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COMPRESSION EFFECTS IN STRUCTURAL DAMPING IN SANDWICH

PLATES

HO THIEN TUAN and S. LUK ASIEWICZ (WARSZAWA)

In the present paper, we study the thickness-stretch deformation effect in addition to other
effects (bending, extentional and thickness-shear) already investigated in the previous paper [1).
An improved theory of sandwich plates is thus established. Numetical results show for small face
thickmess ratios, there is a rather notable discrepancy between the present theory and that presented
in [1], with regard to the damping parameter.
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NoTtaTIONS

sign. denoting complex quantity, _
differentation w.t.t. the variable standing after the comma,

time, . )

subscript corresponding to upper face, core and lower face, respectively,
dimensions of the sandwich plate in x- and y-directions, respectively,
displacement components in x-, y~ and z-directions, respectively,
angles -of rotation of the lateral side of the considered layer under
deformation, :

total thickness of the sandwich structure,

thickness of the i-th layet,

core thickness ratio,

face thickness ratio,

storage moduli for flexure and extension in x- and y-directions, respec-
tively,

the Poisson’s ratios in x- and y-directions, respectively,

storage shear moduli in xp-, xz-, and yz-planes, respectively,
moedulus ratio of - the faces,

modulus ratio of the core,

normal forces in x- and y-directions, respectively,

longitudinal shearing force, ’

twisting moment,

bending moments, -

transverse shearing forces,

normal stress,

shearing stress,

normal strains in x- and y-directions, respectively,

shearing strains in xy-, xz- and yz-planes, respectively,

stiffness coefficient of the upper face,

extentional stiffness of the upper face,
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D, =Ey t1/{1—v2) bending stiffness of the upper face,
M, mass of the i-th layer per unit area,
M=M,;+M;+Ms mass of the sandwich structure per unit area,
y:; mass density of the i~th layer material,
O;=y2/y1 mass density ratio of the core material,
fl3==y3fy: mass density ratio of the faces material,
d=1+8; k+8;m mass density ratio of the sandwich structure per unit area,
G, static elastic fransverse modulus of the core,
#: material loss factor (7=0, 1, 2,3, 4),
_ P=(nja)® +(injb?),
A:']/,%:tl ! wave number parameter,
&i=glpo  loss factor ratio,
wa=(1—v1) Go/AE, shear parameter,
@ frequency,
D=y, 17 w?fs, frequency parameter,
& logarithmic decrement,
§% damping parameter.

1, INTRODUCTION

In [1], only the bending, extensional and thickness-shear effecte are of concern
in the study of damped vibrations of sandwich plates. In reality, a perfect rigidity
of the core in the transversal direction cannot be ensured. Therefore, in the motion
of the sandwich plate the thickness-stretch deformation vibrations should be taken
into account. YU in [2] discussed this subject but only considered the extensional
motion of the sandwich plate and iis corresponding frequency. In the present paper
the compression effect in the structural damping in flexural motion is analysed and
compared to the common theory, where a perfect transversal rigidity is assumed,
and thus an improved theory can be etablished.

2. BASIC ASSUMPTIONS

We assume the following:

(I) The material of the facings as that of the core is considered to be homogensous
and isotropic. '

() The Kirchhof-Love’s assumption holds true only for the facings.

(IIT) A line crossing the underformed core remains straight under deformation
but not necessarily perpendicular to the midplane of the core.

(IV) No slip will occur at the contact surface between core and facings.

(V) The variation of the transverse displacement w, through the core is linear,
As Tig, 1 illustrates, this assumption is formulated by

2. W3 =0y Z+ Wy,
where

(2.2) @y =Wofty, Wa=w,yf2,
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The quantities w, and W, are the thickness variation of the core and the deflection
at the midplane, respectively; they may be expressed in terms of the deflections wy
and w, at the face midplanes as follows:

(2.3) Wy =Wy =Wz, Wy=w +Ww;
or inversely:
(2.4) Wy =00, +W,){2, wy=(W,—W,)/2.

