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INJEGTION OF A MIXTURE OF SMALL PARTICLES INTO A FLOW,
TREATED AS A PERTURBATION PROBLEM

F.FEUILLEBOIS and A. LASEK (MEUDON)

Small identical solid spherical particles are injected from a wall into a laminar flow of an incom-
pressible viscous fluid. The concentration of particles is assumed to be low, The goal of this paper
is to study the action of the particles on the velocity profile of the fluid.

The equations used for the fluid-particles mixture reduce the effect of each particle to a Stokes
force acting on its center. A perturbation method is applied to solve these equations: the non-di-
mensional number S=1,/r., where 7, is a characteristic time for a particle and 7. a characteristic
time of the flow, is required to be small. It is shown that this condition is compatible with the other
assumptions, but that the equations for the mixture are valid only within a limited region close
to the wall, The results prove that the velocity profile of the fluid is affected by the particles if the
mass concentration of the particles at the wall is of order }/Re § at least, where Re is the fluid flow
Reynolds nuomber. For the case where this condition is satisfied, velocity profiles are computed
and written in-~closed form. Some typical profiles are shown for an uniform injection of par-
ticles,

1. INTRODUCTION
We consider a Newtonian viscous incompressible fluid flowing along a wall

A mixture of small identical solid particles is injected from the wall into the fluid
with a finite velocity (Fig. 1). The particles are spherical and their volume concen-
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Fic. 1. Injection of a mixture of small identical spherical particles into a flow.



Ea

408 . B P, FEUILLEBOIS AND A, LASEK .

tration is assume to be low. We expect that under the influence of the particles the
shape of the velocity profile of the fluid will change. We will study in this paper
the conditions ir which this change may occur and, in case it does occur, we will
compute the shape of the deformed velocity profile.

Such a problem may arise whenever a fluid flows along a wall permeable to small
solid particles, (e.g. in chemical engineering and bioengineering applications).

To find the velocity profile of the fluid, the general equations to be solved are
the Navier-Stokes equations with the boundary conditions on particles and on the
wall. As these equations cannot of course be solved directly, we will make a number
of approximations tending to obtain a set of simplified equations for the mixture.

-2, ASSUMPTIONS

The assumptions we make are the following: _
a) Small spherical particles of radius a are injected intq a region of laminar flow
of thickness d (Fig. 1) so that; ‘

2.1) a<gé.
The fiow being laminar, the Reynolds number
. ‘U, O
(2.2) Re= ,

where u,, is the fluid velocity at the distance &, is smaller than the Reynolds numbcr
corresponding to the laminar-turbulent transition, Re,
2. 3 o 7 Re<Re, . _

b) The concentration of particles is low. We neglcct thcrcfore any Browman
effect, any shock between particles, any hydrodynamic interaction between partic-
les, as computed for instance by BATCHELOR [1].

¢) The Reynolds number of the fluid movement relative to a particle is low.
To define this number we use the maximum velocity of the fluid relative to the
particle. This maximum velocity occurs at the injection point, at the wall, as later
the particle is entrained by the fluid and its relative velocity decreases. Let %, (x)
be the injection velocity perpendicular to the wall. We assume v, {x) to be differen-
tiable, and such that o, , the maximum injection velocity, be a quantity of the order
of v, (x) . The Reynolds number relative to the particle is defined by

v, d
24 Rev=%
We require that
(2.5) Re,<1.

The equations for the flow around a sphere are then the Stokes equations to the
lowest order in Re,.
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Itis known that:

1) The Stokes equations are valid in the entire flow field. The result when the
sphere is far enough from any other solid body is the well-known. Stokes force
acting on’ the sphere: :

(2.6) o F="6nap(v,~v),

where p is the dynamic viscosity of the fluid, v is the fluid velocity of the “imper-
turbed” flow field (i.e. if the spliere were absent), v, is the sphere velocity.

