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MOTION - AND HEAT TRANSFER IN TURBULENT VORTEX PAIRS

A.EPSTEIN and F. KAPLANSKI (TALLIN)

A two-dimensional problem of turbulent vortex pairs originated by an instantaneous dynamical
irapulse (cylindrical puffs) or an instantaneous heat release (cylindrical theérmals) is considered.
The equations of vorticity and beat transfer for a turbulent motion of incompressible fluid are frans-
formed fnto a non-dimensional form which includes the requirements to reach the similarity regime,
The system of equations is solved numerically for various values of spatially constant eddy viscosity
and heat diffusion coefficients. The obtained similarity distributions of vorticity, velocity and tem-
perature for cylmdrical puffs and thermals are discussed and compared with available experimental
data. The results of computations for line puffs point at the existence of a critical value of the non-
dimensional eddy viscosity coefficient. Below this value there exists a loss of momentum and heat
to a wake at the rear of the vortex pair,

1. INTRODUCTION

A vortex ring may arise in a viscous fluid under the influence of an instantaneous
dynamic impulse (for example, by pushing a finite amount of fluid with an initial
velocity) or by releasing instantaneously a finite amount of buoyancy (for example,
as a result of rapid heat release from a compact isolated source). The first type of
a vortex ring is sometimes called a puff and the second type, a thermal. In a general
case both cases mentioned above may coexist. ‘

A two-dimensional analog of the vortex ring, a vortex pair, .is. the main factor
that determines the development of a round jet in a cross flow at a sufficient distance
from the source. This was suggested first by Scorer [1] and substantiated further
in the paper [2]. Another practical application of the vortex pair theory is connected
with trailing vortices behind an aircraft.

Experimental researches of turbulent vortex pairs, i.e. cylindrical thermals and
puffs, were carried out by Ricuarps [3, 4]. Tsang [5, 6] added new ideas to Richard’s
work in the part concerning cylindrical thermals. Scorer and Richards also deduced
. theoretically some basic features of the behaviour of turbulent vortex pairs in the
similarity regime.

An attempt to solve numericalfly the motion and heat transfer equations, trans-
formed in a special way for the case of cylindrical thermals in the similarity regime,
was undertaken by Lirry [7]. In his computations the thermals were released from
the lower boundary which was not penetrable. An analogous problem for cylindrical
puffs, but in a fully infinite medium, was formulated by LuGovTZov [8], however,
it was not solved.
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The present paper based on the main principles put forward by Lilly and Lugov-
tzov deals with a general formulation of the problem and the numerical solution of
governing equations for cylindrical puffs and thermals developing in a fully infinife
medium in the mmalarlty reginte.

2. FORMULATION OF THE PROBLEM,

We adopt the following basic assumptions: (i) a fluid is regarded as incompressi-
. ble; maximum local temperature (density) differences are small in comparison with
some characteristic temperature (density); (ii) molecular transfer of momentum
and heat is small in comparison with their eddy transfer; (iii) eddy kinematic viscosity
and eddy heat diffusion coefficients , v, and g, are independent of spatial coordinates;
as regards these coeflicients v,~a,~L () ¥ (1) is assumed, where L and ¥ are charac-
teristic length and velocity scales, which are functions of time alone,

~ Taking into account these assumptions we have the following equations of vorti-
city and heat transfer in two-dimensional Cartesian coordinates:

21 ¢ 6C+ o 3T+ ve
(2.1) o T o ﬂg@ v (1)V2E,
2.2 3T+ —+ T 2
2.2) 3—t u-37 WE—af(t)V T,
while

- Ay Sy
(2.3) ) u—“é;, vﬁ"‘“‘a;‘,
QH - Viy=—{,

where u and v are the velocity component in the x and y directions, y the stream
function, { the vorticity, T the temperature deviation from the undisturbed environ-
mcnt temperature, g the acceleration of grawty, B the thermal expansion coefficient;
=g*ldx2 4+ a8y . ‘
The boundary conditions for the problem under consideration are (at symmetry

of the flow relative to the x-axis) :

; or _ ’ .