The deffection at any point in each face is assumed to be _constant through its
respective thickness,

EQUATIONS OF MOTION

According to the above assumptions the displacement-strain relations are thus
at the face midplane (i=1, 3):

exizui,x’ Eyi =Pty exyizui,y'Jf“'Dl,x:
(3.1) B =050y 4 W) xe, A= —0.5(R,1%,) ,,,
hxyi:"“(w‘!iwz),xy, ezi:05
at any core layer:

LI K GO *
exlguz,x’ ey?._‘v2,y’ exyZ"uZ,y-[_‘vz,xs

* * # ® * * * *
(3.2) Cppa=Uy ;T W2 oy €=V, ,tW, ., e 2=Wa s

yz Zy

*
x2 = ﬁxz X _vx2 ﬁxz, v, hyxz = _ﬁxz,y+ﬁy2,x

henceforth, the star indicates that the considered quantity corresponds to any layer
of the core

Moreover, the longitudinal diplacements u,, v; (i=1, 3) at the midplane of each
outer layer are related with those at the- core midplane (Fig. 1) as follows:
(3.3) o U=ty F0.50; By F0256, (W, W, ),
. 2;=0, 0.5, B, ¥0.25¢, (W, , £, ),
. while the longitudinal displacements at any layer of the core u, and v, are

3.4 y=—foaztuy, vy=—f,74v,.
In Egs. (3.2) and (3.3) the notation + or & means that the upper sign is used when i =
=1, while the lower sign corresponds to i=3.

The constitutive equations for the faces are assumed to be as follows:

il By
Ny = 1_v2' (e +v, eyi)s Nyp= 12 (eyi""vi N
i i
Ey "Ey ¢}
(3.5 5= .=

mewi: 24(1+v)hxyu

Ei:r3

o 23
O T A Gt Gy G
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The core is assumed to be 1sotroplc in the plane xy and from [3] the stress-strain
relations. are. then
Ox2=C1 €yt €280+ C564,
(3.6) Oya =€z €xp+C1EFC38;7,

Oz0=0C3 (‘—’xz + 83'2) + Cyp €53,

Tyaz :GZ YR Txz2 = G?. €xz2 s Txya =E 2 €xy2 5

where the coefficients ¢;, ¢, ¢; are

1—v,n, , vz+v22 n,,,_
Cl 2 > Ca = »
(I +v) (L—v, — 2, 1;5) (1 +92) (L =V, —2v7, 735)
Ez'vzz : P ]. 73)2
3.7 = =F —
( ) Ca 1—v2ﬁ—2v:'2 nzz ? C4 2 nzz (]- '—Vz‘“zvzzz nZZ)
Cl - c2 Ez
Exyz = = X .
2 2(1%)

with: £, and v,—the Young’s modulus and the Poisson’s ratio in the plane xy,
respectively; v,,—the Poisson’s ratio of the deformation in the plane xy forextension

2w}

77777 _
15“ 77777 '

Fii, 1.. .

in the z-direction; n,, =E,[E,,—ratio of the Young’s modulus in the isotropy plane to
that in the perpendicular direction.
The equations governing the motion of the sandwmh plate are derived by usmg

a variational procedure. '
We have :
1

68 of 3 Lde=o,

“ o $=1,2.3
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where
(3.9) L=V,—K,~T,.

For the faces, the variation of strain energy is
X2 ¥Ya
(3.10) ' Vlzf f (in Jexi’-i_Nyi 5€yi+S! (Sex,,i—l-Gxi 5}1,;[“"‘
7 e + Gy Shy+ H Shydedy (=1, 3).
For the core, the strain energy variation is: |

Xy V2 /2

Gy va=[ [ [ @hLodato. s, 0,0 0, Thyy BE , +
1 —1z 2

| oo ol Tk, 06 1t 06, ) dxdy dz
where o}, ‘rfj, ef are respectively, direct, shear stresses and strain at an arbitrary
point of the core thickness. : b

The variation of the kinetic energy of the faces are (i=1, 3)
X2 ¥z

(312) . » tif f [, + S1ty, o+, Oy Wy, OWy,  +

X1 ¥ 2

+ é (Wi, 0t OWy, e+ Wy 30 0wy )] dx dy .

For the core, the kinetic energy variation is

‘X2 ¥y
13 oty [ [ Bog, a0 0s 90 W W+
’ ’ ¥ F1 ‘ 2 s

i @ez,  08un, 1+ 82, Oy, o 1, B, )] ey

Assuming that only transverse loads are acting on the sandwich plate, the variation of

the external force is then
Xz Y2

(3.14) 6T = f f Z Padwidxdy,
x1 i i=

Now let use the relations (3.1} and (3.3) for the calculation of Eq. (3.10), the
relations (3.2) and (3.6) together with Egs. (2.1) and (3.4) to compute Eq. (3.11).
Similar operations are performed for the expressions (3.12), (3.13) and (3.14). Next,
let us perform integration by parts wherever partial derivatives are involved in the
variations of the vanable Finally, from the requirement (3.8) and since du,, dv,,
OByzs 6By2s _éwz and W, are arbltrary values it follows that we obtain such a set
“of equations;