2) At a distance of the order a/Re, away from the sphere (Oseen distance), the
sphere appears, according to the outer equations to the lowest order in Re,, to act
on the outer flow only as a point force of magnitude &,

Now, we precise the assumption b) by requiring that the distance between two
particles be larger than the order of a/Re,, so that there is no Stokes interaction
between them. The effect of different particles on the outer flow appears then only
to be the addition of the point forces & .

4 o oa \3 ’
As there must be only one patticle in a sphere of volume - (Re ) the

number of particles per unit-volume, n, must satisfy the condmon

_ _ 3 (Re,J )3
2.7 - : coon< e i

The effect of the wall on the Stokes force will.not be taken into account here, The
solution of the Stokes equations for a sphere in the presence of a wall has been-found
by Faxen [2] and Wakiva [3] whoe are quoted by HappEL and BrRENNER 4], It may
be shown that the effect of the wall becomes negligible when the sphere is only a few
diameters away from the wall. Here we assume the sphere to be small enough to
" neglect this region of interactions.

d) We require that the trapsverse force on a sphere due to the velocity gra-
dient be small. We define the Reynolds number as follows:

ey  Re,=T,

where 7 is’ the velocity gradient of the order of u,,/5. 'Such a transverse forée of the
order ]/Re was computed by SAFFMAN [5] for Re <Re <1. We require here
that

(2.9)" © ' Re,<Re?

so that the Stokes force is then the only force to be considered to the order Re,.
e) We require the spemﬁc mass of particles p, to be much larger than that of
the fluid p o ‘

(2.10) . Po>p

As follows from the non-dimensional transitory Navier-Stokes equations around
a sphere in this case (Appendix 1), we may neglect all transitory forces acting on
a particle, such as the hereditary force computed by Basser [6] or ViLrat [7].
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3. EQUATIONS

‘Taking into consideration all preceding assumptions and suppdsing,- nioreover,
that there exists a small volume where locally all particles have the same velocity,
we write down the following equations for permanent flow: Continuity of the
fluid:

3.1) _ . V-y=0.

Momentum of the fiuid:

(3.2) ‘ p (@ V) v=—Vp+:Viv+n [6rap (v,—V)].
Continuity of the particles: |
(3.3) V-(nv,)=0.

Momentum of the particles:

' dv '
3.4 m,,-;h—p=mp(v,-V)vp=6napz(v—v,,)?
N B

where m,, is the mass of a particle, d/dt, is the time derivative when following 2 given
particle, p is the pressure.

Such a set of equations may be found in Soo [8].

The boundary conditions at the wall are the no-slip condition for the fluid and
a given injection velocity and concentration for the particles (whlch may be variable
with the distance):

u=v=0,
(3.5 Y=0:tu,=0, v, =7, (%),

"n=ny(x) for x20,0 for x<0.

Now, we have to point out a limitation of the valicity of these equations for the
present problem, Taking the velority of the fluid perpendicular to the wall to be
zero as a first approximation ‘

=0,

which will be shown to be the case later on, we integrate the momentum equation .
of a partlcle 3.4 perpendzcular to the wall:

v,=7, (%) et

where ¢ is the time; and

. . 3
(.6 _om 3T
-6) ' " enay 67 au

is a characteristic time of translation of the particle.
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Integrating again we get the distance from the wall, y,, reached by the particle:
(37) o Yr=Tp%p, (x) [1_ e’ tit"] .

All particles leaving a given point, x>0, at y=0, reach the limiting height 7,0, (X), °
thus constituting a high concentration layer where our equations are no more valid.

We will not consider this concentrated layer here and will restrict our siudy
to the region ‘ - ' :
(3.8) y<1,9, (x) (for all x=0)

and to x small enough so that the concentrated layer of pdrtlcies is not expanding
down to the wall. ‘ :

Let us now write the equations in a non-dimensional form. All velocities are set
non-dimensional by taking as a reference\quantity u,,, the fluid velocity at the distance
J. We define u,,, and thus ¢, by requiring u,, to be of the order of v, (x)

Uy =Ty, s

which does not dirhinish the generality of the problem. Let

v Y _ (%)
V_uw, Vp— ;;D’ () 'uw
- =T P
X=-=, y=-=, P=—
(3.9) -()-

m,n my g (x
f=——, f=—"",
P P
U, 8
Re=——,
y

. f(X, ¥) is the mass concentration of particles per unit mass of hquld fo (XD
is the same quantity at the wall. ‘

Another important parameter appears from non~d1mensmnahsmg.