' L WTT at  y=0,

@5 . %

: ' y={=T=0 at x2+)*>o0.

Equations (2.1) (on condition of the sufficiently quick decay of vorticity at mﬁnlty)

"If'-'and (2.2) yield, after integration over the infinite plane, the integral conditions of

".'the vortex pair momentum and heat conservation, respectively

o f f Cydvdy=I+Qf, f f dedy=Qr,
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where 04 =20/ Pg and I, 0, QO are the initial momentum, buoyancy and heat content
of the vortex pair, respectively. :
We now introduce the dimenstonless variables

X : y ) , v . . w

g T YTver T Tver YT Love
L) T
| C=ver T o
as well as
r_ 1_}1- ’ [ ar :
! TLove M Love’

where @ is a characteristic temperature scale.
Having changed the variables in Eq. (2.6) and denoted

1 © g
@ o _5ff@ﬂ@=n, ffﬁm@=m

(dropping for convemenc& the primes here and further in the text) we obtam the
followmg equatlons for the scale

- : : Qr
R’y . 2V=g—v— [ 26:—-.
29 v x1(+Qt)T ro=""

As it appears from the dimensional analysis the problem under consideration
has similarity solutions in the following two scaes:

1) 7#0, 0 =0 ie. for a cylindrical puﬁ" (in this case Eq. (2.1) becomes mdepend—
ent of Eq. (2.2), therefore here Qr=0 is not obligatory and the equality Q ={
is fulfilled owing to the condition fgld/V2=0);

2) I=0, 0+#0 i.e. for a cylmdncal thermal. .

" For the similarity or shape- preservmg regime . 1t may be assumed V=x-—- 7
where x is an arbitrary constant. In the same case P and )(2 in Eq (2 7) are agsumed
to be constant with arbitrary chosen values '

Equations (2.8) are then solved with the initial condltlonL(to) LQ, where Lo
is an initial length of the vortex pair. Then we obtam for a cylmdrlcal puff choosing

to=xy, Laf31 e
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@10) 2K - 37 A , 3 2\ 3

and for a 'cylci‘n\drical thermal, if i‘o:(
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Taking into account the relations (2.9) or (2.10), Eqgs. (2 f) and (2.2) can be
transformed into a. dimensionless form

¢ N L eor
2.1D :B?—AC+(1cu—x)*a—x~j-(rw—y)5;= _B“5;+V‘V2€’
Y & oT T
(2.12) —6};—2T+(Kumx}5}~+(xv—}})—é;ﬂatVZT,

where the dimensionless time t=CIn (-t—) and 4=3, B=0, C=1/3 for a puff,
A=3/2, B=3, C=2/3 for a thermal. ' ° C

Equations (2.3) and (2.4) as well as the boundary conditions (2.5) remain unchang-
‘ed after the coordinate transformation. The normalization conditions are given
by the relations (2.7).

3. NUMERICAL SOLUTION PRINCIPLES

For reasons of symmetry computations were carried out in half-plane, whereas
the rectangle x,<x<x,, 0<y<y,, was chosen as the computation region. In order
to estimate roughly the dimensions of this rectangle and its displacement relative to
the origin of coordinates, some linearized equations were considered beforehand.
‘These equations were obtained from Eqs. (2.11) and (2.12) by a formal change u=u,,
©=v, =0 where up, v, are the components of some medium velocity of the vortex pair.

- Upon considering Egs. (2.3), (2.4), (2.5) and (2.7), the similarity solutions of
such equatlons for a cylindrical puff are - ,
{ R et et v

3,1 _. = — 2Ky e
LI ey
: . [ . \1 (x—x,,)7-+3" .

