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'MAGNETOHYDRODYNAMIC FLOW PAST A SPHERE

e TRV R LR

S.SWARUP and P.C. SINHA (NEW DELHL)

This paper deals with the slow steady flow of an incompressible; viscous, electrically-conducting ’
fluid past a sphere in the presence of a uniform magnetic field. The magnetic field is weak and is
aligned along the free-stream du'ectlon The solution is sought by the method of matched asymptotic
expansmns under the assumptlons that the magneuc Jpressure num‘uer f=0 (1) and R,.,<1 R<1

1. INTRODUCTION -

The MHD flow past a sphere: at small Reynolds number has been the subject
of study for many past vears: The first attempt in this direction was made by CHESTER
[3] who obtained a solution for the Stokes flow neglecting the disturbances of the
magnetic field and the inertia of the fluid. Assuming that the Reynolds number R
and the magnetw Reynolds number R, are small as compdred to the Hartmann
numbur M the author found the drag on a sphere correct to the ﬁrst order to be

Dy being the Stokes drag. CHANG [2] generalized this to Include any body of Tevo~
lution aligned with its axis parallel to the uniform stream at infinity.:

Luprorp {10] and Goton [6, 7} fook into- account the effects neglecied by
Chester by using an Oseen type approximation in which the quadratic terms in the
disturbance quantities are neglected in thé equation of motion. CHESTER [4] restudied
the problem for a three-dimensional body and gave-a general criterion for the use
of Oseen’s equation as an approximate representation of the full Navier-Stokes
equation. Further coutrlbutloll on the subject have been made by Bors [1], Levy
[9] and CABANNES f13]. _

In the present paper the slow, steady flow of an incompressible, viscous, electn-
cally-conducting fluid past a sphere in the presence of a uniform magnetic field is
studied by using the method of matched asymptotic expansions. The applied magnetlc
field is weak and is aligned along the free stream direction. The basic assumptlons
made here are that the magnetic pressure number == (M %[RR,,) is of O(1) and R, <1, 7
R<1, The solution requires the matching of two asymptotic expansions for each
quantity, one of them valid near the body and the other far from it.
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2. MATHEMATICAL FORMULATION

Consider the steady motion of an incompressible, viscous, electrically-conducting
fluid past a sphere of radius @ in the presence of a uniform magnetic field parallel
to the undisturbed flow. Let the free stream velecity be Ui so that H #1s the magnetic
field at infinity. The governing equations for an am—symmetrlc ﬂow in dlmensmnless
form, are determined as follows:

R(q:V)g=—Vp+V2q+SR(VxH)xH,
Y:q=0,. _
VxH=R,,,(qle) ,
V-H=0,

@.1)

where R (=Uajv) is the Reynolds number, R,(=Uauo) is the magnetic Reynolds
number, M(=uH, aVc/py) is the Hartmann number, fiad" f(=M2/RR,) is the
magnetic pressure number. '

The pertinent boundary conditions are.

q=0 atr=1,

22) . . '
. H is continuous at r=1.

3. METHOD - OF SOLUTION-

The above systeﬁl can be solved by introducing two expahsionsf an inner
expansion (Stockes region) which holds near the surface of the sphere and an
outer expansion (Oscen region) which holds in the region for away from the
sphere. Now we shall discuss the construction of these expansions and the corre-
sponding equations.

As in the case of a classical problem the inner expansxon which holds in the
Stokes region, is of the form

q~ dotRq+...,
3.1 ' P~ potRpit..,
H~x~Hy,+R, . H+....

Further terms in the expansions of q and p beyond those shown involve the
product of the powers of R and log R, as have been obtained by PROUDMAN and
Pearson {11] and Cusster and BreacH [5] for the non-conducting flow.

3.1. Outer expansion

Since the inertial terms and the viscous terms are comparable in the Oseen region,
the outer expansion can formally be obtained from the exact solution by the limit
process R—0 with the outer variables (£, ) which are defined as

~

#=Rx, JF=Ry
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fixed. In terms of the outer variables the surface of the sphere becomes F=R and
hence, in the limit R—+0, the sphere cannot canse any disturbance. Therefore, the
outer limit jis §°=_i.'Thé governing equations in the outer region are

@V a= -+ g+ ),

. ﬁ""i=0:
{3.2) SRR . S
VXH:ﬁm_(qx'H)a
‘ R
S V-H=0,
where
1 -
3 : e p=—p,  q={.
3.3) zPs 4=1

