressed in the arbitrary
parameter u are:

1
i '=A
g B=AR+g,
2.1) 1 |
§M=AM+BR+m;
L
—s“ ¥=A¥+C M+p,
(2.2)

. '
3 W=AW4+B Y+D B+w,



490 ‘D. E. PANAYOTOUNAKOS' AND P. 8. THEOGARIS '
where .
' 0 K 0 0 0 ¢
A=l l={-1K 0 1z, B=ibj=lo 0 o ,
0 -l 6 0 11
- 1/G1, 0 0
C=rcii]: =0 =1/EL, - @ ),
o - 0 -1E,
o [=1EF 0 0 ..
D=id;)=y -0 =1/a4sG6GF . o L.
0 0 — 14, GF

We remark that the vectors RM Y W, g mpw anél matrix A are continuous
and continuously differetiable functions of #. Note alsd that axes of Frenet trihed-

ron coincide with the prmc1pa1 axes of inertia. of the cross section,
In the sequel we make use of the well Known Frenet relations:

$ .'_;s- 8 18
Kn o "_K

Y

2.3 1=

The solution of the system of vectorial equatlons (2 1) and (2. 2) écm be achieved

through the follomng two analytical methods.

3. FUNDAMENTAL SOLUTIONS

3.1, First method

Equations (2.1) and (2.2), after differentiations and appropriate re\arrangements

lead to the following differential equations:
L@ T fo @ T+ fo ) Tet fo () T=8° a4 (),
. . . . 1 : . .
(31) T,=K l:"S_ T:“‘l:]]> b
1, 1 '
Tbx'c "é_ T, +E Tt"—qﬂ‘ ’
S @) M+ 1, () M+ (1) Mo+ 1o () M, =83, (),

0
(3:2) M=K [%?Mf“""“]’

Mr"_Tb_mn:I;

1 1
= = Y +—
Mb T [ S Mﬂ K
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Fo @ et fs @) et o @) Byt ) Py =53 ay (),
1 .
(33) . t'pn=K l—s_ ‘Pt—'cll Mt]s

1. 1 AI,,
%=1’ “g"%*‘f% €, M,— 4,

hy

£ ) Wk s () Werk o 6 Wk f ) Wy =89 i ),

54 Wu%K[é We+d, T~ 2 ts], |
1, o '_ _
W=t [Ewn+i'wt“¢b—d22 Tn];
where ‘
fi W)=k,
S2 (wy=(=K)'+1K,
(3.5) [ =8 (-r 1;—) +S2(%+§) _g“fz (u)—%fx (), .
o\
fa (u)zsz (‘I‘{”)
and
T "1 K 1
a (H)=[_S' (K‘lr).] —§—+?q,+(1:q")' _Sm“_{_q.b,
&y (1) =lL(Kmt)-].i +£ m, +(Tmr;). _1“ +Hmy+ (vT,) ‘1' ~T,,
2 - S S
1 K
a; W)y=d,, [ (KM,)] + Ay Mitdy, (tMy) +d33 M+
(3.6 |

At 1 n At,
+ﬂoh—b7 —+ Ao PR

i K
dy (u) =d, [ (KTr)] +d11 T +dz (7T, +(’“I)b) o
K
_“I)Jl+d33 Tb+':; AD ts-

1t is worthwhile remarking that each equation from Egs. (3.1), to (3.4) can be solved
once the solution of its preceding equations is known. Thus, Eqs. (3.4) can be solved
it a, (1) is known, which presupposes that Egs. (3.1), (3.2) and (3)3) have been
integrated. Basing on the previous assumptions, the determination of the unknown

Lezprawy Intynierskie — 1%
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vectors R, M, ¥ and W can be achieved throughout the solu‘non of a linear differen-
tial equation with variable coefficients of the form:

(3.7 FL@E @+ () § (s WD E @i ) g W=k ),

where g (1) and its derivatives denote one of the functions T,, M,, ¢,, W,, while
k (1) one of the functions 8% ; () (j=1,2,3,4,).