Te

(3.10) .
where 7, a characteristic time of the particle, has been defined in Eq. (3.6), 7,=d/u,,
is a characteristic time of the flow.

This parameter is characteristic of the comportment of the particle in the flow.
I S 1, the particle is going its own way and is little affected by the fluid flow.
If §<1, the particle is quickly carried away by the fluid flow. The non- dJmensmnal
equations and boundary conditions are waitten as S

(3.1 : V.V=0,

10,=Y)

: 1
. o — 2
(3.12) (V-VV) VP + Re ViV S ,
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@GI3)- - Va(fV)=0,

(3.14) (V, V)V, = _S
| Ueveo0,

(.15 Y=0|U,=0, V,=V, (),

Sf=fx) for xz=0, 0 for x<0.

where V- has now the components 4/6X, d/87.
The equations have to be limited to the region

(3.16) O Y<sY, (X))
with X not too large,
Note that ¥, (X) is of the order of 1 by deﬁmtlon

4. SMALL PARAMETERS. 'CO'MPATIBILITY' WITH OTHER CONDITIONS

The system of Egs. (3. 11)—(3 16) is still dlﬁicult to solve directly. We will restrict
our study to the case

(4.1 _ S<1

and will consider the perturbation problem for S-»0. i

Physically, we thus consider only the case where particles are quickly carried
away by the fiuid. But, by the inequality (3.16), we restrict our attention to the
very region where they are carried away. '

First, we have to check if the condition (4.1) is compatible:

with the assumption we made earlier,

- with the condition that the region in the inequality. (3.16) we are conmdermg

is large enough to freat the particle mixture as a contmuum ‘

The assumptions ars: ;

a) with A=a/d (2.1), (2.3)

A<,
- Re<Re,;

b) the inequality (2.7) may be written in terms Ao_f i ‘

(4.2) e
f<%’" (Reu)? = (arep.

o) (2.5)
Re,=Red<1.
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d) (2.9)
Re,=Re A?<Re? =(Re A)?
or
4.3) Res1.
9w |

Polp> 1.
The condition (4.1) with Eqs. (3.6) and (3.10) is written as .

2 }
— &ReA’«l.

(4.4) 5

Now to be sure that the region in the inequality '(3.16) or (3.8) contains many
particles, we have to write that it is much larger than a/Re, as (by assumption b),
each fluid sphere of the radius a/Re, contains only one particle:

.
R, < ®)

o Re, <V~ S
or
(.5) | Retzs o L.
. 2.p

The conditions (2.1), (2.3), (2.5), (4.3), (2.10), (4.4) and (4.5) are compatible in a
limited region, as may be seen from Fig. 2, drawn for p,/p=4.5 x10? as an example.

The transition Reynolds number has been taken as Re, = 5 x 10° after SCHLICHTING
[9], assuming a boundary layer situation on a flat plate, the distance to the leading
edge being of the order of d (¢r eventually less than &).

An alternate situation may arise where particles are injected into the laminar
sublayer of a turbulent ffow. The thickness of the laminar sublayer 6% is given; after
SCHLICHTING [9], by

u* g*

i »

u* being the friction velocity, u"':]/%, t being the shear stress at the wall.
The condition that the particle layer 7, v, is less than the laminar sublayer 5% is

written as
Uy
Y75 T

v

<3
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STy ]/umé i
Gua ¥V 5 =

SVRe <.

or, as M, =7,

This condition, replacing the condition Re < Re, is shown as a dashed line in Pfig. 2.

tag Re |
A A / o L
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%ﬁ\ st
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. % ‘% 1~
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Y / % %\gefz?év/ ;;;;AZRB

F1G. 2. Region of validity.

