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NORMAL PENETRATION OF THE RIGID PENETRATOR INTO
ELASTIC-PLASTIC HALF-SPACE WITH VISCOSITY
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The analytical closed-form solution of the normal penetration problem of a rigid core
(penetrator) of a jacket-bullet into elastic-plastic half-space (thick target) is presented in this
paper. The cohesive resistance of the target, frictional effects, and acceleration of the target
material in the neghbourhood of the penetrator (virtual mass effect) is taken into consideration.
On the basis of the derived closed analytical formulae, influence of these parameters on the
penetration depth may be investigated. Among other things, it appears from calculations that
the boundary penetration depth is intensivly reduced by the force of viscous friction.

Moreover, the mean value of the coefficient of viscous friction (µ) for a given penetrator-
target system may be determined. For this purpose it is necessary to define experimentally the
penetration depth hk at a given impact velocity.
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1. Introduction

A penetration of projectiles into various targets has been a vast field of theo-
retical and experimental investigations for many scientists. Wide reviews of the
literature concerning this question have been presented in the papers [1, 2].

It is well known that one of the principal parameters which bounds the
penetration depth of projectile into a target, is the impact velocity. The im-
pact velocity values of small arms projectiles are contained within the interval
100÷1000 m/s. In this interval of the impact velocity, the ogival penetrator,
made of a sintered carbide or of the special-purpose steel, keeps primary shape
during of the penetration into the soft metal target. This fact is shown in Fig. 1.
The braked undeformed core, and the pulled-off core and pressed jacket of the
bullet is depicted in this figure. In these cases, the penetrator (core) can be
approximated by a rigid body.

It results from the scientific literature that axial resisting force of the tar-
get, acting on a unit of the penetrator cross-section, is defined by the following
formula [1, 2]:

(1.1) σ = c + bυ + aυ2.
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Fig. 1. The braked core (sintered carbide) of the jacket bullet (calibre: 7.62 mm) in the
duralumin (PA6) target. Impact velocity V = 812 m/s.

The terms on the right-hand side of Eq. (1.1) are associated with the cohesive
resistance of the target, frictional effects, and the acceleration of target material
in the neighbourhood of the projectile (virtual mass effect), respectively.

The problem of penetration of the rigid projectile into a metal target without
the second term of the formula (1.1) was considered [1–5]. Analytical solution
of this problem for complete formula (1.1), and analysis of the dependence of
the penetration depth on the respective terms of the formula (1.1) have been
presented in this paper.

2. Formulation of the problem

We assume that a rigid core of the jacket bullet is a penetrator. The jacket
is separated from the core during embedding of the projectile into a target.
Subsequently the free core penetrates the target, as a rigid penetrator.

Normal penetration of the rigid penetrator into metallic semi-infinite space
(thick target) is considered in this paper. The penetrator has rotational symme-
try. Direction of the penetrator velocity overlaps its axis and is perpendicular to
the plane of the semi-infinite space. On the penetrator acts a unit axial resisting
force of the target, which is defined by the formula (1.1).

Under these assumptions, the penetrator’s motion into metal target can be
described by the following differential equation:

(2.1) ρpL
dυ

dt
= − (

aυ2 + bυ + c
)
,

and by the initial condition

(2.2) υ (0) = V,

where symbols L, ρp and V stand for the penetrator length, density of the
penetrator material and impact velocity, respectively.
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According to the data given in [3–5], the coefficients a and c can be described
by the following expressions:

(2.3) a = kρt, c = Ht,

where symbols Ht, ρt and k denote the dynamic hardness of the target material,
density of the target material and coefficient of the nose shape of the penetrator,
respectively. The value of the coefficient k can be estimated by means of the
formula [6, 7]:

(2.4) k = 1− 1
8

(
D

R

)2

,

where symbols D and R stand for diameter of the greatest cross-section of the
penetrator and the radius of a sphere which approximates the contact space of
the penetrator nose with crater bottom, respectively.

The symbol b denotes the coefficient of the mean absolute viscosity.
We introduce the following dimensionless quantity:

(2.5) µ =
b

ρtV
.

The quantity µ is termed as the mean coefficient of a viscous friction.