The general integral of the homogeneous differential equatlon of Eq. (3.7) is
given by:

gD ‘(“)=CE gi (u) (I=ls 25 3):

where g; (1) are three linearly independent solutions and ¢, integrated constants,
For the determination of the previous three independent solutions the following
observation is made; it is known that the homogeneous equation (3.7) describes
the response of a skew-curved beam subjected to a static loading applied at its ends.
Consider that this beam is subjected at one end to three unit generalized forces
T., T,, T, in directions parallel fo those corresponding to the Frenet trihedron;
then the projections of these forces on the tangent (normal or binormal) to the
Center line at an arbitrary point of the beam should satisfy the homogeneous differ-
ential equation (3.7); consequently € (&} (n; () or b,(w), i=1,2,3, are three
independent solutions of this equation. This is clearly shown by inserting t; into the
foregoing equation, and by using the relations (2.3). The above procedure is also
valid for the generalized'forces M,, M,, M, and generalized displacements @, {,, g,
and W, W,, W,. The part:cular integral g, (#) Eq. (3.7) depending on the functmn
k (1), is determined by the method of variation of constants.

Thus the partictlar integral is given by
(3.8) g, (W)=t; @) f k@b, ydu  (i=1,2,3)

and the general integral of Eq. (3.7) by the formulae

39 g W)= b )+ () [ k(@) by () du.

One may observe that the second member of Eq. (3.1) is a function of the external
loading only and is therefore known, Uulike this case the second members of Egs.
(3-2)1, (3.3); and (3.4), are functions of the external loading together with generalized
forces and displacements. In order to separate these quantities in the right-hand
sides of Egs. (3.1),, (3.2),, (3.3); and (3.4);, we can write

an;+E1 §7 agyo

Fi g 0,=F 00, T Fy 800y

Fl,s'aan: Fl S3a —Fl §3
Fi g0 0, =F g0 0y, T Fy

a3 azz?

where §% ¢,,, §% a5,, §% a5, and §° a,, refer to the external loadmg, while S @22,
83 @3, and §% a,, to the generalized forees and displacements. -
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.. /At this point it is convenient to give the expression of the functional Fy g
(j=1, ..., 4—k=1, 2) defined on the corp of real numbers as follows:

agx

(3.10) Fy 0 0, =80 W)=t ) [§° () s @) b, (u)

where a; denotes one of the functions ayy, ¢ 1, day, dyy OF @ya, dy,, 4,5, Moreover,
it. is convenient to introduce the functionals

By o =m0 [ 8% () an () b, () du,
(3.11) v o
F3 g0 0, (u)f S (W) ay (W) b; () du

satisfying the following relations:;

FI &3 “J'kzi—- Fz,_ga ajy’

. S S

(3.12) Fy 504, EFI- $ap T 50,
) e S '
;_E3;s3ﬂjkmls ajk——?anés‘Uk‘.' =

Now, by means of the relations (2.3) to (3.6), of the general integral (3.9) and
using the relations (3.10) to (3.12), ¢ne may readily obtain the expressions for the
generalized internal forces and displacements R, M, ¥, W at any point of the center
line of the skew-curved beam. Thus the following matrix equation can be obtained:

RT TG O 0 ©[C] [®

M| |E ¢ @|lc|, |m
(3.13) v{=|FH ¢ wl|lc|tv|

wl 1) 3 E el|lc] |w

in which C,, C;, C,, C,, Ry, My, ¥y, W, are submatrices of dimensions (3x1) and
G,E, H.F, J, 1, {0} are submatrices of dimensions (3 x3). The analytical expres-
sions of the previous matrices is given in the Appendix. Note that the submatrix
G is always non-singular; this is so as it can easﬂy be shown usmg the relations
(2.3) that G~ —GT and det G=1.

3.2. Second method
The four vectorial equations (2.1) and (2.2) are all of the general form:
(3.14) . r=SAr+87,

where v denotes one of the vectors R, M, ¥, W while f one of the vectors 2 B R
+m, C M+p, B ¥+ D R+ w. Equation (3.14) is completely solved if a:fundamental
matrix G of dimensions (3 x 3).of the corresponding homageneous. system is known;
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in fact, if G is known, the particular integral of Eq (3 14) can be obtained by the
method of variation of constants.
The homogeneous system of the. vectorial equation (3.14) is

(3.15) . =S Ar,

Also, the vectorial equations Frenet (2.3) may be written under the form of a matrix
equation as

(3.16) p=5 A,
where
v=8{ n HT.
Finally, Eqs. (3.15) and (3.16)- lead to the following relations:
3.17) r=(expfSAdu) C, n=(expfs‘A'du c,
’ ] [

where

’ r !
C=(cy, ¢3, €3),  C'=(cl, ¢, )"

are vectors of arbitrary constants. Through the comparison of the relations (3.17)
we infer that the matrix
t, t, t;
G=|n, n, n,
b, by by

is a fundamental matrix of Eq. (3.17), that is GC [C=(c;, ¢, ¢5)7] is the general
solution of the homogeneous equation (3.15). This is clearly shown by inserting GC
into the previous equation. Hence the general solution of Eq. (3.14) is givén by
the formulae

(3.18) r=GC+G j’ $ GLf du.

