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In this paper is given the dynamic analysis of the free and forced vibration problems of
a complex system with elastic and visco-elastic inertial interlayers. The analytical method of
solving the free and forced vibrations problem of the system is presented in the paper [2].
The external layer of the complex system is treated as the plate made from elastic materi-
als, coupled by visco-elastic inertial interlayers. The plate is described by the Kirchhoff–Love
model. The visco-elastic, inertial interlayer possesses the characteristics of a continuous iner-
tial Winkler foundation and has been described by the Voigt-Kelvin model. Small transverse
displacements of the complex system are excited by the stationary and non-stationary dy-
namical loadings. The phenomenon of free and forced vibrations problems has been described
using a non-homogeneous system of conjugate, partial differential equations. After separation
of variables in the homogeneous system, the boundary value problem has been solved and two
sequences have been obtained: the sequences of frequencies and the sequences of free vibra-
tions modes. Then, the property of orthogonality of complex free vibrations has been presented.
The free vibrations problem has been solved for some arbitrarily assumed initial conditions.
The forced vibrations problem has been considered for different modes of dynamical load-
ing [3].

The solution of the ecological safety problem and protection from exposure to dust, depend
much on the equipment and techniques used in quarrying the brown coal. Thus, dynamics of
loading the open cast colliery dump trucks which have a load-carrying capacity of hundreds of
tons, mass of tens of tons and dimensions of tens of meters, is a very important problem. The
numerical results of free and forced vibrations problems of the complex system with the elastic
and visco-elastic inertial interlayer, for various parameters and different modes of dynamical
loading, are given in this paper.
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1. Introduction

The problems of vibrations with damping of complex structures play an im-
portant role in various engineering structures. Some mechanical and building
constructional systems consisting of strings, beams, shafts, plates and shells, can
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be connected by elastic or visco-elastic constraints, working in complex condi-
tions of stationary and non-stationary loading. In dynamics of various technical
objects important influence on their character operation is exerted by unavoid-
able vibrations of certain structural elements.

A typical example of the above-mentioned constructional elements can be lay-
ers, which are made of soft elastic or visco-elastic materials. On this subject, the
mathematical method was presented by Cabańska–Płaczkiewicz [3] taking
into account not only stationary loading of complex systems using the methods
based on the Kirchhoff–Love hypothesis [8], but also non-stationary loading of
complex systems based on the Timoshenko model [26]. Among numerous pre-
cise models applied to the investigation of plates made of modern materials, the
Reisner model [21] was used.

Wide bibliography concerning the classical, rheological models, were pre-
sented by Nashif, Jones, Henderson [12], Nowacki [14], Rymarz [23] and
the operator methods were given by Osiowski [18].

In the paper by Jemielita [7], the criteria of choice of the shear coeffi-
cient in plates of medium thickness have been considered. Vibrations of elas-
tic compound systems subjected to inertial moving load was presented by Bo-
gacz [1], Oniszczuk [15, 16] using the Renaudot formula [22] and Szcześniak
[24, 25].

The problem of non-axisymmetric deformation of flexible rotational shells
was solved by Pankratova, Nikolaev, Świtoński [19] using the classical
Kirchhoff-Love model and the improved Timoshenko model. The dynamic
problem of elastic homogeneous bodies was presented by Taranto, Mc Graw
[6], Kurnik, Tylikowski [10, 28], Mindlin, Schacknow [1], Pankratova,
Mukoed [20] and Wang [29]. The interlayer is a one- or two-directional vis-
coelastic Winkler [30] layer, but it can also be a multiparametric viscoelastic
layer presented by Woźniak [31].

