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NUMERICAL ANALYSIS OF COMPATIBLE FINITE’ELEMENTS' OF
DIFFERENT ORDER IN TWO:-DIMENSIONAL PROBLEMS OF
ELASTICITY (*) e D

- F. BRAGA, G. REGA and F, VESTRONI (ROMA}. ..

' A ]arge number of compatlble ﬁmte e]ement modeIs for p]ane elastactty problems has been,
presented in the Tast decade. On thé contrary, the number of stud;es S0 far carried out regardmg the
evaluation of the efficicncy of différent slements is smially This paper is'mainly concerned with' the
comparison of the behaviour of compatible triangular elemenis of different order.. Stich a comparison
regards mainly. the results associated with LST and QST clements for.different values of the number
of degrees of freedom in the analysis of problems for which analyhcal solutions are avallab]e Atten-
tion is focused separately on displacement and stress fields by analysing the' convergence’ of the cle-
ments as well as the global and local approximation, A numerical analysis is also performed in order
o compare the efﬁcnency of two'inethods suited for eneompassmg lack of umqueness of stréss nodal
values; as usually encountered-inthe compatible formulation, i.e the s:mple avetage ‘and the method
based on the theory of .conjugate approximations., Cetin : et

1 INTRODUCTION

- A large number of fe. models for, the. analysis of elasuelty problems has been
proposed in the last decades. jl"hese models dlﬁ'er both in the vanat:onal prme:ple
from which they ongmate and in the features of the clement such as shape, interpo-
lation function and types of nodal parameters’ L, 6].-

On the contrary, thie number of studies so far presented regardmg the comparlson
of different elements in the -analysis of a definite, elastxc continuum is rather small
and some dlfﬁcultles are cncountered for the]l‘ adequate use _1.1} stmctural apphcatlons
The qucstlon has been pomted out by some recent studles regardmg the problems
arzsmg in the domam dlscretazatlon thmugh f e. and the optumzataon of va.nous
steps of the procedure_ [14 15, 16]. L

In this paper the behaviour of compatlble trla.ngular elements is dlscussed m the
analysis of plane stress and strain probiems.

FiG. 1.

(*) Presented at ‘the XIX th Pohsh Sohd Mechamcs Conference Ruc1ane-P1ask1 September
7—-16 1977. '
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Reference is made to the first three elements (CST, LST, QST) of the Lagrangian
family which are generated in sequence according to Fig. 1 [8, 9, 11]. It is common
knowledge that these are conforming elements in which. the drsplacement field m,
of different order for cach element, is described by the nodal parameters u, which
aré the independent variables of the procedure The relatmg interpolation functions
are. given. in the Appendix. - fdAT i Wi P

The.comparison of the yarious elements 18; earrled out by analysmg both the con-
vergence properties and the global. and local approximation of solutions obtained
with. the same number of degrees of freedom. Attention is focused on the behaviour
of higher order elements.

The interpretation “of “stréss - results, “whicl ‘are discontinuous in compatible
models, is accomphshed using the method proposed by OpeN et al, [12, 13]. ThlS
method 1s based on the theory of conjngate approxrmanon and has been pre-
viously : 7 developed with, reference,.to the. elements, consrdered in tlns paper,
A feature of:this method is that it gives a continuous stress field all over the domain.
In-this paper stresses obtamed by Oden 's-method are eompa.recl withthose resulting:
from the” srmple avera,ge, a.t each node of the stresses for the elements mc:dent
on that node.

_The numencal analysrs has been processed by a computer algonthrn, the llSt ancl
operatlonal features -of ‘which, are furnished :in Ref::[17];-such.an aIgorlthrn has.
been expressly implemented to carry out the: ‘comparison: analysis.: behs

2. COMPATIBLE FINITE ELEMENTS
C ' The formulatlon of plane elastic problem through compat[ble fe.is based on the
'nnmmrzatron of the total potentlal energy funct1onal wh1ch may be wntten as( )

'for d continuum dlscrenzed ina ﬁmte number of elements In Eq. (2 €= {sx, £y yx,,}
strain vector, E elastlc constant matnx, P =i, | i} displacement vector, p7 = ={p., p,}
"prescnbeci body force vector, fT={f., j,.} prescnbed surfaée force vector ¥V, elemént
‘voluine, Sy, portion of element boundary surface over which the forces fare prescmbed
~ In applying the prmc;ple of mlmmum potentlal energy, stram ﬁeld is wr1tten
in terms ‘of the displacement w(l): 7

@.2) | e=THd,<u,
where (2) ' '
10 0 0 e
l@/@x‘ .
T= 0 0 0 1d, d.=
alayl).~
0110 / y:'

(*) Matrices and vectors are respectively denoted with a bold face capital and small letters.
- (*) The operator [>is defined as follows Let A be a matrix of size (nX kp) that can be partitioned
in the K matrices A, (nxp): A= [Aq As..AJandlet B be a "matrix of size (p>m). Matnx Cis
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In each element e the displacement u is represented approximately, in . terms:of
generalized parameters ) = {1} u } through the following relationship:

{2.3) ‘ u nT<}u

where n''={n, n,, .. ,n,,} 1s the vector of . mterpolatlon functlons for the n—node
element. The parameters u) are the nodal dlsplacements the interpolation functions
must be such as to assure the compatibilify ‘of displacement for two neighbouring
elements when these have the same, nodal values on the common;side. S