— Nyt Ne2) x - (S1+83), 5 — (01 s, xu+ €203 pk €3 W _'l)tz—
(3.13) T —Egt (12, w+7’2 xy)‘f‘Ma U, n+M2 Uz, tt+M3u3 2 =0;
_(Nyl +Ny3) nE (Sx+Ss) * (Cz Uy, xp 01 uz xy+f1 7—‘2 yy+c3 Wz 13—
—Eyps by (U2, 2y F Vs, )+ My 0y o+ M0, i+ My, =0,
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t
(315} (Ner—Nia),, ot (S 82),, = (€1 Buz, st 62 Praso) ¢

[eont.] 2

= Boya (Bua, st Bz, s)+ 26 (B = 2,0 = My hs ot Mt e+
13
+?M2ﬁx2,tt:0>
t;
(Ny1—Ny3),,+ (51— SS),x_? (€2 Bz, syt €1 By2y)—
t3 '
”?Exyz (Bez, ypt Bra, ) +2G2 (By2 — W2, ,) = My 0 o+

2
6
—0'5 (rlel"“ISNxs),xx_O'S (fl Nyl _rSNyB),yy_(tl Sl —t3 S3),xy""

""(Gxi +Gx3), xxfz(Hl +H3), xy+ tz G2 (ﬂxz,xﬁwz,xx)'k

+Myvs MZﬁy.‘Z =0,

f ‘ M,
t2 Gy (Byz,y—Wa,0) — r (U, s +72,9), e F Y ty (8%, 5+ Buzy), e—

[M (82
12
M,
—(1=03m)} 5 W2 u =(p.1+Pz3)»

—0.25(t; Ny +13Nys), x—0.25(F Ny +H15 ]\’ya‘),,yw().S(tl Sy +13.53), 5 —
MOS(GJ:I_ x3) xx_O'S(Gyl_' yS),yy““(Hi—Ha),xl’"f

. tz'
Z)VZ—M] Wz’ “"“[é (1 ‘_03 mz) VZ_

+ €3 (uz,x“"z’z,y)cr; W, f; Gz v? Wz ' ? M, (uz,x+7)2,y),n +

12

ity t3 M,
+_4—‘8—M2 (ﬁxz,x']'ﬁyz,y), tt _Vz (1 93 mZ) (1 93 m) n Wo

i3 k M
== V(148 m?)—\1+ 8,40, ml{— wz,ttzo-s(pzl —Pa3)s
12 3 4
where: '
(3.16) t=f+ty, [f=t;—ts5.

Equations (3.15) are equations of equilibrium of a sandwich plate where the
thickness-stretch effect of the core is included in addition to the thickness-shear,
extensional and bending effects.

Substituting the internal forces in the faces (Ny;, S;, Gy, H;) by the constitutive
equations (3.5) into Eqgs. (3.15) and taking into account Egs. (3.2) and (3.3), the
governing equations are thus obtained in terms of the displacements u, v, f. and

B,. Let us consider the particular case where only transverse inertia 'forces are
_concerned.
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By using the procedure mentioned in [1], the set of six equations (3.15) is then

reduced to a set of four equations dealing with the previous variables w.,, ¥, and the
new variables

(317) u*=“2,x+7"2;ys u**:ﬁxz,x+ﬁy2,y-
Thus, the equations governing the motion of the sandwich plate are as follows:

—[B, (1+mm)+1,¢,] V2 u*+0.56, B, (1 —nm) V2 u** +
+0.5¢, B, (1 —nm?) V2 w? +{0.25B, (1 +nm*) V? —c3] V2w, =0,
— By (1 —nm) V2 u* +[0.51, B, (1 +nm) V2 +(12/6) ¢, V2 —2G,] u** +
+[0.54 B, (1 +nm*Y V2 +2G,]1 V2w, +0.25¢ B (1 —~nm?) V19, =0 ,
—0.54 B, (1 —nm*) V2 u* 410254 1, By (1 +mm*) V> + 1, G, u* ¥+

2

o R
FM 4D, (L +mmP) V=1, Gy VE Wy + [

- N
(3.18) or? 2 ot
+2Di (I __nmS) V4] .WZ =Pz,
—[0.25B, #, (1+m*) V2 — c3]u* + (¢, £,/8) B, (1 —nm?) V2 u** 4
[AT{ E N s 4] { i 02 N
+ 5 a2 2D (1 -}V wy 4+ Rl
Cq iz
+Dl(}‘+ﬁm3)v4+—_G2V2] wZ:ﬁzy
L, 12
where:

M=M,+M,+ M=y t; (L +8,k+0;m),
M=M —-—My=yt,(1—83m),

(3.19) =M+ My=y, t,(1+0;,m),
B, =E, t;)J(1—v}, D =E 312(1}),
Pi=Pa1t Pz P=05(ps1—pus).