In the above-mentioned complex cases, especially where viscosity and dis-
crete elements occur, it is recommended to adopt the method of solving the
dynamic problem of a system in the domain of functions of complex variable,
following the papers by Tse, Morse, Hinkle [27], Nizioł, Snamina [13] and
Cabańska–Płaczkiewicz [2–3]. The property of orthogonality of free vibra-
tions of complex types was first described by Cremer, Heckel, Ungar [5]
and Cabański [4] or discrete systems with damping, and for discrete – continu-
ous systems with damping – by Nashif, Johnes and Henderson [12], and for
continuous systems with damping – by Nowacki [14].

The aim of this paper is a dynamics analysis of a complex system with elastic
and visco-elastic interlayers for various geometrical, physical and mechanical
parameters, and for different modes of dynamical loading.
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2. Problems of control of vibrations in ecologically-dangerous
technical systems

2.1. Statement of the problem

Interdisciplinary range of problems connected with development and use of
brown coal, is extremely urgent for Central and Western Europe. The practical
significance of these problems is determined by many factors. One of them that
should be noticed is that 58% of world productions of brown coal is concentrated
in the given region. Life of lignite reserves is in excess of 240 years. Poland is one
of the world leaders in this field and takes the 4-th place after Germany, Russia
and USA. Therefore, great attention of engineering universities in Poland is given
to various research aspects and directions within the given range of problems.
A problem of ecological safety and protection of mine staff and inhabitants of
the surrounding areas from exposure to dust, takes an important place among
them.

For example, the capacity of the body of a dump truck is 337 m3, its width is
8.53 m, length is 15.54 m, depth is 3.34 m and mass is tons. The analysis shows
that the volume of dust ejection during loading of coal depends on the efficiency
of control of body vibrations by the shock-absorbing system of a dump truck.
At the same time, the standard models and methods of analysis and control of
mechanical vibrations, are based on a combination of the control and vibration
theories.

Thus, the analysis of dynamic response and of non-linear body vibrations is
usually made with the help of models where the body is schematically represented
as a load resting on a spring with one or several degrees of freedom. Such an
approach does not take into account certain essential properties of dynamics of
loading. These are, for instance, irregularity of loading the body, randomness of
distribution of a shock dynamic loading over the surface of a body, dynamics
of interaction of a body and a dump truck during the shock load. Therefore,
there is a practical necessity for making a common formulation of the problem
of analysing and controlling the vibrations of open cast colliery dump trucks as
an interdisciplinary problem of vibration theory, control theory and visco-elastic
theory. The last one takes into account real processes of a dynamic response
during the action of a non-uniform shock loading on a real structure of a dump
truck body on the whole.

It should be remembered that the dynamics of operation of material system
is always influenced by the residual vibrations.

Typical examples concern the important dynamic problems of certain objects
working in the open extraction of coal in Poland, e. g. deep-immersion at subsoil
motors, truck and the special spring balances on which are resting many tons of
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coal mass. The dynamical problems occur also in the railroad engineering and
the seaports, e.g. in the shock occurring by cargoes of a cargo ship.

In the design of such objects, an important practical meaning has the opti-
mal choice of the main factors of the vibrational processes, providing the opti-
mal compromise of controversial requirements to the dynamic elements system:
shock-absorber-weight.

Let us consider stationary and non-stationary dynamical loading of complex
system with damping (Fig. 1). The complex system is made from the elastic
plate which is coupled by a visco-elastic inertial interlayer resting on a stiff
foundation. The elastic plate is described as the Kirchhoff–Love model [8], and
is simply supported at their edges. The interlayer connecting the plate with the
rigid foundation [30, 31] will be replaced in further considerations by the so-
called simplified foundation, which is modelled as the homogeneous foundation.
Besides it is assumed that this simplified foundation consist of a close-packed set
of homogeneous pillars appearing within the plate contour. 
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Fig. 1. Dynamic model of an elastic plate coupled with a visco-elastic inertial interlayer,
under the stationary and non-stationary dynamical loading.

For this reason, the strains in the directions of co-ordinate axes x and y are
equal to zero. Each of the pillars with unit area of cross-section, has length equal
to thickness of this foundation and is made of visco-elastic material described
by the Voigt–Kelvin model [12, 14, 17].