Finally, the solution of the system of Egs. (2.1) and (2.2) may be derived uuder
the form of a matrix equation as :

, Rl [G {0 {0} 0}][C. R,
M K ¢ {0} {o}|]c M,
(3-19) r[=IL M ¢ w|lc |yl

W NP K Ggllc] [m

where the submatrices G, K, L, M, N, P, {0} are of dimensions (3 x3), while the
submatrices C,, C;, C,, C,, R;, M,, ¥,, W, of dimensions (3x1). The analytical
expression of the foregoing matrices is glven in the Appendix.
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4. APPLICATION TO THE CASE OF A PLANAR-CURVED BEAM
Introducing into Eqs. (2.1) and (2.2) the value for the torsion of the curve I/v=0,

the respective differential equations (3.1) to (3.6) become for the case of a planar-
-curved beam:

B I V% .
K@ T T=Sa ),
T,
“.1) T,=K [g— - q,] .

cTy= fs%d‘“‘i'ch
on .

M, S
[K——*]+ M,=S a; (),

S Im,
4.2 Y ML o
(4.2) K[S_mf],

B M,,z_f‘ S (=T,+m,) diitcy;

[ ‘-gf l to "I’r“s a3 (u)

(4.3) . .‘pn:K[_q:L_Cil Mr]: c

. A l.
q’b"-f (CaaMb Ao ] )du‘i'cs:

w.T §_ .
[‘“‘3]* Wesa .
@44 wn=K{g——d11» T, ~%o r,],

Wb=_' fs ()l_d33 Th) du+C4., .
where

1 :
a, (u) =5 ®a) +q.,

1
L i (u)=T(Km,)'+m,,+T,,,
s
4.5 -
i At
a3 W)=c, (KM,Y = 3 T M+ i —— h,

1 L1
aq ()= dy (KTr).‘S—+d22 Tot s+ 40 4K g
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Following the procedure outlined in the previous section we integrate the differential
equation

- ' . TK S
(4.6) : [ﬁé (u)] T e@W=k(w, .

where g () and its derivatives denote one of the functions T, M, . W and k {1)
one of the functions Sa; (@) (j=I, ..., 4. Using the Frenet relations for the case of
a planar curve expressed by :

I= E'nS,‘ n= ‘”‘I—{IS
we can readily prove that the homogeneous. equatlon of the self-adjoint differential
equation (4.6} has a solution of the form

o (”)"Ci £ (W) +eat, (w).

We remark in passing that a self-adjoint equation with coefficients expressing
the curvature and the radins of curvature of a planar curve has always a closed
form solution,

One may prefer to determine the partlcular integral of Eq. (4.6) by introducing
the Green function (see reference [20]). Thus the general solution of the previous.
equations can be written as :
gy=uf—vg+F,
where : '
_bt@-t b _Gt@-tt®
I 2 S Y

and , T . _
Fe=(iF,— 6 1) [u @ [o@k@ o) fu© kO]

Note that the symbols ~ and — are mtroduced to characterlse functions for the
- values =0 and z=4 in the space-[0, #]. :

5. CONCLUSIONS

In this investigation two analytical methods for establishing the closed form
solution of the twelve doupled linear differential equations of first order with va-
riable coeflicients, governing the equilibrium of & skew of planar-curved beam, are
developed.

The main feature of the first method consists in decouphng these equations and,
using mechanical knowledge, in finding the closed form solution of the new ones.
The second method is a straight integration of the twelve. coupled linear differential
equations by means of matrix algebra. Finally, using both methods the determina-
tion of the generalized internal forces and displacements at. an arbitrary point of
the center-line of the beam can easily be achieved.