Let us assume that the sandwich plate is rectangular and simply supported at its
edges. Thus, the response functions of w* and #** are as in [1]

R inx Jjry
u* = Z ZJ: U sin— sm——b——,
(3.20) o o
inx Ty
u**:t;lz 2 U sin—— smil;—ﬁ
i J

Rozprawy InZynierskie — 3
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For the individual upper and lower faces; according to the bounddry conditions,
the response functions are selected as follows

it fmx - jmy
Z Wiy sin—— 4 sinT
3.21) . . :
mx . Jny
2 Wy, sin—— 31n-b—.

1

“=§
=)

That leads to

G | ' _imx | jmy
= Z _,2 X (Wit Wai) sin= S =
. : o f=el ' JTCJ)
(3.22) _ =3 > Wy sin " sin ;
i J
_ e inx  jmy Oy e - inx Jjmy
= 2 Z (Wyi;-- Way,) sin smf-—»-"— 2 2 Wi sin—— amT.
A T 7
U,

Here and henceforth, the subscripts of the unknowns U, W and W are omitted
and implied.

Let us replace u*, u**, w, and #w, from Eqgs. (3.21) and (3.22) into the equations
of motion (3.18) and next perform some transformations; this yields the following
set:

By  U+B,, U+B, s W+B,, W=0,
) B12 U+B22 U+.Bzg W+B24 W=O »

: B, U+B,, U+ /12 e W+ Mm"‘ﬁ’u W=—p.ls, A

oM o L n M8 P
B1J4U+BZ4 U+ 29, A2 8t2+B”'3 W sflza;z_+344 W= Asy

The notations used above are as follows:

B =l4mm+kn,, B,=05@mmn-1), B=05(m*-1,
B, =025(14+mm®)+ys, Byy=025(1+nm)+(knyf12)+(w/k),
B3 =025(14+mmA)—y,, - Byu=mm*-1)/8,

(3.24) |
B33 =025(1+nm®) +ky,, Ba=@mm>-16,
P 1 ) . i, k
= T e
W=—AW,ft,, W=iWy,lt,,
(3.25) Woultrs. Woultrr

su=EgJ(1-v3y,  A=(int,fa)* +(jnt,[b)?,
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E, (- Vi)_ ( _V.fz #z2)
Ry = ;
(3.26) OB () (- =k )

_ £, (1—yD)vz, _ E.; (1-vD) (1-v3)
Vam B a—v,—2hn,) 2 B, R(—va-2n,)

vy =(1-v) GfAE, ,

In the notations (3.26), the subscript 2 refers to the core. '

4., DAMPED FREE VIBRATIONS

Let us assume that the sandwich plate is executing such free vibrations so that the
dependence upon time of the deflection and thickness-stretch deformation responses
may be expressed as below:

W(t) We!mt —al — Wefcut’

{4.1)
W(l) We]’wt e = Wefwt

where:
4.2) N Co=o+l, [PF=-1.
Lét us denote the damped frequency parameter as

. . . . tz 5 ' .tz . 6 2
(@.3) ="tlgen Mh w2(1+1-—) ,

A 51 27

where. § =2no/w is the logaritmic decrement,
Moreover, let us perform the substitutions accordmg to the mtroductmn of
complex material characteristics

Wy ='V/1 A+Tuger),  ny=n(1+Ipye,),

(4.9 AN T
wa=ws(I+1e),  ra=r2(1+1nges),

with

(4.5 e =tlto, & f—"ltz/ﬂo PR 7 :‘}‘54/{”0 ’

where ' jto 18 an arbitrary material loss factor, g, is the loss factor associated with
the shear modulus of the core, uy=p, is the loss factor asscciated with the core
longitudinal Young’s modulus and u,—that associated with the core transverse
Young’s modulus.