Due to the small angle of slope of the deflection surface of the plate, the
shearing forces acting on lateral faces of these pillars are also very small and
hence they can be neglected.

On grounds of the above assumed simplification it follows that these pillars
are subjected to uniaxial strain but to the three-dimensional state of stress.

It is obvious that the displacement of the simplified foundation is identified
with the displacement of the corresponding pillar which is placed at the point of



DYNAMICS OF THE COMPLEX SYSTEM WITH ELASTIC ... 321

co-ordinates x, y. In this situation these displacements are apparently described
by a one-dimensional differential equation; nevertheless it should be observed
that these displacements are not only dependent on the variable z, but also on
the variables x, y.

In practical application, the combined system (Fig. 1) is treated as a platform
with the stationary and non-stationary dynamical, concentrated or distributed
loadings by the moving mass of coal [2, 3].

2.2. Mathematical problem

The phenomenon of small transverse vibrations of the elastic plate cou-
pled with a visco-elastic inertial interlayer is described by the following non-
homogeneous system of conjugate partial differential equations [2]:

(2.1)

D∆2w + µ
∂ 2w

∂t2
−

(
1 + c

∂

∂ t

)
k
∂wp

∂z
|z=0 = f(x, y, t) ,

(
1 + c

∂

∂t

)
k

∂2wp

∂z2
− µp

∂2wp

∂ t2
= 0

together with the corresponding homogeneous boundary conditions for the
plate

(2.2a)

w |x=0 = 0, w |x=a = 0, w |y=0 = 0, w |y=b = 0,

∂2w

∂x2

∣∣∣∣
x=0

= 0,
∂2w

∂x2

∣∣∣∣
x=a

= 0,
∂2w

∂y2

∣∣∣∣
y=0

= 0,
∂2w

∂y2

∣∣∣∣ y=b = 0

and for the inertial foundation

(2.2b) wp

∣∣
z=hp = 0,

as well as with the continuity condition of displacements of the plate and the
simplified foundation

(2.2c) w = wp |z=0 .

In Eq. (2.1) are introduced the following notations:

(2.3) D =
Eh3

12(1− ν2
o )

, k =
Ep(1− νp)

(1− 2νp)(1 + νp)
, µ = ρh , µp = ρp .

Here f(x, y, t) is the dynamical load of the complex system; w = w(x, y, t),
wp = wp(x, y, z, t) are the transverse deflections of the plate and the visco-elastic
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inertial interlayer; E, Ep are the Young modulus of materials of the plate and
the interlayer; c is the damping coefficient of the interlayer (retardation time);
ρ, ρp are the mass densities of materials of the plate and the interlayer; h, hp

are the thicknesses of the plate and the interlayer; a, b are the dimensions of the
complex system; νo, νp is the Poisson coefficient of the plate and the interlayer;
x, y are the co-ordinate axes.

An analytical method of solving the problem of boundary-value problem as
well as free and forced vibrations of mechanical system (Fig. 1), will be based
on separation of variables.

Substituting the following dependences:

(2.4) w = WT, wp = WpT

into the system of differential equations (2.1), one obtains the ordinary differen-
tial equation

(2.5)
o
T −iνT = 0

and the system of partial differential equations

(2.6)
D∆2W − ν2µW − (1 + iνc)k

dWp

dz

∣∣∣∣
z=0

= 0,

(1 + icν)R + ν2µpWp = 0,

where T = T (t) denotes the modal function; W = W (x, y) and Wp = Wp(x, y, z)
stand for complex modes of vibration of the plate and the layer; ν is the complex
eigenfrequency of vibrations.