The Lagrangian elements considered in this paper have a number of nodes suffi-
cient to determine the coeﬂicxcnts of a complete polynomw.l of the order h, which
defines the element and such as to assure the requested compatibility; therefore,
the relating interpolation functions satisfy the above- mentioned . ; .condition ().
From Eqgs. (2.2) and (2 3) the element stram ﬁeId is obtamed in terms of the genera-
lized displacement u’,

2.4)  e=Dd*

e

where, taking account of the relatmnshlps (a) and (b) presented in the Appendlx
there results ;

' 'D:T|> J—icill,TBT. N

By substituting the exprés‘éions (ﬁ.3) and (2.4) in Eq (2.,1), the':fimctional can be written
as follows:

(2.5) ' —Z (‘““ K.ug _“_':T-ie:)’

where

E

K,= [ DTED v,
Ve'i, o

= f“QPdV+ fn<]de

CFe "S_re

are respectively the element stlffness matrix and the vector of equivalent nodal forces.
Explicitly, this results in @ =

@6 K- = [ B@ I QTR I leBTdV=fG<]HDGTdV
Ve ’ Ve .

defined by the following relationship: C=A [> B.'It has size (nxkm) and is expressly given by the
equation C=[A, B, A, B, ..., A, Bl. Tt can be seen that there results > F= <], A more detalled
picture of the properﬂes of the operator is furnished in' REF, nn =

(*) The expressions of interpolation functions are reported in the Appendix; a more detailed
picture of the elements considered in this _paper, together with the numerical expressions of thear
matrices, is reported in Ref. [17]. '
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Suitably partitioning the matrices of Eq. (2.6); it follows that

@y K= [16,:G,]< |av,
=) 161 1G]

where the clastic constants ¢, f§, y are, respectively = -
Ea=w B E
ma- 2v) =22 234

for plane stram and

1= 1= 2014w’

for plane stress, and

1 3 9
GI:E—Z(J’ZSBIEL_"J@IBEI" ’

1 . 9
G2 2A x32B lu+x13 BLZ _l,, .
By developing Eq. (2.6), the final result is

mKu'H’Kzz 'YK z+ﬁK1z

?”Klz‘l‘ﬁK ! ?K11+°¢K22

where . _
K,= | GG av.
Ve
As far as the nodal forces are concerned, it expressly follows that
fm { "}dVJr fBl,,<}{ }

Ste

If s"={s! sI} is the vector of generalized d:splaccments for the N nodes of the whole
domain; the element nodal displacements u. can be obtained through the Boolean
matrices £ _(u X N):

u, =8, <s.

The functional II, can thus be written a.s

@n M= sKs—sTq,
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K;- Z'QMK;M!,,

L q= Eﬂ’ﬂqe |

are rcspectwely the stnﬁ‘ncss matnx of the assembled structurc and thc vector of
gcncra.hzed nodal forces. |

. If s, are the dlsplaccment components prescnbed in the boundary pomon Sy
and g are the corresponding unknown components of the nodal forces vector, the
functional can be partitioned as follows: .. Goee

nez e[} )

where s, are the unknowu displacement components and gq; are the prescribed loads
The stationarity condition éxz,=0 will yield

Kiisi=q,—Kj;s,.

The element displacements u}.can then be casily obtamcd and element stresses are
finally calculated through Eq (2 4):

(2.8) o, =EDu} =S, u’

where S,=ET[> G” is the stress matrix.

3. RESULTS OBTAINED FOR DISPLACEMENT FIELD WITH “THE DIFFERENT ELEMENTS

In the discretization’ of elastlc continua via compatlbie fe., displacements u
are the fundamental. quantltics stresses & are obtained from element by element
displacements.

It is suitable to analyse separately the results obtained with elements of dlffcrent
order for displacement and stress fields. F:rstly, displacements are considered;
fact, since they are the independent parameters of the procedure, they result in
a more meaningful way in order to evaluate the performance of the numerical method,
Afterwards, the stress field is analysed; its approximation is connected, besides
with displaceménts vanables, also ‘with' the proccdure through whlch umvocal
values are obtamed ' '

~ The comparison of the fe. solutions obtamed for ‘a definite problcm is usually
carried out — in the literature — with referénce to the total nimbet of d.o.f. of the
discretized structure. Tn'the present paper too this parameter, which is representatlve
enough of the calculation global onerousness, has been assumed (. S

(*) Here it must be noted that the global calculation onerousness chiefly depends on the size
of the equation sysiem that is equal to the total number of d. o.f. However, it also depends on other
parameters connected to the type of element such as the bandwith of the stiffness- matrix which has
a considerable influence on core storage and soliticn time, and the data generation and input time.
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Structural problems for which analytical solutions are known have been consid-
ered; the error of numerical solutions has, been evaluated referring to the former
ones. The majot part of the cornpauson has been- carried out considering a uniformly
loaded simple beam. In this case displacement boundary conditions can be prescribed
on the discretized structure according:to ihe analytrcal solution. On the contrary,
considering a caatilever beam as more often examined in the literature (Refs. [9,
10, 111) the' boundary condition on the rotation cah’ be prescribed only in-an‘app1ox-
imate way on the discrete model. Two cases have been considered- for the’ sunple
beam (Fig. 2), they aré defined by the'two values of ratio Li2H, redpectively; equal
to 1 and 4, afterwirds indicated as' Bl and B4: This' study has “been tarried out to
analyse the behaviour of the various elements in° problems ‘with different: geometry
of the domain and different ratios of stress components. A square plate with a cir-
cular hole subjected’ to ‘traction on two 31des (Fig. 3) has also been studied. The
purpose of this analysrs is to evaluale the’ approxrmatlon obtainable in the analysis
of stress: concentration with: -different. order: elements:(%): - e