A typical point is shown in ‘this figue: -
Re=3.16 X103,
A=10"%

-corresponding to the injection of small solid particles of the radius a=1 pm and the
‘density p,=5.8x10% kg/m?, with injection velocity w, =50.5 cm/s into air
(density p=1.3 kg/m3, kinematic viscosity v=1.6x10"5m?/s) flowing along the
wall with a velocity gradient 5.05 s—%.

It may be checked that all conditons are valid within a 102 precision, except

Re,=0.316.

But it is known from the experiment [8] that the Stokes force is still valid for Rey-
nolds numbers fairly close to unity.

The only condition not shown in Fig. 2 is the condition (4.2) on the mass con-
centration of particles. For our numerical example,

f<<1.42%10%,
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The region we study is of the order

TyUp,=3.16 mm.

5. SINGULAR PERTURBATION PROBLEM. CONDITION FOR PARTICLE ACTION

If we let $—0 in Egs. (3.11) to (3.14),.' we get for the velocitiés
(51)'-.:' R A
‘so that the boundary condition (3.15) at the wall .
Y=0: V=0, (X)%O

cannot be applied. This is a singular perturbatlon problem. Let us define the interior
coordinate

‘ 5 Y
{5.2) Y= Ga |
« being a positive real constant that we have to find. ¥ being of the order of 5% thus.
small, the velocity of the fluid parallel to the wall will be (in laminar ﬂow) of the
order of U~ Y~ 5% Therefore, let

u

63 SRR 0=

The velocity of particles parallel to the wall is smaller than that of the fluid
as the fluid entrains them. Thus: U,~U ~8", ‘ :

Let : i
U,
S

(5.4 0,=

The velocity of particles perpendicular to the wall is of the order of 1 by definition ¢

(5.5) Vo Vp~ 1

Let also, '

(5.6) f=rr,

f, being of the order of f,, e.g. f, being the maximum of f;, (x). Let also
oy _

(.7) V=

so that the equation of continuity for the fluid (3.11) is still valid. . .
The momentum equation for particles (3.14) may be written as -

s 80, o,

(58) ax "oy

av, 1 v, §*V-V, .

vox Te ViaE T S

-l I(U Up)a

(5.9) 5%
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We require the equations to be the less degenerated possible (Van Dyke [10]).
This gives

a=1.

The interior coordinate (5.2) is L
5 ; ?_, v

8T

Thus the region in the inequality (3.16) where the equations are valid is of the order

of magnitude of the interior region. _ ) _ ,
Now let us derive expressions to the first order for flow quantities in this region.
Equation (5.9) is, to the order of S,

v, ‘
Vp 3? = _“VP'

So that for F<¥, (X)
(5.10) Vo=V, (X)~F

and for ¥>V, (X)

The equation of continuity for particles (3.13), is, to the order of S,

aff;zo’
g

which can be integrated
(5.11) SVo=fo(X)V,, (X).

The mass flow rate of particles is pei‘pendicular to the wall, to the order of S.
The concentration of particles is, by Egs. (5.10) and (5.11),

o (X
(5.12) f=J_£_i’2—_’

Vo (X)

which, as we expected, throngh Eq. (3.7) gets infinite for ¥~ ¥, (X). This equation
was derived for V0. We proved here that the expression (5.7)

V8§,

which gives the same resuli fof the order of magnitude we congider.
The momentum equation for the fluid in the y direction (2.12) reduces to

¢9P_
_ﬁ_prsz(X) VD(X)a

where Eq. (5.11) has been applied. This is a pressure gradient due to the momentum
of particles.
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Integrating
(5.13) o P=LD V() TP (X), -

P, (X) is an unknown function.