3. Solution of the problem

On separating the variables υ and t in Eq. (2.1) and integrating, we obtain:

(3.1)
∫

dυ

aυ2 + bυ + c
= − t

ρpL
+ C,

where an integration constant C is defined by the initial condition (2.2).
The left-hand side of Eq. (3.1) can be expressed by the following functions:

(3.2)
1√
∆

ln

∣∣∣∣∣
2aυ + b−√∆
2aυ + b +

√
∆

∣∣∣∣∣ for b2 > 4ac,

(3.3)
2√−∆

arc tg
2aυ + b√−∆

for b2 < 4ac,

(3.4) − 2
2aυ + b

for b2 = 4ac,

where

(3.5) ∆ = b2 − 4ac.

It results from the above relationships that the considered problem has three
different solutions, which are determined by relations between terms b2 and 4ac.
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3.1. Solution of the problem for large absolute viscosity, i.e.:
b2 > 4ac or µ2 > (4kHt/ρtV

2) = µ2
0

From expressions (3.1) and (3.2), as well as the initial condition (2.2), after
simple transformation, we obtain:

(3.6) ῡ (η) =
µ

2k

[
(1 + c1)

exp (−a1η)
b1 − exp (−a1η)

− (1− c1)
b1

b1 − exp (−a1η)

]
,

where:

(3.7)

η =
V t

L
, ῡ =

υ

V
, µ =

b

ρtV
, a1 = µc1

ρt

ρp
,

b1 =
2k + µ(1 + c1)
2k + µ(1− c1)

, c1 =
√

1− 4k
Ht

µ2ρtV 2
=

√
1−

(
µ0

µ

)2

.

It follows from Eq. (3.6) that the penetrator is completely braked (υ = 0)
after time tk = (L/V )ηk, where

(3.8) ηk =
1
a1

ln
1 + c1

(1− c1)b1
.

The current penetration depth of the penetrator into the target is defined by
the following integral:

(3.9) l(t) =

t∫

0

υ(τ)dτ.

On substituting the relation (3.6) into Eq. (3.9) and integrating, we obtain:

(3.10) h(η) =
µ

2k

[
2c1

a1
ln

b1 − exp (−a1η)
b1 − 1

− (1− c1) η

]
,

where

h =
l

L
.

The boundary (maximal) penetration depth of the penetrator into the target
is defined by the formula:

(3.11) hk = h (ηk) =
µ

2k

[
2c1

a1
ln

b1 − exp (−a1ηk)
b1 − 1

− (1− c1) ηk

]
.
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3.2. Solution of the problem for small viscosity, i.e.:
b2 < 4ac or µ2 < (4kHt/ρtV

2) = µ2
0

In this case, from expressions (3.1) and (3.3), as well as (2.2) we get:

ῡ(η) =
1
2k

[
c2tg

(
arc tg

2k + µ

c2
− c2

2
ρt

ρp
η

)
− µ

]
,(3.12)

ηk =
2
c2

ρp

ρt

(
arc tg

2k + µ

c2
− arc tg

µ

c2

)
,(3.13)

where

c2 =

√
4k

Ht

ρtV 2
− µ2 =

√
µ2

0 − µ2.

Substituting relationship (3.12) into Eq. (3.9) and integrating, we have:

(3.14) h(η) =
1
k

ρp

ρt

[
ln

∣∣∣∣
cosα (η)
cosα0

∣∣∣∣−
µ

2
ρt

ρp
η

]
,

where

(3.15)

α(η) = arc tg
2k + µ

c2
− c2

2
ρt

ρp
η,

α0 = arc tg
2k + µ

c2
.

The boundary penetration depth is defined in this case by the formula:

(3.16) hk = h(ηk) =
1
k

ρp

ρt

[
ln

∣∣∣∣
cosα (ηk)

cosα0

∣∣∣∣−
µ

2
ρt

ρp
ηk

]
,

where

(3.17) α(ηk) = arc tg
2k + µ

c2
− c2

2
ρt

ρp
ηk = arc tg

µ

c2
.

It results from formulae (3.15) and (3.17) that for µ = 0 [lack of the viscosity
term in the expression (1.1)], there are:

(3.18)
α0 = arc tg

2k√
4kHt/ρtV 2

=

√
k
ρtV 2

Ht
,

α (ηk) = 0.
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Substituting the formulae (3.18) into the relation (3.16) and taking into con-
sideration the following trigonometric identity:

arc tgx = arc cos
(
1/

√
1 + x2

)
,

we get:

(3.19) hk =
1
2k

ρp

ρt
ln

(
1 + k

ρtV
2

Ht

)
.