Y TT TP

nii=04
AN 5
1 I
N TR N R ENERY
B e N
s R oy s ey A WwaY
| Lz ..
T T s . Yo o
) FlG 2 Umformly loaded slmp]y supported ‘ FIG 3‘_, Solrare 'piat;e wrthcncu[arhole _ .

beam (cases Bl B4)

_ Smce the drscretrzanon mto trlangular elements does not alIow to replesent
exactly the circular boundary of the hole, a definite polygondl boundary (32 suies)
has been considered. The error. is calculated wrth reference to an ,,exact” solutxon

obt"uned numerrcally usmg a very reﬁned mesh .
Convergence propert[es 1o the exaet %olutlon have a consrderable 1mportance m
numerical methods. Asymptotrc convergence;s guaranteed for the comp'ltlbie elements
&

- (®) The-results of the numeucal applications: are. expressed by units Kg, cm-and refer to the
fo]Iowmg data;, Iy : : : RERRE
simple beam:. H=600, s*—l p= ]0 1:7-—21)(106
-. square. plate: L=10, s=1, p~=10, E=2.1X 108,
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considered inthis paper (Refs. [3, 4]). From the practical point of view, however,
it is interesting to examine chiefly the rate of convergence of numerical solutions
which strongly influence the operational performance of the method.

The error curve obtained for the displacement component u, in case B4 solved
through CST elements is shown in Fig. 4 in terms of the total number of nodes N
of the discretized structure. From a general point of view it represents the behaviour
of all fie. solutions and gives the opportunity of some premises.
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Fic. 4. Convergence properties of f.e. solutions (case B4, displacement component uy).

Figure 4 shows that the solution error is almost constant over a wide N range
even though it decreases as the number of nodes increases up to the value N,, beyond
which the roundoff errors prevail. Therefore, two circumstances occur: first, a defi-
nite residual value of the error exists and it cannot be eliminated by mesh refinement,
second, there is a number of d.o.f. beyond which the error decrease is unimportant
as regards the calculation onerousness. The performance of the various elements
must be then analy-ed referring to two quantities: minimum residual error e,
and optimal value N, of the number of nodes, :

In the literature the analysis of numerical solutions is usvally performed referring
to the error relevant to a displacement of a particular point of the structure (Refs.
[5, 10]). In more recent studies, however, reference is made to the approximation
obtainable for the potential energy functional of the problem (Refs, [15,.16]).

In some cases the first procedure is representative enough of the solution behav-
iour on the whole: e.g. the case of the error relevant to midspan deflection in
problem B4. This is different in a structural problem where the components of the
displacement field have comparable values as in case BIL.

On the contrary, the total potential energy represents a unitary criterion for the
evaluation of numerical solutions obtained for different structural problems
and provides an error related to the whole domain, In this paper, however, refer-

Rozprawy InZynierskie — §
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rence js made to the global error of the.components of displacement and stress.
in order to analyse the behavionr of .the various elements in the approximation
of those quantities which are interesting from the structural point of view. The mean
error of the single component calculated with respect to its maximym value is defined
ag follows (5). S T '

1 IS | N _|xi-~j-il___

(3‘ ) . R Et = N ZI " X LI

In Bq. (3.1) x; and %, are respectively the calculated and the exact values of the
component x in the node i and N is the total number of nodes. -

The diagrams of the mean error ¢,, of the displacement components #,, u, relevant
to LST and QST elements are reported in Fig. 5 in terms of the number N; the cor-
responding diagrams for case B4 are shown in Fig. 6.

Two considerations arise’ immediately from the analysis of these two figures:
first, the error decreases ina very regular way the sitore the number of d.o.f. increases,
second, the higher order elements havé lower values of e, and Ny. Therefore, solution
accuracy and rate of convergence with mesh refinement are higher for 0ST elements.
This latter feature is pointed out by the greater values of tangent slope to the relevant
curve for a given error. Moreover, the convergence rate of QST elements is
very high up to the low error values; on the .contrary, the LST omne decreases
smoothly as the solution approaches the exact one. So, even though both clements
have a comparable residual error, QST convergence curves exhibit better behaviour
in the lower values range of the number of d.o.f. The error curve of CST elements
is not.shown in Figs. 5 and 6 even though it has similar general features; the values
of e, and N, arein this case considerably higher than those connected with LST and
QST error curves (see Fig. 7). Accordingly, the comparison will be chiefly carried
out between LST and QST elements. ...~ e

. The error curves (g, N) previously examined show the global approximation of
the solution obtained with the various elements to. the exact one; it is interesting
however, to examine the local approximation, too. Accordingly, histograms of errors
of horizontal.and vertical displacements in mesh nodes are furnished for cases Bl,
B4 in Fig. 8; the errors are referred to. the local values of the components. The figure
indicates low values of local error in a larger number of points for higher order
elements. Their histograms are more gathered around the vertical axis than those
of lower order elements. . S ' I P

In.addition, it can be noted (Fig. 8¢, d) that while both components of displace-
ment are well-behaved in QST elements, the LST ones penalize the lower guantities

7 (%) The erfor expression (3.1) is-a weighted ni¢an of errors x,—x/%; connected with.the N mesh
nodes and affected with the multipliers p:= i/ Xmax such as to emphasize the errors relevant to maxi-
mum values of the quantity. This choice is due to the importance that the approximation of such
values has in the analysis of structural behaviour. ASSUMQIng that Kmsx™ Xmer W€ Obtain '

N -
. lx;—x;l -
= : e x[/xmax
. 1 .