The momentum equation for the fluid in the X direction {2.12) reduces, to the
order of S, after using Egs. (5.12) and (5.13), to
dP, 1 20 o,-0

afoVy »
¢ (X — =
Y

dX X " Res ovi T/o

(5.1 0=-7

V@)

The slowing down of the fluid by particles is represented by the last term. This
term is of the same drder as the others if

i
(5.15) <y o

or, as V¥, (X) is of the order of 1,

1
@V, (0% 35

1
fo(X) (X) Res

The particles must have a minimum mass concentration, or momentum, or kinetic
energy in order to modify the fluid velocity profile.

We can show that the condition (5.15) is compatible with the assumption of
low concentration, Eq. (4.2).

This last equation is written as

P .
fo <7" (ARE) =14 max (52Y).

The compatibility between the inequalities (5.15) and (4.2) may be written as

1
.f“:ll'ﬂax< R_eS
or
) 9 2 .
(5.16) ‘- (ARe)5>%(i), -
o : _ T2 4p, _ 7

this is shown in Fig. 2 as the “action line”, The typical point is in 1 the region where
particle action occurs.

- Rozprawy InfZynierskie — 4
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6. VELOCITY PROFPILES AND FRICTION COEFFICIENT AT THE WALL

Assume that the condition (5.15) applies and let us then compute the velocity
profile of the fluid. The momentum equation of the fluid (5.14) has to be coupled
with the momentum equation of the particles (5.8), giving a system for the unknown
variables U, O, . - :

Combining both equations we find

v,~¥ a0 1 a0 - dfoV,
o

61 “Res o7 TRes a7 VU Tax

o - Ty :
A R O e

C being a function of X to be determined.
The solution of Eq. (6.1) may be found in a closgd form (Appendix 2):

dpP,

oy LA0Ke o Ak, € _ax o oo b
( . ) 2 dX Ve dX 'f() Vpn f() +a( ro ) 2('7) ]2 (n) r
w}_lere

Ko ()= Re Sfo () Vi, (X,
n=2V Ko (Vy, — 7);

I, is the Bessel function with imaginary argument of order 2; 4, b, are functions
of X to be determined. U/, may then be found from Eq. (5.14) to be

o , +( | dKe 1 dPl)Y

v dx K: dX  foV,, dax |

'm(' c +Vp,,'dK0) “ Z[arr’ b HI( 21()]
vt R ax ) TR 0 Ty bk T wEer LT B

The functions a(X), b(X), ¢(X) have to be found using the boundary conditions.
Here a problem arises, as we have only two conditions (3.15) at the wall

(6.3)

o~

y=0: U=0; U,=0.

As this is a singular perturbation problem, it is logical to supply a third condition
by matching with the outer flow the expression (5.1). This matching condition is
written as

(6.4) O-0,-0 for Y-ow.

But as we have seen the equations are no more valid for Y27, ,(X). Thus we
have to abandon the matching condition and substitute an information about the
concentrated layer of particles at

PV, (X). o
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We do not know much about the particles, except that their concentration is
high. We may assume that they are travelling at the same speed as the fluid.

' (6.5) 0,0 for . TV, (X).

- This physical condition may be mathematically accepted as it can be regarded
as an approximate form of the matching condition (6.4) sometimes used in the
boundary layer theory.

The boundary conditions at the wall give

1. 2{2 dlng, 1 dP, dlnl, 5, 1 dK,]°
g =—=——|ReSC-—|— —— — 1|+ : — e — |,
ﬁ [ Ho \o  difo JoVp, dX  dnq 2 K, dx
dne !
pm— |_C I(%I I)+
dh, 1 5a¥, 2\ 2 a4 |
@y S
KofoVp, dX 4 172 KY dx 8 72

where I, and 7, are the Bessel functions with imaginary argumehts taken for
L4
f}'=ﬂ0=2 ]/KQ Vpo'

The third condition (6.5) gives

b=0
dpr,
and thus ' as a function of R _
For simplicity, let us write the expressions of C, U/, {, for uniform injection of

particles:

aPy dv,,
) ax " dx
We get: ‘
I dpP
(6.6) _ e ‘1_(_@( ;)
2Ky Iy(no) dx

where I, is the Bessel function with imaginary argument of the 0 order:

L 1 Iz(’?o)[ 212('7’)]( dPl)
6.7 -
©7) v= fo I3 (10) 1= 7?(2)[2 (10) dx

| ! * on) [ ah) - N dP\
(6.8) Upzﬁ{l_(_i) 4o :1(?0) [ il (n) '_1]}(-__“1”)_.
fo o 110 Lo (110) Lo 11 (110) dX
Both profiles for the ﬂmd xvelocny U=8U and for the particle velocity U,=SU,
are plotted in Fig. 3.
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It can be found that € has a physical interpretation. If the solutlon U of Eq.
(6.1) is searched as a series,
O=d, T+4, 72+ .. 4+4, 7+
it can be found that AigReSC and thus C is related to the friction  coefficient
at the wall, C;: ‘

= o -
&V ly_a B U, (BU) (E}U) 1 (BU)
X C,= = — = =——\—= = .
©9 & pul - put, 8 \dY [y.o Re\3Y /y_o Reld¥ /3o s¢

Y
L4 4
g —fo _
Pstoriox) 7 -
particles P .
L U f
- S{-0F/ox)
Fluid
o5
)
o1
[} ) 1 l P
ar .oz 03

Fic. 3. Velocity profiles for _uniform injection of particles fo=1/Re S.

Thus, for constant injection of parﬂcles the friction coefficient at the wall is related
dpP
to the pressure gr_adlent ———' by Eqs (6. 6) and (6.9):

o= S L2V, ]/ReSfO)( ﬁ)-
! l/ReSf0 ID(ZVpol/ReSfo) dx |’

(6.10)
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7. CONCLUSION

The main resulis of this paper are the following:

1) A disperse suspension of small identical spherical particles injected from
a wall will modify the velocity profile of a fluid flowing along this wall if the mass
concentration of injected particles, f;, is at least of the order 1/Re § which we write
as

where

v,, being of the order of the injection velocity of particles, & being the distance
from the wall where the fluid velocity is of the order 7, . S, a number characteristic
of the comportment of a particle relative o the fivid, is defined in the text {For-
mula (3.10)).

2) For the case f, & RoS

(compatible with the assumptions) and for uniform

injection of particles, the velocity profiles of the fluid and the particles are computed
in a closed form (Formulae (6.7) and (6.8)). The friction coefficient at the wall is
also given (Formula (6.10)).

APPENDIX 1. FORCES ACTING ON A DENSE SPHERFE

We consider here a sphere of the density p,, much larger than the density p of
the surrounding fluid. We - assume that the Reynolds number of the flow around
the sphere is small.

We want to show that the forces acting on the sphete are due only to the perma-
nent fluid motion,

The Navier-Stokes equations for the flow aiound the sphere are written as

V-v=0,
.
p ~é;-+(v-V)v =—V,+ V2y

with the boundary conditions on the spEere, r=a, v=v,+w, xr at infinity, r—00,
v—v,, {giver fluid velocity)

Notations are the usual ones. r is a vector ofiginating from the sphere center;
r=|r|; a is the sphere radius. =, is the sphere translational velozity, w, is the sphere
rotational velocity. :

To get the non-dimensional equatlons we choose the following reference quanti-
ties: a for the length, u,, a characteristic fluid velocity, for the reference velocity,
7,-& characteristic time of the particle for the reference time. We choose this scale
of time as we are mainly interested in the particle motion.
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Let 7,=a?/v be a characteristic time for viscosity.

Let ‘ L
o y -t
R=—; 0 V= TE—,
B S /% LT
Uy a ' '
Re, T {we assume: Re <1)
p
P"“—;Re,,, 7
pilg,
v " W, a v
Vp_ l", ﬂpm g s Vm:i

The non-dimensional equations and _boundary éonditi_ons ate written as
Vv=0,

7, dv
— —+Re (V- V)V==VP+ VZV-.‘-
t, T

\' now being fhe 'vcctor _of the compqnents a/aX, a/E)Y, '3/32 ,-:(X ;x/a; )
R=1 V=V, +,xR, |
Row V —>V