Such expression has been derived in papers [3–5].

3.3. Singular solution: b2 = 4ac or µ2 = µ2
0 = 4kHt/ρtV

2

In accordance with the formulae (3.1), (3.4) and (2.2) we obtain:

(3.20) ῡ (η) =
1
2k

[
2 (2k + µ0)

2 + (ρt/ρp) (2k + µ0) η
− µ0

]
.

In this case, the penetrator is completely braked on the lapsing of time

(3.21) ηk =
V tk
L

=
4k

µ0 (ρt/ρp) (2k + µ0)
.

After substitution of the relationship (3.20) into integral (3.9) and integrat-
ing, we have:

(3.22) h (η) =
l (η)
L

=
1
k

ρp

ρt

[
ln

(
1 +

2k + µ0

2ρp/ρt
η

)
− µ0

2ρp/ρt
η

]
.

The boundary penetration depth in this case is:

(3.23) hk = h (ηk) =
1
k

ρp

ρt

[
ln

(
1 +

2k

µ0

)
− 2k

2k + µ0

]
.

Thus, we obtain the analytical solution of the examined problem for each of
the mean values of the viscous friction coefficient µ.

4. Preliminary analysis of the boundary penetration depth

It follows from the above derived formulae, that normal penetration depth of
the core of the jacket projectile into metal half-space depends on the following
parameters: dynamic hardness and density of target metal (Ht, ρt), impact ve-
locity (V ), unit mass of the penetrator (ρpL), nose shape of the penetrator (k),
and the mean coefficient of the viscous friction (µ).
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The preliminary analysis of the boundary penetration depth hk has been
made for the following materials:

penetrator: sintered metal (WHA), ρp = 17200 kg/m3;
target: 1. Ingot iron, ρ = 7850 kg/m3, Ht = 1638 MPa;

2. Aluminium, ρ = 2700 kg/m3, Ht = 260 MPa;
3. Duralumin, ρ = 2800 kg/m3, Ht = 1300 MPa.

Two values of the coefficient k were assumed, namely:
k = 0.5 – hemispherical – ended projectile,
k = 1.0 – flat – ended projectile.
Some calculation results are depicted in Figs. 2–5. It seems that the quali-

tative variations of the boundary penetration depth hk versus coefficient µ are
similar for various materials of the target. On the contrary, significant quantita-
tive differences occur among curves hk(µ) plotted for targets made from various
metals. These variations are visible in the Figs. 2–5. For example, the boundary
penetration depth into aluminium target is about five times greater (at µ ≈ 0)
than into the duralumin one (Fig. 5). This difference decreases when the coeffi-
cient µ increases.

The penetration depth is intensively reduced by increase of the coefficient µ.
The highest gradient decreasing of the penetration depth occurs in the initial
increase stage of the coefficient µ. The viscous friction decreases the penetration
depth several times in comparison with the frictionless penetration.

Fig. 2. Variation of quantity hk as a function of coefficient µ.
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Fig. 3. Variation of quantity hk as a function of coefficient µ.

Fig. 4. Variation of quantity hk as a function of coefficient µ.
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Fig. 5. Variation of quantity hk as a function of coefficient µ for the three
target-penetrator systems.

Let us observe conclusion that for a given penetrator-target system, the mean
value of the coefficient µ may be defined by means of the formulae (3.11) or
(3.16). For this purpose it is necessary to define experimentally the quantity hk

at the given impact velocity and then the mean value of the coefficient µ can be
determined.

5. Conclusions

The analytical model of normal penetration of the rigid penetrator into the
thick metal target has been presented in this paper. In this model, cohesive
resistance of the target, frictional effects, and the acceleration of target material
in the neighbourhood of the penetrator (virtual mass effect), have been taken
into consideration. On the basis of the derived closed analytical solution, the
influence of the respective terms of the formulae (1.1) on the penetration depth
is investigated.

It is found that the penetration depth is intensively reduced by the forces
of viscous friction. By means of this model, the mean value of the coefficient of
viscous friction (µ) for a given penetrator-target system may be also determined.

Preliminary experimental investigations support the usefulness of the pre-
sented theoretical model in the calculations of the terminal ballistics.
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