X1

and Eg. (3.1) follows. .
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(see the component ), This circumstance, that is weakened in case Bl (Fig. 8a, b)
where the values of u, and u, are comparable, represents the general behaviour
of the two elements which will be seen in detail afterwards.

e q

36 -
40 =

25+
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1 1 1 1
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Numgﬁ'er of nodes

Fic. 7. Bl: error curves of displacement component &, with the thres different elements.

The results obtained for a square plate with a circular hole are also considered
(Fig. 9). As already mentioned, reference is made to a polygonal hole of 32 sides
assuming a numerical solution as the comparison one; this latter is obtained with
QST elements and 775 nodes within one guarter of the plate. Two meshes are consid-
ered with, respectively, 250 and 475 nodes, each one being used in order to obtain
solations with CST, LST and QST elements. The hole ovalization described by the
values u,, u, of the points 4, B (see Fig. 9 and Table 1) is assumed as represeitative
of the displacement field.

The solutions corresponding to the higher number of nodes (475) are well-behaved
enough. Taking account of the high number of d.o.f., the differences are unimportant
between QST and LST elements and a little more remarkable for CST elements,
as it occurs in the beam case. As far as the solutions with the lower number of nodes
(250) are concerned, the results obtained with the three elements considerably differ
one from another. Unlike the beam case, a better behaviour of QST elements comes
out, even in comparison with LTS elements; this circumstance is connected
with the wider capability of higher order elements of approximating complex stress
fields, '
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uf x10° +.6814 | +.7025 | 7243 | +.718% | 7304 | +.7325 | +.7342
udx 10 —.2261 | —.2348 | —.2484 | —.2501 | —.2550 | —.2552 | —.2556
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4. INTERPRETATION OF STRESS RESULTS

" 'Siresses obtained through compatible elements, as examined in this paper,

are discontinuous aloﬁ'g the inter-element boundaries; since these quantities are
notably important in: structural analyses, an interpolation method must be used to
obtain a univocally defined stress field. 3

Stress interpolation has been discussed by several authors

, has’ i e last.decade.
Most of the suggested methods (Ref. [7]) rely on the average procedure of the nodal
values relative to single elements; they differ one from another in the weighting
factors assigned to such values. The method proposed by Oden et al, (Refs. [12, 13])
is quite different from. the previous ones. Stress interpolation is here accomplished
using” an ‘approach based on the conjugate approximation theory that accounts
for the whole stress field and provides a contintious function all over the domain
instead of nodal values only (7). In Oden’s paper. reference is made only to CST
elements. Lo S :

On the other hand; as the element size increases, stress discontinuities become
higher; the application of Oden’s method to LST and QST elements seems interesting
since they are well-behaved at low values of the number of nodes ot} correspondingly,
at high values of element sizé. On' the conirary, using CST elements; a refined
thesh is required even to obtain a suitable approximation of the displacement field ;
therefore, in this case element size is guite small.

Oden’s method involves the inversion of a matrix the order of which is equal
to the-total-number. of nodes; it is therefore quite: onerous. In arder to .analyse the
convenience of its application, a large numerical investigation has been performed
using the three types of elements. Attention is focused on the values obtained for
stresses in some nodes where many elements join together. For such nodes the valunes
relative to the different clements, the simple average one (o), the Oden one (c0)
and the “exact” one (gz) are furnished in Tables 2-+6.

It can be noticed that the stress discontinuity is quite slight for structural examples
with a number of d.o.f. sufficient to represent adequately the actual stress state
(see the patterns of Fig. 10 in case B1). In this fespect, OST elements are particularly
efficient; their solutions, compared with those of lower order elements, which are of
lower size for a given number of d.o.f., do not present major discontinuities.

Even though these latter become larger, as for lower order elements when the
namber of d.o.f. decreases (Tables 3 and 5) the errors are comparable and oppo-
site in sign as regards the “exact” stress value, so that the simple average gives
stresses with small errors, which are in any case lower than discontinuities themselves.

The results obtained by means of Oden’s procedure are nearly coincident with
those furnished by the simple 'averagé.- This’ cir(;ﬁgista‘:ﬁce occurs both when these

(). A synthesis of Odeén’s method, considering {he elements discussed in this paper, is presehted
in‘Ref, [17] together withthe numeérical expr’essio’ns of the matrices- _needed o detefn:iine_ the
stresses noddal values.
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latter resulis have a good ac’:curac"y, as in most: cases; and:when-errors are remark-
able. Indeed it always occurs that o is nearer ‘to o4 than to the exact value and
sometimes it is further than o, (see Tables 3 and 4). E

Table 2, B1-490S-Element nodal siresses, *Exact” stress
(E), simple average stress (A), Oden stress (0).