For small Re,,, we get as a first approximation the Stokes equa.t:ons
In the solution we get the ‘Stokes force plus some other nonstatlona.ry ‘forces
acting on the sphere

d L
6 ( y—6a*p v | AN 0
= —6map(¥,— Vv a -
p\Ve— Vi PY® f ]/t 0
Stokes Basset/Villat
2 d 4 dv,

—_ 3oy — +
3 na-p dr (v.ll vl) ﬂ:a g dt

.added mass accele_ra_tmn
' pressure field

-v; being the velocity of the unperturbeﬁ flow field.

d
—— (v, "t)
i Ty d Ty d"[ l

F=—6 {( ) ]/T" fd@
— —6map (v, —v) + R
B R w1,y YT-0

3 - ;ﬁ?(vp—w)“?; ar
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For 7,3 T,, the Stokes force is the predominant one'and the equation of d'yna.mics
for the sphere translation , :
4 dv,
' ?na3pp7f —67ray(v —v)
gwes the character;stlc time -

_4pmaip, 2 p,

T e 3
we see that the Basset force is of tﬂc'*order ]_/Tp,, as compared to the Stokes force,
and the added mass and ‘acceleration pressure field are of the order pj/p,. The

action on the sphere is thus to the Ol'dt;T_ ]/p/pp due only to pei manent fluid motion.

APPENDIX 2. GENERAL SOLUTION OF THE DIFFERENTIAL EQUATION

>0 'aiff

Y v, )aY2 oy K 0=0.
Let Z=V, —¥. Equation (1) becomes

. : TN 1} % Db

@ | 2575 oz TR U0

We look for a solation in the form of a series:
3) o (7.;=-Z“(1'+a1 Z4a, 22+...-i¥a,,2’;+...).

where o and the a,s are constants.
Putting the expression (3) into Eq. (2) gives the following requtrements for
the constant « and the coefficients «,:

@ _ @ (@=2)=0,
) ay @+ 1) (@ 1) =Ko,

(6) ay(e+2) u=Koay,

) (et D - D=Ko g, .

Equation (4) gives =0 or a=2. =0 gives with Eqs. (5) and ©) Ky=-—a;=0
which is impossible, as K,#0. Thus «a=2. Next, we get

K,
BT
_ K
27 ax2)x3”
2K1(1)+1 X
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A solution to Eg. (2) is therefore

U—Z( K K3 %y )
1=z 3 2t B et e £

This series can be related to the Bessel function w1th an 1magmary argument of
order (2):

. 242m A\2tmtt
L= Z m1r(m+3)( ) Zmr<m+2)' [(“)] ’

which has an infinite radius of convergence. We then get

o

y 2| =2 VR Z
(8) Ul_[_zo n!(n+2)! ( (1] ) ] Kow— K() IZ( 0 )' !
Let us search the other solution to Eq. (2) as a function:
© U,=f(2)y=xU,.
Putting back Eq. (9) into Eq. (2) we get

20, o0, | |
(10 f(Z)[ ko |tz @-r@n o

a0,
+21(2) Z—; ——0_

s

The first term of Eq. (10) is zero by Eq. (2). The next terms give, after integration,

Thus

The general solution of Eq. (2) is given by

C: ko

O=cC, 0,+C, T C‘2 LQ2VEKZ) + —
+ = —
1 1 2 2 1 2 Q 2]2(2]/KOZ) ’

Where C,, C, are constants,
The general solution of Eq. (1) is then

O=a(V, - NLQVik,(V,,—¥)+ _—
1V, = ) L2 Vo v D R T
where a, b are constants.
The following formula is used in the text:
d
Z— 1D+l (2)=21,-1(2)
see (GRADSHTEYN [11]).
I, is the Bessel function with imaginary argument of order n.
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STRESZCZENIE