Thanks to the relations (2.4), the boundary conditions (2.2) take the following
form:

(2.7)

W |x=0 = 0, W |x=a = 0, W |y=0 = 0, W |y=b = 0,

∂2W

∂x2

∣∣∣∣
x=0

= 0,
∂2W

∂x2
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x=a

= 0,
∂2W

∂y2

∣∣∣∣
y=0

= 0,
∂2W

∂y2

∣∣∣∣
y=b

= 0,

Wp

∣∣
z=hp = 0, W = Wp |z=0 .

Further analytical procedures of solving this problem are presented in the
papers [1, 2, 3, 24, 25].

2.3. Different modes of dynamical loading

In the first case, small transverse vibrations of the complex system with
damping are excited by the following stationary, concentrated dynamical loading
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(2.8) f(x, y, t) = Pδ(x− xo)δ(y − yo) sin(ωot)

at the point xo, yo and varying in time t.
In the second case, small transverse vibrations of the complex system with

damping are excited by the following non-stationary concentrated dynamical
loading

(2.9) f(x, y, t) = b(t)−m
d2w(x∗, yo, t)

dt2
δ(x− x∗)δ(y − yo),

or by the following non-stationary concentrated dynamical loading:

(2.10) f(x, y, t) = b(t)− m

d

d2w(x∗, yo, t)
dt2

[H(x− x∗ − d)−H(x− x∗)].

Here m is the mass of coal; d is the length on which the moving mass is dis-
tributed; δ(. . .) is the Dirac delta function; H(. . .) is the Heaviside function;
x∗ = v∗t, v∗ is the constant speed; yo = 0.5b; w(x∗, yo, t) denote the transverse
displacements of the plate in its first approximation at the points of location of
the moving mass of coal, i.e. the trajectory of the moving mass of coal; P is the
amplitude of harmonic force; f(x, y, t) is the dynamical loading of the complex
plate; vn are complex frequencies of free vibrations; xo, yo are the co-ordinate
coal for time t = 0; b(t) is the constant loading in the direction of axis z.

3. Results and discussions

Calculations are carried out for the following data:
E = 1010 Pa, Ep = γ∗108 Pa, νo = 0.3, νp = 0.2, ρ = 5∗103 Ns2 m−4,
ρp = 7∗103 Ns2 m−4, h = 0.5 m, hp = ε∗3.34 m, a = 15.54 m, b = 8.53 m,
c = ℘∗0.00007 Nsm−2, b(t) = 0, v∗ = ς∗10 ms−1, cg = 0.00001, ωn = Re[νn],
P = 4∗102 kN, m = 4∗104 kg.

In order to solve the boundary value problem, the following boundary con-
ditions are used for the Kirchhoff–Love model.

Let us consider the free and forced vibrations problem of the complex system
(see Fig. 1).

In order to find the Fourier coefficient Φn1n2 , the following initial conditions
are assumed:

(3.1) wo = As1 sin
(πx

a

)
sin

(πy

b

)
,

o
w o = 0, As = 0.0016m

where wo is the initial displacement;
o
w o is the initial velocity.

Some results of this problem given in Fig. 2 present absolute values of a
complex determinant |∆| and eigenfrequencies of free vibrations. The diagrams
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of the values of complex eigenfrequencies νn1n2 = iηn1n2±ωn1n2 of free vibrations
for various parameters ℘ = 1, g = 1, γ = 1; 0.01; 0.0001, ε = 1; 0.6; 0.3 are shown
in Fig. 2.
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Fig. 2. Moduli of a complex determinant |∆| and values of complex eigenfrequencies
νn1n2 = iηn1n2 ± ωn1n2 of free vibrations for x = 0.6a, y = 0.6b, z = 0 and n1 = 1 , n2 = 1.

The space diagrams in Fig. 3 shows complex modes of free vibration of the
visco-elastic inertial interlayer for n1 = 1, n2 = 1 and n1 = 1, n2 = 2. The space
diagrams of W (x) show the real ReW and the imaginary ImW parts of complex
modes of free vibrations of the interlayer, in the ranges 0 < x < a and 0 < z < h
and y = 0.5b. For z = 0, the diagrams show the real ReW1 and the imaginary
ImW1 parts of complex modes of free vibrations of the plate.