Vi Txp

;Node | O

28 1, -2140 .|, —1039 i  .037
go—2122 |0 —1051 . —.332

. 1965 o s —9.87 o 172
E i} 8-21.20 r|5-—10,00 7 000

A | »—2076 i -—10.26 - —.040

O |1 2087 s —1024 .000
27 ar—1213 e —9.09 | 5.08
- ft w1248 e - —920 ¢ | 5.08
E I -1228 VT w926 | 500

A ifo=1231 i - —915 |7 506

O .+ =1227 «i- —913 | 508
25 T8 008k —514 7 8.96
et o4l —502:L 918
—.525° —4385 |7 900

—091 - —472 |1 881

T e 065 Ciaeylgw

E [ 7000 | =500 7 9.00
CA —.056 | —490 |. 888 ..
o] —.086 —-491 | 89
46 | —.987 | —507 | 1485
—035 | ~517 | 1497
089 —475 7 b 1478
B4 000 | —500 | 1500
A T =31 | =500 | 1487
0 I —343° —-501 ! 1484

We have similar observations when. we consider. siress results near the square
plate hole. For a given element, discontinuities increase as the number of d.o.f.,
decreases (see examples 475Q — 250Q in Table 6); moreover, under the same number

28R A9GS T w20 2618

- Fig. 10.: Mesh pattetns for case B1. -
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Table 3. B1-25LS- Element nodal stresses, "Exact” stress (E), sm:ple
average stress (A), Oden stress (O).

Node | o | ay | Tuy {

5 —26.62 —11.67 13
—33.03 © 1054 ~2.01

—32.00 -10.00 00 E

—29.83 —1L11 — 94 A

~—29.36 —10.84 —.31 0O
13 —-.15 —4.45 10.40
—. 41 —5.30 .02
6.32 o =448 10.33
05 —6.36 10.40
03 —643 - 9.77
1.87 —3.84 11.08

00 ~5.00 9.00 E

1.29 —5.14 9.95 A

1.48 —5.03 9,88 0
23 | 5.90 —5.68 16.33
75 -7.10 14.69
A —4.23 17.14

00 ~500. | 15.00 E

1.75 —5.67 16.05 A

1.34 . —578 1598 Q

Table 4. B1-28Q- Element.nodal stresses, “Exact” siress (E), simple
average stress (A), Oden stress (O).

Node | a5 ] a, | Tz |
7 —32.99 —10.36 .71
—33.02 - 10,83 -~
3200 ~10.00 0 | E
-33.00 —10.60 -7 A
—32.99 —10.55 _ 53 Q
25 047 -~ 4,56 14.96
160 ~5.23 14.55
.380 —4.80 14.91
000 - -~ 5.00 15.00 E-
089 —4.86 - 14.81 A A_
110 .—_:4.84 14.82 C

of d.o.f. they increase with the decreasing order of the interpolation function
(see examples 475Q — 475L in Table 6).

Stress values obtained using the simple average and Oden’s method draw closer
in this case, too. This behaviour is also confirmed by the results of the application
reported in Ref. [13], just concerning the analysis of the stress concentration factor in
a square plate with circular hole. In fact, by repeating that calculation (Fig. 1ia),
the values of 28.06 for o, and 29.84 for o, — the latter being nearer to the exact
one — are obtained for the component o, at hole boundary near the horizontal
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Table 5. B4-55C- Element nodal stvesses, “Exaci” . stress (E),
simple average stress (A), Oden stress (O).

ELEM o o, | Tyy | Node 18
19 6.5126 22.672 63.684
20 —176.51 -~ 32,671 —38.835
22 —8.6312 —27.807 —37.912
27 T7.0385 22,394 65,877
29 166.17 24.034 66,160
30 —7.2284 | —25162 -~ 20,700
E 0000 | —5.00 F18.000
A —2.4416 _ - 2.7577 14.879
O —1.8830 ~3.2384 14.879
ELEM | oy o, | Tuy | Node 16
18 —345.77 —37.565 —46,127
25 —14923 21.3%6 58.894
26 ~-325.34 —36.286 —39.996
E —438.80 —10.00 6,000
A —273.45 —17.485 —9.0762
4] ~333.21 —25.262 —23.942

N @ ®
@ 2
@ 6@
@ @
N

axis. From this result a better accuracy of Oden’s method is obtained. The difference
between o, and g, which occurs only in boundary nodes, is, however, quite fictitious;
in fact, the values 28.06 for o, must be placed at the centre of the boundary element,
being CSTelements. The value 30.26, that is nearer to o, would be otherwise obtained
by calculating the boundary stress value through linear extrapolatlon of the results
in points B and H (Fig. 11b).
For inside nodes the average of stresses relative to nelghbourmg elements gives
exactly the values corresponding to the nodal points. The comparis onwith the anal.

7

40

‘apb

20

10

a)

T4

36.25
2806

2353

Fra. 11. Square plate (435 nodes mesh). &, component along x axis.
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ogous ‘values. obtained by« Oden’s. method emphasizes: .unimportant: differences

‘between o4 and oy, e.g: in'point D-we have: 54 =:24.976.and ¢,=25.546. .- ...

‘Therefore, the higher complexity of:Oden’s method does not seem. to:.be rewa-
rded by an improvement of the results as regards those provided by the simple

average, at least as far as plane elasticity problems are concerned.