WTRYSKIWANIE MIESZANINY MALYCH CZASTEK DO STRUMIENIA CIECZY JAKO
PROBLEM PERTURBACYINY

Male, identyczne, twarde czastki kuliste sa wiryskiwane ze $cianki do strumieniza niescisliwej,
lepkiej cieczy. Zalozono, 7e koncentracja czastek jest mala. Celem jest zbadanie oddzialywania
czastek na profil predkosci cieczy. '

Roéwnania przyjete do opisu mieszaniny ciecz-zawiesina redukuja wplyw kaZdej czastki do sity
Stokesa, dzialajgcej w jej srodku, Do rozwigzania rownan wyjsciowych zasto§owano metode pertur-
bacji zgdajac, by bezwymiarowe liczby S=1./7., gdzie 1, jest czasem charakterystycznym dla za-
wiesiny, a 7, czasem charakterystycznym przeplywu, byly wielkojciami malymi, Wykazano, ze
warunek ten jest zgodny z zalozeniami, lecz roéwnania dia mieszaniny sa poprawne tylko wewnatrz
ograniczonego obszaru w poblizu &cianki. Wyniki dowodzy, Ze czastki oddzialywuja na profif
predkosei cieczy, je§li koncentracja masy czastek przy Sciance jest co najmniej rzedu 1/Re S,
gdzie Re jest liczba Reynoldsa strumienia cieczy. Dla przypadku, gdy ten warunek jest speiniony,
policzono profile predkosei, a rozwiazanie przedstawiono w postaci zamknigtej. Pokazano kilka
typowych profili predkoéct dla rownomiernego wstrzyknicia czastek,

PeswomMme

HHXEKOHAA CMECH MAJNBIX YACTHI B INOTOK }KI/I):[KOCTI/I KAK
TIEPTYPBAIMOHHAMA 3ATAYA

Mansie, WICHTHIHEIE, JeCTKHE ChepHYeCKHe YACTHIE! HOIEIKAT WINKESKIPH M3 CECHKE B HOTOK
HECKHMaeMOM Ba3ko#l xuaxocTy. IlpeRionokeHe, TTC KORIEHTPANAA vacriy mana. Ilensio pa-
GOTH ABAACTCA HCCICAOBALEC BIAHMOACHCTBH 4aCTHI C IPOQHAEM CKOPOCTH KHAKOCTH, ¥Ypas-
HEHHHA, DPHHAMAEMBIC JIAS OTMCAHIEE CMCCH MKEAKOCTH-B3BECh, CBOJAT BIMSHNE KaXEOH JACTHALIET
x cane Croxca peiictByroniell B e¢ neurpy, [UId penmiends HCXOMHEIX YPABHEHHN OPHMEHOH METOL
mepTypGanmit, vpebys, vyrobsr GezpasmepHoe YHCHD S'=1,(7,, T1¢ T,—%aPAKTECPHCTEYCCKOE BPEMI
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[OJiA B3IBECH, & T,—XAPAKTEPHCTHYECKOS BPEMA Devenust, GuiI0 Manoi eenmmumoit. TTokazado, 4To
5TO YCOOBHE COBNAMACT ¢ MPEINCIOMCHHAME, HO YPaBHCHHA ,ELJIHI CMECH CIIPaBCIIHBLI TOJILKO
BHYTPE OTpaHAYenRol obnacry ebmmsn Crenii. PeaymbTaTol IOKAILIBAIOT, YTO YACTHIB! BIAHMO-
IeHCTBYIOT ¢ NPOMPHIIEM CKOPOCTH XHAKOCTH, €CIH KOHHCHTPAUYMA MACCH MACTHI] IDH CTeHKE TO
kpaiineli Mepe nopsazka 1/ResS, roe Re—wmcno Peiinonsaca motoxa SKHAKOCTH, [ criyuas, xoria
3TO YCHOBUE YHOBIETBOPRHO, BAFHCHCHE! IPOQMIE CKOPOCTY A PelIeHUe TIPEACTABICHO B.3aMKHY-
ToM pEge. Ilokasano HECKONPKO THNHWHEIX npodunell CKOPOCTE Ml PABHOMCPHON MIDKEKITHA
yacTHil, '
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