SOLUTION OF THE DIFFERENTIAL EQUA'TIONS GOVERNING THE EQUILIBRIUM ... 497

APPENDIX

The analytical expression for the matrices éf the formulae (3.13) is given below:
CCo={e;}, C={anst,  C={eieh Ge={tus},
G={G;}: G,=t;, Gy=n;, G;=b
L E={E;}: Ey=Flg, o Buy=FH g, Ei=F §s9;— %hy;
F={F,}: FU=FI,S'3¢:J—’ F21=Fs.§aa_,"Kci1 Fl,S‘SvJ,

Fs=F; g a; €t (KFl,éauj) —C22 "-'Fz,s;s\,JZ

H“{Hu}3 Hu:F],s'aﬂa H2j=F2,S‘Jpj_KcII.tj_9
Hy;=F; 6., €4y (Kt;)' —c¢;, 5
I={L,}: By=Fy 6 wy L;=F, g w,;+Kd11 n;,
IzJ=F3,S'3 mj+du (Knj)‘—"-' [Fa,s'auj_'cu (KFI s'suj)-_czz TFZ,S;MJ];
Py

J={JU‘}: J!J:Fl,_s's_cqj:s-. -J21=F2,§3

doy=F3 45,7 [F;,,,s;s”_c“ (Ktj)'_czé n;]

and
Fl, Sra,, f .1?1.9;3- vy .
Ro"'—" co 2 Mo= legavu—Kﬂlt ,.
o _ F3 g0y, — T (o +m,)
Fi, 85 a5 +09)
Y,= Fs.s'a(aa +ppC11 KF],é’ua ’
Fs, & ayi+e9—C11 (KFy, éavu)'"" ;T (5, Saug ™ Kmy)—iy Atufhy
[ 7 Fr 8 aytog) = ]
W= Fy $3 (aer 40 T KA1y o~ Ko 1,
[ . . . . , B )
F3- $ (41 +°n)+d11 (KP'O) “_2'0 s K- [F3a g (asitpg) €11 (KFI, & "0)] -
l —~Ls5 T(Fz’s'3vo_'Ki]l"‘"—TAO db/hb)“—'rdzz ;()J
where o

v, =g () —nj, |
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_H‘dll

- T 4,.K  dy o
o= [g (KF, 3 vj)] to Tyt (e v) T3 (Fy 6o, —7h)),

1 .
<PJE—S_ v (£, §9p,—Cr1 (Kt;) —€;2 )] —Fp ¢ o, TKE b,

1 .
w;= PJ+§' i~ (Fs, 800, €11 (KF, g2y, — €22 er,S-s,,j)] —F g0, K Fy g5y,

K

;0=Fz,§aa“ _§Qra

" 1 {K Y '
!L():Fa,s;.““"’ﬂ ~S— g‘h +Qn s

1
Vo= dzy — "‘S“ {tto) %o,

<

Ay, | I 4.K d., .
po= s | Lo |+ P, g (W g0, +
+dys [Fy g0y, — T (o +my)],

_..dll T ..‘ d; K d;, ..
w= g g EPuen) | ¥ Fusa, T g (75 +

1 ) . : f .
+§ [T (F3, g3 (a“+%)—c11 (KFI,S.a\Do) —Ca, T (Fzs S'avo'—Km,)"'T)»O ‘dtb/hb} —_—

- z,_é=(asl+peh+K°u Fy gy, a5 o,
j=1,2,3.

The anlytical expression for the matrices of the formulae (3.19) is given below:
K=G [ $G7Bdu, "M=G [ $G” CGau,
L=G [ $67CKdu, P=G [ $G" BMdu,
n " "
N=G [ $G” Bldu+G [ SG" DGda, R,=G [ $G” gdu,

My=G [ $G'BRy+m)du, ¥;=G [ SGT (CM,+p)du,

Wo=G [ SGT (BYy+DR;+w) du.
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STRESZCZENIE

ROZWIAZANIE UKLADU ROZNICZKOWYCH ROWNAN ROWNOWAGI
PRZESTRZENNIE ZAKRZYWIONET BELKI

W pracy otrzymano w postaci zamknietej rozwigzanie uktadu rownan rézniczkowych o zmien-
nych wspotezynnikach opisujacych rownowage belki zakrzywionej w przestrzeni lub plaszczyinie.

Problem ten sprowadza sie do ukladu dwunastu sprzezonych liniowych réwnan roézniczkowych

pierwszego rzedu ktédry scatkowano metodami analitycznyeni.
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Peswme

PEIIEHUE CUCTEMBI JUDOEPEHIUAIBHBIX YPABHEAMIA PABHOBECI/IH
TIPOCTPAHCTBEHHO WCKPABNEHHOM BANKI
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