The diagrams in Fig. 4 show free vibrations of the complex system with
elastic and visco-elastic interlayers in time t in two cases; the first case where
damping coefficient ℘ = 1 occurs, the second case where damping coefficient
does not occur, ℘ = 0.

Calculations of dynamic displacements for the two cases where damping co-
efficient occurs ℘ = 1, are compared with dynamic displacements in which the
damping coefficient does not occur, ℘ = 0 – Fig. 4. Amplitudes of free vibrations
for damping coefficient ℘ = 1 in a visco-elastic interlayer have the value approx-
imately by 62% smaller than the amplitudes of free vibrations for the damping
coefficient ℘ = 0 in the elastic interlayer of the complex system.

The effects of various geometrical physical and mechanical parameters are
shown in Figs. 5–12. In the first case, small transverse vibrations of the complex
system with a viscoelastic inertial interlayer are excited by the stationary dy-
namical force (2.7) acting at the point x = 0.6a, y − 0.6b, z = 0 and varying in
time t.
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Fig. 3. Complex modes of free vibrations of the complex system with damping for n1 = 1,
n2 = 1 and n1 = 1, n2 = 2; the elastic plate for z = 0 and the visco-elastic inertial interlayer

for 0 < z < h.

Ã = 0

Ã = 1

Fig. 4. Free vibrations of the complex system with the elastic ℘ = 0 and visco-elastic ℘ = 1
inertial interlayers for γ = 1, ε = 1.

The effect of stationary dynamical force in the complex system with elastic
and visco-elastic interlayer is presented in Figs. 5–9 for various damping coeffi-
cients of the interlayer: ℘ = 0 (Figs. 5a–9a) and ℘ = 1 (Figs. 5b–9b).

In the case when the complex system is loaded by stationary concentrated
force and for damping coefficient of the visco-elastic interlayer ℘=1 (Figs. 5b–9b),
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the amplitudes of forced vibrations achieve a value approximately 55–63% smaller
than the amplitudes of forced vibrations for damping coefficient of the elastic
interlayer ℘ = 0 (Figs. 5a–9a).

The effects of stationary dynamical force in the complex system with visco-
elastic inertial interlayer ℘ = 1 are presented in Fig. 5b for the theoretical A and
experimental A∗ investigations.

In the case when the complex system is loaded by a stationary dynamical
force, for the experimental amplitudes A∗ of forced vibrations we obtain a value
approximately 7% smaller than the amplitudes of forced vibrations for the ana-
lytical amplitudes A.

a) b)

Fig. 5. Forced vibrations of the complex system for the stationary force and γ = 1, ε = 1;
a) ℘ = 0, b) ℘ = 1.

a) b)

Fig. 6. Forced vibrations of the complex system for the stationary force and γ = 0.01, ε = 1;
a) ℘ = 0, b) ℘ = 1.

After analysing the results presented in Figs. 5b–9b where damping coefficient
in the interlayer occurs, we state that the visco-elastic inertial interlayer can
be a vibration damper for the elastic plate which is loaded by the stationary
dynamical force acting at the point x = 0.6a, y = 0.6b and varying in time t.

In the case when the damping coefficient is equal to zero, presented in
Figs. 5a–9a, resonance in the complex plate with an elastic inertial interlayer
occurs, because real frequency ±ωn1n2 of free vibrations is coinciding with real
frequency ωo of forced vibrations. In the case when damping coefficient is dif-
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ferent from zero, presented in Figs. 5b–9b, no resonance in the complex plate
with a visco-elastic inertial interlayer, because complex eigenfrequency νn1n2 =
iηn1n2 ±ωn1n2 of free vibrations (Fig. 2) is do not coinciding with real frequency
ωo of forced vibrations.