The appropriate boundary conditions are
(3.4 g—f, H~i and -0 as Fooo,
Llearly, the outer expansion is of the form
q~i+Rq;+...,
3.9 P Do+ Rpi ..,
Hri+R,H +... .
1t is required that the outer solution, besides satisfying the boundary condition at
infinity, matches asymptotically with the inner solution in some overlapping domain.
3.2. Zeroth-order inner solutfoﬁ ‘
Substituting the relations (3.1) info Egs. (2.1); to (2.1),, the zeroth-order inner

equations reduce to

Viqu=Vpo, V+qu=0,
G.6) go=V¥YpPo Yo

VxH,=0, V:-H,=0,

whose solutions subject to appropriate boundary and matching conditions are [12]

__( 3 1)A (Bx(l 1)
g"’_174?4;"5"1 4\, e

(3.7 3x

Po = 2)"3 1
H,=1{.
3.3. First-order outer solution

The equations to be satisfied by q;, §, and H; are

d
‘ V2 — ) =Vp,, V-q,=0,
G.8) ( 0% q:=VYp, Y- q

vxﬁ_«l:ale, V'HIZO’
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'I‘he solutlon of Eq. (3 8); is well-known [12]

y Ty - Lo
. _-'.,.ql_—__i}gr'__?eIIZ(x r)l____,_z-_el,'z(x r)(Fz +F3)r,
9 .
(39 3
_pl'= _"2’?1

while the solution of Eq. (3.8), is obtained -as .

- 3 3 : AnPn(lu')
(310) Hl_[__+_ellz(r r)]l‘i‘V{ Py (ﬂ)_‘h*eu‘z(v r)+. Z ’7";1-—-]’

27
“where p=cos § and 4, are constants to be determined from the matching condition.

3.4. First order inner solution . : N
The corresponding first-order equations in the Stokes region are

Viq=Vp +(qo- V)06,  V-q:=0;

G.11)
VXH1=quir R ‘.V°‘H1=0:

with the solutions [12] N

- 3( 3 1+2x)A+f'53-[1'+'I 3(1 1)

—x PO r 73.2 473, s " r“-_‘ i+

(37.172) 3 [2 31 5 2( +__6 +_4. 4 )]
+~§2— r_ PR ¥ 3 _.‘FT rs . re T»

3[ 6 2 177 (12+12 1)] 9 x+7(1 3xz)
PR T e T T ATV &

F

while H, has been found to be
s H_Bx(l'*',l‘)"" .’(1 , r)P" r:+'
@13 Ma= o ga )V, T P00

+ Z [ Y P,, (u}+B, P (#)]]L.‘

where the constants A, B, are io be determined from the boundary and matching
conditions.

3.5, Solutions insfde the sphere _
Inside the sphere, =0, H,=1{. Also, the equations satisfied by M7 are given by
(3.14) VxH;=0, V-Hj=0
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having the solution

(3.15) H:= 2 BV [ P(i)],

where B] are determined from proper boundary conditions. :

Ine order to determine the constants involved in Equations (3.10); (3 13) and
(3.15), we first match the two solutions given by Eqgs. (3.10) and (3.13). The remaining.
undetermined constants in Eq. (3.13) and those in Eq. (3.15) are then obtained
by applying the boundary condition (2.2},.

. Thus, the first-order. and Ainmer soluuons 111 magnetlc ﬁelds reduce to

% 1
H, __[ 1+€112(x "}]l+ 5 V[ Pl(#)___elJ'Z(x r)_}_ 1
| 3x 11y, 1. r 1
3.16 = | e—— 7 B, _
(10 B =7 ( P 3,.3)_%+V[(12,_;_~ S )Pz(”)

3 1 AT
Pl () — ( 12r )]

' 3 1
(3.17) ) Hn—V[ NGICET ZPZ(M)]

Also, the saiution."_!ir_l_side(" the sphere is

© 3.6. Second-order outef Solufwns

The second-order outer SOLAticH §; is of O (R,) and can be obtained by solving’
the equations 5
Vi —') =Vpj,+ +§.. K

(3.18) ( o |42 = Y2 ﬁ(fI%yf 9'1 )
V=0, : —

with the boundary conditions that it vanishes at infinity. From Eqs (3 18) it follows_
that fi, satisfies the equatlon :

- BQI‘C :
R v S
(3.19) ST VRS

the solution of which is given by

) Co P, (1) 3 1 % 2%
(3.20) pz=27ﬁ+ﬁ[2ﬁz(m——e"”" ”(,, T?z“’_*?s")]-

=0

Using the relations (3.9); and (3.20), Eq. (3.18), reduces to

d v C, P, .
(3.21) (Vz_a—)fh VZ—FT*EM—)-'—f [?Pz(ﬂ)]_

=0

ﬁN[( b 2;2) -~~ 3[)’( P 3)(1)
-7 2 Y- =]+
s Vgt te)ene g gtz iF

e
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U Let
(3.22) : = A e

The particular solution . q,, of (3.21) is: .-, ..