Nevertheless, the comparison of the various eleménts; Will be carried out with

reference to the stresscs obtained by Oden’s method. :

1

5. ResuLTts OBTAINED FOR TI—IE STRESS "FIELD WITH ’I‘HE DIFFEREN‘I‘ FLEMENTS

Comparison of the solutlons obtamed for thie stress ﬁeld is accomphshed referring
to the number of d.o.f. as well; the same structurat problems assumed for displa-
cements are considered. The accuracy of the various élements is once more discussed
with reference to the mean error defined by Eq. (3. 1) and to the quantities e, and N,
mentioned above. Approximation of the stress solutions is examined by considering
the error of the principal stresses a; and oy; Whlc_h provide a global picture of the

%
g
Tln
[
i
sof- | [}
i L&T +-+-4~GI oo 611-
E T RET o—-cn-oGI Mt O
I} .
A0 1 P
’ \
A R
N
R s
TRl
;w_ B R VR A W
BRI WOl A0 A L A8y e T

Number of nod&s

- Fra. 12 Bty error curves:of prmcxpa] stresses: a,, cr“ with LST, QST eléments.

stress ﬁeld takmg account of the results obtalned a more strict comparison of the
different elements is then accomphshed

Figures 12 and 13 show the ‘curves. e, N .obtalned for the two Cases BI and B4
The analogy with Figs. 5 and 6 of dtsplacement error-can be- notloed and the general



636 F, BRAGA, G. REGA AND F. VESTRONI

observations made in that case can be repeated. Nevertheless, both the accuracy
of the solution and the convergence rate deteriorate significantly as regards displace-
ments. In fact, in the same range of number N already considered, the slope of

e &

|
|
‘ LST “¥otate OF 4—0-0—63
\ @87 ooo Gy e G
300 i-
1
{
\
4

I O A

;

|
T

200 -

160

144 Py

1 -—
4% 2128 454952 6570 §1 Mumber of .nodes

‘Fic. 13. B4: error curves of pnnmpal stresses oy, oy with LST, QST elements.

the stress curve is still -noticeable; so that N, and e, v_vhiéh can be defined only
approximately, are much higher than for displacements. This behaviour confirms that
stresses, obtained from displacements which are the fundamental parameters of the
procedure, are not so well-behaved as the latter. Here, a better accuracy of OST
elements is obtained: as regards LST ones, stresses are more remarkably improved
than displacements.

Such an improvement becomes apparent by companng the error curves obtained
for stresses with the three elements (Fig. 14) to the displacement ones (Fig. 7). In
fact, the accuracy of LST elements is almost equidistant between those of CST and
QST ones, mostly in the case of not very high values of the number of d.o.f.

Better accuracy of QST elements is also obtained through the analysis of more
complex stress fields (5).:

Attention is given to this subject in Table 7. The results obtained for stresses
near the square plate polygonal hole confirm the equldlstant position of LST solutions
between CST- and OST ones..

(®) The diagram for case B4, analogous to the one in Fig, 1.4' is not".reporte'd here. A behaviour
of LST elements nearer to QST ones could result from it since in this case B1 the stress field is more
complex due to the greater influence of shearing forces.
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Therefore, a one degree increase of the interpolation function as it occurs from
a quadratic to cubic polynomial, allows for an improvement of the field variable lower
than the one occurring from a linear to quadratic one. Nevertheless, a considerable

e%}

3.5

]

L i 1
&0 1020 750 200 50
Number of nodes
FiG. 14. B1: error curves of principal stress oy, with the three different elements.

improvement is obtained in the approximation of the gradient of that variable:
the higher it is, the greater the improvement.

Up till now, attention has been devoted to the global parameters oy and oy
of the stress field and to their mean error. Further, the three components of the stress
field and local error of the solution are carefully exami-
ned. This analysis is interesting in order to point out
some features both of the procedure and of the different

Table 7. Square plate: values of
o, in point A.

A

Example 7

elemenis. y
The mean error of the components o,, d,, 7,, for 250C 28.049
several solutions obtained with LST and QST elements ;ggL ig-zig

is reported in Table 8 for Bl and B4 cases. Q -
L . . 475C 30,960
The error is different for the various components: ey 32.131
higher for those with lower vqlues and vice versa. This 4750 32.570
behaviour, which is quite interesting from the structu- 7750 32,986

ral point of view, is connected with the variational
formulation of the discretized problem; in fact, the solution error is lower. just for
those quantities which govern the minimization of the approximated functional and
which are associated with greater energy. The above-mentionep feature of the solution
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is.mostly apparent in case B4 — the error increases considerably-from g 1o T, and

gy
the contrary,

_ . where a remarkable difference oceurs.among the three stress components. On

in case Bl, where the values. of g,, o, and.7,, are comparable, more
uniform errors ocecur.

Table 8. Mean error of the stress components obtained with I.ST, QST elenients for cases Bl and B4.