3.2 =i ye P
(3-2) = mclevzy o
1 _{xm—xgP+p?
33 T
(3:3) T Zﬂxxzage ?

where x, —u(, The same solutions are also correct for a cylmdrlcal thermal at Y= a,,
ie. Pr,=1, 0 (where Pr, is the eddy Prandtl number).
' Assummg u=1, in some point (xo, yo), the abcissa of which equals to

ff{ydxdy
(3.4) - g Y= = 0 =
o ' f J Ldxdy f f é’dxdy

'we find from Egs. (3.1} and (3.2) the approximate value of the displacement of the
'.computamon region centre relative to the origin of coordinates :

. e 2 -z 0.034
3G$ o xemme e E i)~ 1 = ,
Shena LT [V $ 8. 4 Y $94
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Equations (3.1) to (3.3) may be regarded as first approximations of the desired
similarity solutions at sufficiently great values of v, and ds. Besides, they satisfy Egs.
(2.11) and -(2:12) when u<x, v<y. For the values of v, and &, of physical interest,
i.e. of the order 10~ '~ 10~ 2 the exponential components of the functions (3.1) to (3.3)
tend to zero sufficiently quickly and, conseguéntly, the flow may be considered potential
already at a comparatively small distance from the point (xo, y;) assumed to be the
vortex pair centre. Thus, if the outer boundaries of the computation region are in
the potential flow, the distributions of w, { and T on these boundaries may be given
according to the functions (3.1), (3.2) and (3.3). For { and T these boundary condi-
tions -correspond to referring the zero values form infinity to the outer boundaries
of the rectangle. The performed calculations indicated also that giving the zero value
of the stream function instead of

Y
s [— %0 +°]

- (3.6) Ly

on the outer boundaries of the computation region did not affect the nature of the
obtained numerical solutions in the active mixing zone (the zone where vorticity is
substantially different from zero}. '

As to the dimensions of the rectangle, the assumed values of x, —x, =3.6—4.2
and vy, =0.8—2.1 together with the approximately found value of x, from Eq.
(3.5) ensured the potential character of the flow on the outer boundaries of the compu-
tation region at all adopted values of v,, excludmg only the smallest ones in the case
of cylindrical pufls.

A detailed analysis of the effect of referring the theoretical boundary conditions
(2.5) from infinity to the outer boundaries of the finite computation region was also
carried out by Ly [7]. :

Equations (2.11) and (2.12) together with Egs. (2.3) and (2.4) were solved numer-
ically by an explicit finite-difference scheme. A first-order approximation of the
basic equations was used for time and a second-order approximation for space
variables. The convective terms in Eq. (2.11) were approximated in a special way
which ensured the conservation of the mean kinetic energy if v,—0 and prevented.
the fictitious. growth of vorticity [9]. A detailed description of this scheme is given
by Araxawa [10], The amount of iterations necessary to reach the steady state-
was substantially reduced by means of the multiplicative correction for the stream
function obtained on every time layer from the condition (2.7): _

‘The initial distributions of y and T" were given accordmg to the functions (3.1) and
(3.3). : S
.All computations were performed on a 42:X21 or 61 x 14 mesh W1th a coordmate
step Ax=Ay=-0.06—0.10 and a time step A7=0.05--0.10. Calciilations were carried
out for the range of v,=0.015-0.10 at Pr,=0.5, 0.75, 1.0 and 1.25. Besides, x=
=y1=x>=1 was assumed. In most cases a convergence of numerical solution for
{ up to there decimal figures-was obtained after 500-600 iterations. It was. only.
at the smallest values of v, for cyhndrlcal puffs that the convergence was. getting
worse substantially.
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4. RESULTS OF COMPUTATIONS -