The effect of stationary dynamical force in the complex system with a visco-
elastic interlayer is presented in Figs. 5–7 for the various Young moduli of the
interlayer γ = 1 (Fig. 5), γ = 0.01 (Fig. 6) and γ = 0.0001 (Fig. 7).

a) b)

Fig. 7. Forced vibrations of the complex system for the stationary force and γ = 0.0001,
ε = 1; a) ℘ = 0, b) ℘ = 1.

In the case when the complex system with damping is loaded by the station-
ary dynamical force, for the Young modulus of the visco-elastic interlayer γ = 1
(Fig. 5), the amplitudes of forced vibrations achieve a value approximately 65%
smaller than the amplitudes of forced vibrations for the Young modulus of the
visco-elastic interlayer γ = 0.01 (Fig. 6). For the Young modulus of the visco-
elastic interlayer γ = 0.01 (Fig. 6), the amplitudes of forced vibrations achieve
a value approximately 60% smaller than the amplitudes of forced vibrations for
the Young modulus of the visco-elastic interlayer γ = 0.0001 (Fig. 7).

The effect of stationary dynamical force in the complex system with a visco-
elastic interlayer is presented in Figs. 5, 8, 9 for various thicknesses of the inter-
layer ε = 1 (Fig. 5), ε = 0.6 (Fig. 8) and ε = 0.3 (Fig. 9).

a) b)

Fig. 8. Forced vibrations of the complex system for the stationary force and γ = 1, ε = 0.6;
a) ℘ = 0, b) ℘ = 1.
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a) b)

Fig. 9. Forced vibrations of the complex system for the stationary force and γ = 0, ε = 0.3;
a) ℘ = 0, b) ℘ = 1.

In the case when the complex system with damping is loaded by the station-
ary dynamical force, for a small thickness of the visco-elastic interlayer ε = 0.3
(Fig. 9) the amplitudes of forced vibrations achieve a value approximately 79%
smaller than amplitudes of forced vibrations for a large thickness of the visco-
elastic interlayer ε = 0.6 (Fig. 8). For a small thickness of the visco-elastic
interlayer ε = 0.6 (Fig. 8), the amplitudes of forced vibrations achieve a value
approximately 95% smaller than the amplitudes of forced vibrations for a large
thickness of the visco-elastic interlayer ε = 1 (Fig. 5).

In the second case, small transverse vibrations of the complex system with
a visco-elastic inertial interlayer are excited by the dynamical non-stationary
loading expressed by the equations (2.8) or (2.9). The mass is moving with the
speed ς for y = 0.5b.

The effect of moving mass in the complex system with a visco-elastic inertial
interlayer is presented in Fig. 10 for various speeds ς = {1, 2, 3, 5, 6} and various
damping coefficients ℘ = {0, 0.6, 1}.

In the case when the complex system is loaded by a moving mass and when
the damping coefficient of the visco-elastic interlayer ℘ = 1, the amplitudes of
forced vibrations achieve a value approximately 20–30% smaller than the ampli-
tudes of forced vibrations for damping coefficient of the visco-elastic interlayer
℘ = 0.6. In the case when the complex system is loaded by a moving mass
and when the damping coefficient of the visco-elastic interlayer ℘ = 0.6, the
amplitudes of forced vibrations achieve a value approximately 50–60% smaller
than the amplitudes of forced vibrations for damping coefficient of the elastic
interlayer ℘ = 0 (Fig. 10).

In the case when the complex system with damping is loaded by the mass
moving with speed ς = 1, the amplitudes of forced vibrations achieve a value
approximately 10% smaller than the amplitudes of forced vibrations for the
speed ς = 2. In the case when the complex system with damping is loaded
by the moving mass with the speed ς = 2, the amplitudes of forced vibrations
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Fig. 10. Forced vibrations of the elastic and visco-elastic complex system for the moving
mass with the speeds ς = {1, 2, 3, 5, 6} for γ = 1, ε = 1, ℘ = {0, 0.6, 1}, g = 1.
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achieve a value approximately 8% smaller than amplitudes of forced vibrations
for the speed ς = 3. At the critical speed ςcrit = 5, the amplitudes of forced
vibrations achieve a value approximately 35% larger than amplitudes obtained
for the speed ς = 6 (Fig. 10).