Number Bl LSt B4 LST | \qumber
of of
nodes Ox Gy e 5 Oy - Fay nodes
9 19.21 11.58 26.41 2235 | 84.09 39.79 9
25 3906 |- 5985 : 7.228 3482 | ‘3832 | 2316 27
49 1746 | 3.06. 3.789 1988 |;21.28 7.007 45
81 1306 |'. 20057 | 2077 1338 | 1486 | 5274 65
Number 51 osT B4 O5T Number
of . of
nodes Tx Gy Fxy G S Ty nodes
16 2.473 4.621 7.965 4.852 | 3100 13.01 16
28 L725 | L1744 2.093 07845 | © 9.506 3.857 28
49 1.049 1.818 1217 | 04872 4236 1.762 49
70 0.8816 | 1368 0.7931 | 01652 | 1.626 0.6433 70

In terms of local results, the compariéoﬁ between LST and QST elements is

carried out for a discretization having the same nodes and the same element shape
(Fig. 15) in case B4. Both mean errors of the two numerical solutions (49L, 490)

K

. Ox Gy . . . N .. e .
{4713 I Toolarrz|[Ead [am s et [z v k9760 125511 940 |j4a0.0 )| 4211 55.6 | (1619
as20 b Janoo{lasa H1o.o0 liea 7liooo Hasz.o 1000 12607 Hanoo |i#s67 Y|0.00]] 20 [[1000]
4877 | 4 aesliae7a ll1ger Hazsa |} 998 {lasasfiws2 ||lesab (|08 sl g.93]l 7o f4045

4w} * [ees| ° fEeo) ° [@ww} ° fsra5] ° [2465), 85.45
o1 0.00 | o {1000 sod2000f Sw-d80.00| g a000| ee5000 | 3 60.00
101 | . lwe3| | [9e0] . lze93f | [40.86] | [4975 5933
o . . . .
G - = T
e 1 ? 1 | i
4811 | ! 464.0 4326 | 3515 285.5 1355 764
4820 | | 4687 4287 362.0 2687 148.7 2.0
4876 465.9 4263 3688|. . |2658 1484 9.1
OOy Ty o o o
a9L IRENEEEREEE .
Alr . i T LA i
45 :

Fi16, 15. B4: maximuon values' of comp

and QST (49 0). .

- Comiparison’ between  LST' (49 L)
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are-very little with respect to the “exact” one (see Fig, 13). For. @ST clements, how-
evér, the local error is much.more uniform: with low valuyes afl over the dﬂmai.ﬂ;
in particular, the “exact” behaviour of the components o, and T,y 15 definitely describ-
edi-On the' contrary, the LST solution is quite remote from such behaviour and
shows large variations from one section to anothet. These results are also confirmed:
by comparisons carried out with a higher number of d.o.f. =© - o
. Thus, QST elements show very little errors. even for minor stress quantities,
as already seen in displacement analysis, while LST ones penalize them; Such 2 be-
haviour, hid in the global picture via the mean error, is pointed out by error histo-
grams, too (Fig.: 16). First, attention. is-giveén to the -most important coniponent

OisrBgsr -
Sp=100- -
- Ny points. number . Mo k.

.16, Brror histograms of components Ty, Oy, Txy fOr case B4. 49 nodes mesh (LST, (ST),

&.): both for LST elements and QST ones the results at most of the nodes are included
n the range of errors considered. QST results are, however, more gathered around
he veriical axis.

Second, if attention is paid to the other components (0y» Txs)» the number of
oints included in the same range of errors is very low for LST elements; on the
'C_bntrary, for QST elements only a greater scattering occurs.

The analogous histograms relative to case Bl confirm the behaviour already seen,
even if weakened by the comparable importance of the three Sifess componens,

6. CONCLUSIONS

~ In this paper a large numerical investigation has been performed to analyse
the advantages connected with higher order interpolation functions in the discreti-
ation of a continuum problem into compatible finite elements.



640 ' F. BRAGA, G. REGA AND F. VESTRONI

The results confirm that accuracy improves as clement order rises from linear
to quadratic and cubic. Attention must be paid, however, to the features of this
improvement.

The analysis of convergence properties shows that the residual error and the optlmal
value of the total number of nodes are always higher for CST elements than for
LST and QST ones. Then, as far as the comparison between LST and QST elements
is concerned — a problem more carefully studied in this paper -— the convergence
rate of the latter, as to displacements, is always more satisfactory than that of LST
ones, while the residual errors are almost coincident. In terms of stresses, on the
other hand, the behaviour of LST elements is nearly . equidistant. between those
of CST and QST ones.

Therefore, there is a better accuracy of QST elements in approximating the gra-
dient of the field variable, and, consequently, in the analysis of more complex stress
ficlds. Moreover, these elements approximate all stress components equally and
independently of their importance, so that an uniform error results all over the
domain, unlike LST elements which privilege the greater components.

On the other hand, this better accuracy is not penalized by a greater calculation
onerousness; elsewhere, solutions with the same errors have been compared and the
numerical work connected with more refined elements have been found undoubtedly
easier (sce Ref. [17]).

The interpretation of stress results — always a problem in the compatible formu-
lation of f.e. methods — has been performed by the method proposed in Ref.
[12] which seems to be a rigorous one. Taking account of both the comparison
with results obtained through the simple average and the onerousness of the numeri-
cal work requested, Oden’s method does not seem suitable at least for plane elasticity
problems. On the other hand, as the element order increases, a remarkable decrease
of nodal stress discontinuities results, so that, from a general point of view, it
seems not convenient to use refined stress interpolation for QST elements.