U a1 B[ 3y e
T R N L v A a AP v o -y o
. n=0

FE+/ - 27 1) HPT R
3;5'[{ ( +1)2~(1+,2 (1+1)+
a 1M Vot RATZIRFTY B R

+1 "““l“c(l'+3~c+2£)]uzc )+3ﬁ{ L D1+
Fo Ui\t e ,(+.)(yJ+ZC)

7
5oy w5 L3 3]
Y & et sl +FI~—k % st |

3 T
+ —;l(fj-l-fi%) S e (x—r)] .

and the complenientary function fhclof Eq. (3.21)' is given by

- . Y X FoAR
(3.24) Goo=—3ple 2 ’(2' 575 +F_3)+1121:
where q,; singular the equations

oo a\. o -
{3.25) Vz—-a—; 1=0,  Vqz;=0,
having the solution
- e e dyr Bw)

(3.2 = —Xs T Tna s Tme
{3.26) 421 Vrp+Vx+( Y T
with

WMZD,, a’x"( )+Rlogr+5ﬂ

5

te
xX= Z oy [Aell?-(x r)]+Se" f 5 45,
N F, sl 12 (-7
e 3 nf o]
n=0

in Eq. (3.24), the exponential term satisfies the Eq. (3.25) and this term taken to-
- getherwith Eq. (3.23) satisfies the continuity Eq. (3.18),.

r+x
N
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- In terms of-inner variables (F=Rr), Eq.-(3.22) is written as
3 [1 ( 3x 3y 3z £)+1{( f 3x2)_|‘_"
G2 w=fl\ T3 T e T TR T T2 o
i ¥ 3xy Tz 3xz)} {(3 Ix 3x3)
+J(r(x+r) 2r3).+-k(r(x+r) T\ e )t
(3y 3x2_y) N (32 3xzz)} {A(-?)x 9 3x* )+
LA e g e ! TR T e

(9xy 3y 3xy) (9xz 3z _3x3z)]+0R2]
AR TR = r 16 3| TOR)|

) _VZ _Ru-i-z dxu( ) E]Zi’

and in view of the matching conditions, the constants appearihg in Eq. (3.26) have
been found to be

- R=f, §=0,

Dy= e D,=0 for nzl,
Eo=—38,  E,~=0 forn>1,
F,=0 for n>0.
Thus, by the suitable choice of q,;, the terms of O (1/R?), O (1/R) and O (1) in
Eq. (3.27) are matched and the remaining terms of O (R) will be matched with the
corresponding solution in the Stokes region.
3.7. Second-order inner solutions
To determine second-order inner solutions; we have to solve the equations
Viq,=Vp,—f(VxH}x{,
(329) 92= VP2 B( 1)
V‘q2=0.
and employ the matching condition. Using Eq. (3.16); — Eq. (3.28), becomes

38

11 ]
(3.29) V2qu=Vp, + (TS_F?) (yi+2k) .

Taking the divergence of Eq. (3.29) and using Edq. (3.28),, we get
: 3[5’ 5 3 1
2 — ———
{3.30) Vip,= 3 [ (r5 7 )+ x ( 5 3 )]’

whose particular solution p,,, where p,=po.+ P2y, 15

3 6 :
on el
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Writing g, =4, qa,, the particular solution g, of Eq.(3.29) which satfisfies the
continuity EHq. (3.28), is given by

. qzp,= 32 ?*"?;; 573 r 75 | :

o 1N 1 23
g o +(y1—]—zfc){x3 (}“;"__?)'FX(T“ 15r3)}]’

whlle the complementary function qZC _satlsﬁes the. equatlons 3
G. 33) R \& q2c~szc, V- q2c'”"0 '
the solution - ‘of whmh 1s 8]~ '

2 .

ot (1 N
(3.34) ‘lzc—K1 —? v l’“"“Pl (ﬂ)}+mv {rPy (ﬂ)}]

: [ L2 {1 1 . [rz {1 |
_ ...“inz ,_WIT)_V Pz(ﬂ)} 103 V{f Pz(ﬂ)}]+K3 14 P3(ﬂ)}

4 M M M;
\ R Ps(#)}]+V[L2 sz(ﬂ)'l_ Pl(#)+ Pz(.u)"" Ps(#)]

+
105r%
in which other ha.rmonlcs do not appear in v1ew of the matchmg condition with
the outer solution g,. e —e -
Appl}'mg the boundary condition (2. 2)1 to hqs (3. 32) and (3.34), we get
3ﬂ'-=. LY 58 - B ﬁ
' Keqr 7o KT
Mimgee s M7 T M s

while L,= ﬁ/ 16, which has been obtamed by’ matching With' thé remaining terms
of O(R) in q,. Hence the solution of Eqs. (3. 28) which satisfies the boundary condi-
tion on the body and the matc]:ung condluon Wlth thc correspondmg Oseen Solutlon,
are e