If we introduce Eq. (4. 4) mto Eq. (3 24), the coefficients B;; take the complex
forms:

- By, =By, =By +1ugByyy, Bip,=8kn,,
(4.6) - Bu=Biy=BiitligBi,, _1.'3‘14;;_‘::83 Wss o
L4

nta

B '.=E2é ?Bﬁzf? IﬂoBzzp s '.Bézp’:_--‘-'z ] 12
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(4.6) By, :E:&s =Bas+ 1o Basy, Baspy=e, W1k,

[cont.]

Byy=RB,;=B,5+ fugBas,,  Baap=—W18,

v Ky k
Bis=Bis=Bia+TupBrsy, Brsp=%ts ? + &Ly *ﬁ‘

all the remaining coefiicients are not altered.

Next, let us introduce Eq. (4.1} into Eq. (3.23), taking into account Eq. {4.3).
It can be seen from the set of above obtained equations that exist nontrivial solutions
for U, U, W and W if the determinant formed by the coefficients of these unknowns
vanish, We have

@47 a0’ +a, @+a,=0,
where '
v o 1 1v311 Bys
o — 4/,{4 (92k+6293km+483m) Blz Ezz ]
. 1 ) Bn By Bm 1 Bli By, B13
a,= —“—""(1+92k+93m) B12 Byy By |~ 4,2 —z 1+ 8ym) | By, ‘322 Bas |+
Bl4 .824 B4.4 BIS B23 BSS
4.8) By, B, By By, 1?12 Bis
+ 212 (1—03m){iBss Baz Bas +| B2 Bay Baylfs

.él4 BZ4 B34- B13 BZS B34-
Bll B12 B13 Bl4

-BIZ BZZ -BZS B24

B13 B23 B33 B34 '

_B14 B24 B34 B44

s =

These determinants can be expanded in real and imaginary parts. The solution of
the above equation performed in the similar way is given in previous papers
[1, 5] and will be not presented in detail here. The numerical results calculated for
various parameter are given in the next section.

From Eq. (4.3) we have

Q=0 (1 + 110 6%/2)? > Q(L+116 6%,

where
-1 f?’: ‘
= w?  frequency parameter,
1
J%= damping parameter. ’
Ho T

It should be pointed out that in the case of a sandwich plate with a symmetrical
structure (e.g. n=m=0;=1), the set of equations of motion (3.18) will degenerate
into two sets of equations, uncoupled one from another. Each set consists
of two equations depending upon two unknowns and describes one of the two
motions: transverse vibrations or thickness-stretch vibrations.
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5. NUMERICAL RESULTS

Investigations on the various frequencies and their associated damping parameters
are conducted on the basis of the above equations. However, it should be noted
that the frequencies of the two types of motion, the transverse flexural type and the
thickness-stretch deformation type, are generally very far apart. The former takes on
values of low magnitude, while the latter — that of much higher magnitude. This
feature enables us to set up from [4] simpler formulae in checking up on the frequen—
cies of the sandwich plate.

We assume the same data as used in [1] for sandwich plates where the thxckness—
-stretch deformation of the core is not taken into account (hereafter, for the sake
of convenience, this theory will be named the ,,common” theory of sandwich plates),

for example
i\ i\
tfa=1/50, a/b=2.0, A=T j' ~—1 1=0.02,

a b
Or=y,/y1 =01, O3=y,/y, =10, n=FE;[E;=1.0,
G, /B, =10=%:.0.1, 1o % 51072050
2/ = YWy =- 1 E, . +3.0.

However, the additional data have to be used here. The ratio n,, of the longitudinal
Young’s modulus of the core E, to the transverse one E,, is assumed to cover the
following range: :
W%<n,<1.0.
For simplicity, we set
VL=V, =V =1, =003,

Then,
‘ E, Ez E.,
(5.1) nzzl.ZZE, w3z0.53ﬂ,‘1—}}1—, x2m1.2252‘2 £
We assume that
107°< EyJE; <01 and . 10-°< E,/E <1.0.
Accordingly, from Egs. (5.1) it fgliows that L
1221078 <1, <0122, <265107fg w3§265 311073« 31 103.

Moreover, the loss factor ratios ; are taken to be equal to 1, Takmg into account
the above mentioned ranges of y,, n,, wa, s, the frenquency parameter and the
damping parameter corresponding to each type of motion are calculated The analysis -
of the numerical results allows 1i§ to draw some conclusions.

I. Fig. 2 shows the variation of the frequency parameters £, and 0, with
regard to the face thickness ratio m, for various values k of the core thickness. The
frequency of vibrations of the flexural type andthat of the thlckness—stretch typeare:
very far apart when the core is not too thick.