APPENDIX. INTERPOLATION FUNCTIONS FOR IL.AGRANGIAN TRIANGULAR ELEMENITS

In terms of areal coordinates (see Fig. 17), the interpolation functions for the
elements considered in this paper are:
a) CST eclement:
ny=Lgy,  ny=L,, ny=Ls;

Ly=AsfA  LosAg/A Lg=Ag/A
L-f‘f'lﬁz‘f’f.gﬂf

™
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b) LST element: _
m=L; QLy—1), np=L,(2L;—1), ny=Ls@Ls—1), -
ne=4LiL,, ns=4L,L,,  ng=4L,L;:

¢} QST element:

m =y Ly GLi=1GL -2, m=FL,(3L,-1)(L-2),

. 9 -
n3='-'2—L3(3L3—1)(3L3—2), ny =Ly L,(3L,-1), _

2
n6=?L2L3 (3L2_I), R _?'LSLI (3L3 1)’
9 Do 9
ns??LLLa_(.?’Lz.“-.l)s-. T2, 5 LaLa Gl 1) ’
= LsLl (3L1 . 27L1L2L3

1t is useful to obtain the mterpolatlon functions n, as a product of a matrix B
having constant coeflicients times a vector I, depending on the areal coordinates —

the order of which corresponds Wlth n one and depends obwously on the eIement
order:

() . a=BlL,.

Assuming the follovmng expresswns of I respectlvely for CST LST and QST
elements:

! ={L,, L,, La}, ‘

={Li, Ly Ls, LILZ,Lst,LaLl} | |

N ={Li Lo Ly Ly Loy Ly Ly Ly Ly Ly L2~ Ly L3, L 12— Ly I3, Ly L2 — L, 12, L, L, Ly}
matrices B (see Ref. {17]) can be easily obtained.

Besides, if
. I—i..;L[yza J’;ﬂ]’ d!'z{c?/@Ll}

24 {%32 X3 dfoL,
with y, =y, —y;, etc, there results
® =114,
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STRESZCZENIE

ANALIZA NUMERYCZNA DOSTOSOWANYCH ELEMENTOW SKONCZONYCH
ROZNEGO RZEDU W DWUWYMIAROWYCH ZAGADNIENIACH ‘TEORIL
SPREZYSTOSCI

W ostatnim dziesiecioleciu przedstawiono wiele mode!l dostosowanych elemantéw skoﬁczonych
dla plaskich zagadnien teorii sprezystodei, Natomiast ilo§é badan teoretycznych na temat okresleriis
efektywnosci roznych elementow jest nadal skapa. Praca niniejsza dotyczy ghownie pordwnania
zachowaznia sie dostosowanych elementdw (réjkatnych roznego rzedu, Porownanie przeprowadzono
dla elementéw LST i QST dla réznej liczby stopni swobody i dla tych zagadnien, dla ktorych dosigp-
ne sg rozwigzania analityczne. Zbiezno§é elementéw dla aproksymacji globalnej 1 lokalnej rozwa-
zono oddzielnie dla p6l przemieszczess i naprezen. Przeprowadzono rowniez . analize nume-
ryczna w celu pordwnania efektywnosci dwoch metod opracowanych.dla zagadmeﬂ W ktdrych wy-
stgpuje niejednoznaczno$é naprezen w wezlach, tj.. prostego uérednienia i metody opierajace] sic
na teorii aproksymacji sprzgzonych : :
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Pesrome

YHICIIEHHBIA AHATINGE TPACHOCORTEHHAIX KOHEYHBIX 3AEMEHTOB
PAJHOI'O ITIOPAIKA B IBVMEPHBIX 3ATTAYAX TEOPHH VIIPYTOCTH

B rocremmeM ZIECATENSTHH NPEACTABNEHO MHOTO MOJeNeH NpHCIICCOOICHHEIX KOHEHALIX
SJIEMEHTOR R NIOCKHX 33739 TeOPHH YHPYTOCTH, BMeECTO 370T0 KONHUYECTBO ‘TEODETHYSCKHX
HCCIeA0BAHNIE Ha TEMY oupenencaus 5bdeKTEBHOCTY PaSHEIX 3TEMERTOB B AARBHEHINEM BEMBEOTO~
wmonenso. Hacrosmmag paGora Kacacrcs TNIABHEEM o0paioM CpapHEHAA IIOBEASHHS MPHCIOCOG-
JICHHBIX TPEeYroNBHBIX DNEMERTOB PasHOre HopaAra. CpaBHCHHE TPORCHSHO JANM  DISMEHTOB
LST m QST nana pasEEX 3BaveHmii wpena creneHcH cBOCOMLL M IIM TAKEX 3amad, Mt KOTOPBIX
JIOCTYIHET AHANMTHICCKAS Pelesns. CxoMMOoCTh SICMEHTOB AITs Mo Gansnoll B IOKamsEoH arImpo-
KCHMAUGH PACCMOTPCAA OTIENERO I moncH mepeMeinendmit W Hanpswemmii. IIposemen Toxe
YHCHEHHEI AHAMAS ¢ NeAbio cpasHenna SdMheRTHBROCTH JIBYX METONOE paspabOTARNBIX T 32103y,
B KOTOPHIX BEICTYIZET HEOJHOZHAMHOCTL HANPSLKCHAN B y371aX T.6. METONA UPOCTOTC YCPETHCHWS
¥ METOZA OIMPAKNEEr(oCH Ba TCOPDHIO COHPMKEHHBIX ammpOKCHMANHIL,
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