AR 1 1) 6 13

(3.89) ‘*2:3?[{4(,-—5“3;?)‘5,.3”75“;}f |

11 1 23 [ 5x3 3x2
Hy”Zk){ (F*?)Jr-x ("“15;4 )}] ﬁ"w[’iza?-?ﬁr? il
13 Y 1] B B N
+X(‘§5;€_W):?W]+§f‘ 3s V-
g I 3 :

V(5x° —3xrz)+ [m (2— “) (y +zz)+

4205
. Y 3)+ 1-]-
i\t )

| 5 3 -3\ 15 (3 3 3 57
(36) py= [a( + ﬁ___)q,_ﬁ_ ¥ (_,____ _)+ 1
T ) _Pz B> 167 8% 167) 16 15 C\16r® 4013 * 16r/ 162}
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This determines the solution upito!O«(Rj). The results of ProunpmMaN and
PeArsoN [11] and CrmsTER and BREACH {5] imply that other terms in the expansion
involve the product of"the pOWers of "R"ﬁhd log R. Accordmgly, the solutlon in the
Stokes region. is of the for_

L _—-QO +Rq}.+ﬁRRm q2+
H—1+RmHl+

4

‘where qu,ql,q2 and H1 are gIVB'll by (3 7) (3 12)1, (3 35) and (3 16)2, while in
the Oseen region the solutlon W111 be of the form

l}"“l-{*.R(h +Rm llz'f'
H=i+R,H +..,

where Ei;,':'iiz and B, are given by Eqgs. (3.9); and (3.10),
4. DRAG ON THE SPHERE

. 'We shall now use: thé solution obtained to compute the drag experienced by the
sphere The only force actmg on the body is the drag D along the X-axis and {s given
by [4] '

9 g, 361,,) (3qx qu)}
{4.1) D= ff[pv{Zx (By +'3'x Tz 2z + x|

__.xp'*‘ﬂ(XH_: +nyHy+ZHtz_E'XH2)_p(xqi -I-j}qqu-{-quqz)] dS’

‘Where S i§ an arbitrary closcd strface surroundmg the Sphere The last term given
ne contrlbutlon since. q = =0 on the body. The drag obtained by using Eq. (4.1) is

42) D=D 1+3R+iR21 Ryt loga——23_
“4.2) =Ds a0 1 BT T 308 g0

2 27
ﬁﬂRmR —i—% R3 log R+ 0 (Rs)]

It

7 " The contribution from ‘the Maxwell stréss is absent because it produces
symmetric changes in the drag force. Eq. (4.2) differs from its non-magnetic coun~
terpart [Chester -and -Breach (1961)] by a term of order O (R, R). The magnetic
effect is that it tends to reduce the drag; this is evident from thc term. corresponding
to the coefficient of Hartmann number SR, R
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STRESZCZENIE

MAGNETOHYDRODYNAMICZNY PRZEPLYW ZA KULA

Nlmejsza praca dotyczy swobodnego ustalonego przeplywu niesciSliwej, lepkicj elekirycanie
przewodzace] cieczy za, kulg przy istnieniu rownomlernego pola magnefycznego. Pole magnetyczne
jest sfabe i ukrerunkowane wzdqu swobodncgo strumlema Rozw1qzama poszukuje s1g metodq
wyrownujacych rozwinigé asymptotycznych Pizy zaloFeniu ze'liczba cidnienia magnetycznego B=
=0(1) oraz R<€l, R<], R<R.

Pesome

" MATHITOI'MIPO/(MHAMHUECKOE OBTEKAHUE CHEPLI

Pa6ora obcympaer MEJICHHOS YCTAHOBUBIIESCH TEYCHHO HECHHMASMON, BI3KOH M 3IeKTpO-
TPOBOMSINEH KUAKOCTH BOprl‘ cd}epm B I'lpH’CYTCTB]IFI odmopommro MaerHoro nonﬂ. Marnar-
Hoe [oe Ciab0 B MAPATINENBRY HALDABIOTMIS ot caoGo;moro Tedenws, Petnesme WUETeH mpa
TIOMOIIE METOId aCHMITOTHIeCKH% PatIoKemili HpH PEATOKerTY, ’tu*o Kosq:c})mmem MarHIT~
HOTO" J@BACHHS - ,8”*0(1), a: Faxme: Rm<1 R<1, Rm<1i‘ ca i RN
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