Variation of the frequency parametérs Q; and Q, vs. the face thlckness ratio.
With 0,=0.1, n=1.0, n,==0.01, wy =10 =3, w3 =0.227, 1c,=25.0, 1=0.02, £y =g =

e
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=gy =g, = 1.0, where E,/E, =E,,/E, =0.82.10"2, G,/E,; =0.82.10"2, G,/E, =2.10"5,
tyla=1/50.

II. The damping caused by-the transVersc compresmbﬂﬁy of the core contributes
essentially to deaden the vibrations of the thickness-siretch type and the damping
parameter of this type (87) approximates to unity.

II. The frequency and the damping parameter of flexural type may be consid-
ered as totally unaffected by the inertia force produced by the thickness-stretch
vibrations of the core. In general, therefore, it is not necessary to include these inértia
forces in the equations of motion: hence the calculation of the vibration character-
istics of flexural type becomes simpler,

IV. Figures 3 and 4 shiow the damping parameter of the flexural type &; plotted
against the face thickness ratio m, according to the improved theory and to the
common one, in the casses of sandwich plates with a thick core. Except for very
small values of m, the d1 —m curves checked from the two theories are all but the
same, their difference in negligibly small. However, the improved theory will depart
markedly from the common one when m tends to zero; the thicker the core the
stronger this discrepancy. For instance; at m=0.001- and k=50, the divergence
between these two theories with regard to the damping effectiveness may amount
to 10%. '

V. Although there is not a too large difference between the n:nproved theory
and the common one with regard to the magnitude of the damping parameter, it
should be pointed out that there exists a rather strong discrepancy between the opti-
mum face thicknes ratios m,,, checked according to these theories (Fig. 3). The
optimum peak obtained from the improved theory moves to the right-hand side
with respect to that obtained from the common theory.

VI. The larger is the transverse rigidity the better is the damping. The results
from the improved becomes closer to that of the common theory.

VIL. Although the improved theory gives a more real picture of the sandwich
plate deformation, the computation of the vibration characteristics of the sandwich
plates in engineering, however, may be based on the common theory which gives
sufficiently good accuracy.

Variation of the damping parameter of the flexural type 87 versus the face thick-
ness ratio m; Fig. 3 with the same data as given in Fig. 2; Fig. 4 with v, =5.0 (e.g.

G,/E,=0.1) and the remaining data are as in Fig. 2.
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STRESZCZENIE

“WPLYW SCISKANIA NA TLUMIENIE STRUKTURALNE
W PLYTACH SANDWICZOWYCH

W pracy bada si¢ wplyw odksztalcen w kierunku normalnym do plaszezyzny plyty na thamienie
strukturalne, w uzupelnieniu do poprzednio zbadanych [1] efektdéw zginania oraz §cinania (w plasz-
czyZnie plyty oraz w kierunku do niej prostopadiym). Otrzymano skorygowana teorig plyt sandwi-
czowych, Wyniki numeryczne wskazuja, e dla malych stosunkow grubosci warstwy zewnetrznej do
grubosci plyty obserwuje sig¢ Znaczny stabilno$é wartosci parametru thumicnia pomigdzy omawiang
teoria, a teoria przedstawiong w {11,

Peamome

BITVISIHUE CXXATHS HA CTPYKTYPHOE JEMUGHPOBAHUE B TIACTHHAX THIIA
. COHABUY '

B pabote uccmenyerca (& JIOTOHEHES & paHHee HCCIenoBannoMy odibexTy maruba m COBHTA
B TIROCKOCTH IUTACTAHLL, B B HOPMAIRHOM Hanpaanéﬂm) BitesiAEe HehOPMALIAM PACTRGHAA-CXATHN
B HOPMAJIBHOM HANPARIEHNH HA CIPYKTYPHoe neMadmpopamme. ITomyyena ynyMieHHAS TeOpHs
OAACTHH THO@ COEABHY. YHCNEHHBIE PE3YNLTATH YKAILIBAIOT Ha TO, YTO IPH MAJIOM 3HaYemuy
OTHOIGEHHS TONHEL] BHEITHHX CJIOCE K TONILMHE MIACTAHE HAGNFOIaeTCd CYIIECTACHHECE PACKOM-

JeRHe 3HAYEHMH papamMerpa AeMHE(GHPOBAREA NONYueHHLIX 1O JARHOH TCOPHH, MO CPABHEHHIO
¢ nmopyucHABIMY B pabore [1]. . :
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