The effect of a moving inertial mass in the complex system with elastic ℘ = 0
and visco-elastic ℘ = {0.6, 1} inertial interlayer, for the speed ς = 1, is presented
in Figs. 11–12.
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Fig. 11. Forced vibrations of the elastic and visco-elastic complex system for the mass
moving with the speeds ς = 1 and γ = 0.01, ε = 1, ℘ = {0, 0.6, 1}, g = 1.
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Fig. 12. Forced vibrations of the elastic and visco-elastic complex system for the mass
moving with the speeds ς = 1 and γ = 1, ε = 0.03, ℘ = {0, 0.6, 1}, g = 1.

In the case when the complex system is loaded by the moving mass for
damping coefficients of the visco-elastic interlayer ℘ = {0.6, 1}, the amplitudes
of forced vibrations achieve a value approximately 60–90% smaller than ampli-
tudes of forced vibrations for damping coefficient of the elastic interlayer ℘ = 0
(Figs. 11–12).

The effect of moving mass in the complex system with the elastic and visco-
elastic interlayer is presented in Figs. 11, 12 for the various Young moduli of the
interlayer γ = 1 (Fig. 12) and γ = 0.01 (Fig. 11).
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In the case when the complex system with damping is loaded by a moving
mass, for the Young modulus of the visco-elastic interlayer γ = 0.01 (Fig. 11),
the amplitudes of forced vibrations achieve a value approximately 12% larger
than amplitudes of forced vibrations for the Young modulus of the visco-elastic
interlayer γ = 1 (Fig. 12).

The effect of moving mass in the complex system with the elastic and visco-
elastic interlayer is presented in Figs. 11, 12 for various thicknesses of the in-
terlayer ε = 1 (Fig. 11) and ε = 0.3 (Fig. 12). In the case when the complex
system with damping is loaded by a moving mass, for a small thickness of the
visco-elastic interlayer ε = 0.3 (Fig. 12), the amplitudes of forced vibrations
achieve a value approximately 33% smaller than amplitudes of forced vibrations
for a large thickness of the visco-elastic interlayer ε = 1 (Fig. 11).

After analysing the results presented in Figs. 11–12 when damping coeffi-
cient ℘ = {0.6, 1} in the interlayer occurs, we conclude that the visco-elastic
inertial interlayer can be the vibration damper for the elastic plate which is dy-
namically loaded by the moving mass and varying in time t. In the case when
damping coefficient is equal to zero ℘ = 0 and in the case when damping co-
efficient is different from zero ℘ = {0.6, 1} presented in Figs. 11–12 no res-
onance occurs in the complex plate with the elastic and visco-elastic inertial
interlayers.

4. Conclusions

• In the case of stationary harmonic loading acting on the compound system,
i.e. the platform, the analysis of displacements and the investigations of
resonance can be considered in the routine way. The choice of mechanical
parameters of the compound system proceeds according to the principles
of the classical theory of linear vibrations.

• The problem of vibrations of a compound system excited by the non-
stationary inertial, moving load have specific attributes. Therefore the
analysis of these vibrations to exceed the general theory of the linear vibra-
tions in the mechanical systems with the time-dependent parameters. It is
well-known that a very important quantity of this compound system is the
relation between the velocity of moving mass and the so-called critical ve-
locity, that is dependent on the ratio of moving mass to the stationary mass
of the mechanical system. In turned out that in the case when the velocity
of moving mass small in comparison with the critical high-velocity. Hence
it follows that there is no danger to exceed the acceptable displacements
in the mechanical system.
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