Figures 1-3 ‘show the similarity distributions of ¢, u, » and T for cylindrical
puffs at Pr,=1 and v,=0.08, 0.04 and 0.02, respectively, Fiugre 4 represents the distri-.
butions of 7" at v,=0.04 and Pr,=0.5 and 1.25.
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As it was to be expected, with decrease of v, the tespective distributions start‘
to differ more and more from the symmetrical distributions (3.1»3.3). In par‘ucular '
for+{ this difference consists in the fact that the zone, where has small, though
substantially different from zero values, is stretched to the side opposite to the direc-
tion-of vortex pair momentumi. Already at v, =002 the character of vorticity field
actually indicates the formation of a hydrodynamic wake behind the puff.- As'v,
is being diminished the deformation of the témperatire field takes first the form

-of an jsotherm concavity at the rear of the thermally active zone. Then, beginning’
with' a certain value of v,; a closed zone arisés in the periphery; there T exceeds its
max1mum value at the axis of symmetry. c{ the puff. With v, decreasing further, this’
zone becomes more and more pronounced. The analogous effect on the temperature
distribution has an increase of Pr,, whereas at small values of Pr, there is a tendency
to form a heat wake behind the main part of the- thermally active zone.

‘It should be pointed out that the temperature distributions of a vortex pair
are equivaleni to the distributions of passive admixture concentratioh, since
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for an incompressible fiuid the processes of heat transfer and admixture transfer
are described by means of absolutely identical equations with the same boundary
conditions.

‘The distributions of £, u, v and T for a cylindrical thermal at v, =0.08 and Pr,=1.0
are shown in Fig, 5. Their quantitative resemblance to the corresponding distributions
for a cylindrical puff at the same value (see Fig. 1) is remarkable. However, with
a decrease of v, the differences in behaviour of thermals and puffs become more
noticeable, being also determined by the value of Pr,. These differences can be seen
in Fig. 6 and 7 where the distributions of {, «, v and T are shown for thermals at
at values v,=0.016 and Pr,=1.0 and 0.5, respectively. The absence of a hydrody-
namic wake is an outstanding feature of the vorticity field. On the other side, at
Pr,=1.0 and 0.75 a zone arises in front of the thermal, where { has an opposite
sign, i.e. an oppositely directed circulation takes place. This, in turn, creates con-
cavity of isotherms also in front of the thermally active zone. This fact, and also the
existence of peripheral temperature maxima, indicates the tendency to a complete
separation of the vortex pair at small values of v,. It is also worth noting that the
obtained distributions are in good agreement with those in LILLY’s [7] paper in
spite of slightly different boundary conditions.

The formation of an oppositely directed circulation in cylindrical thermals and
some other particularities of vortex pairs can be explained if we consider the equation
for the circulation I, obtained by integrating Eq. (2.11} over the xy-half-plane.

For the similarity regime (an) we then have

. ) o
4.1) r=—— f"’ay BT) _ dx,

where
r= | [ sty
i A

It is evident that a cylindrical' puff (B:O) in half-plane can have a one-way
circulation only since I is simply connected with the distribution of 4{/dy at the

axis of symmeiry, the latter being everywhere positive. At v,—oo E; _0—>0 and
& . g
-0, but as v, diminishes E . increases quicker and I generally grows. As
N y= .

a result, the growth of the convective heat transfer in comparison with diffusion leads
to the formation of peripheral temperature maxima.

On the other side, the circulation in a cylindrical thermal is determined by the

¢
distributions of 5}" and T on the axis of symmetry, characterized by the first and second

. termsin Eq. {4.1), Tespectively.'As v, dimiishes both terms first increase but the second
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term increases quicker, thus I” grows. However, the growth of I” causes delay in the
growth of the second term in Eq. (4.1) owing to the more intensive removing of
heat from the axis of symmetry by convection (it is clear that the rate of growth
of this term depends also on Pr,, i.e. on the rate of heat diffusion). Thus, with
the further decrease of v, the circulation, having reached some maximum value,
starts to diminish. But such a decrease of I"is possible only when zones arise, where
{ has an opposite sign. This conclusion is confirmed by the computations.

The vector fields of relative velocity w {u, o} —r {x, ¥} with the help of which
streamlines of relative motion can be depicted, give a visual notion about the interac-
tion between the vortex pair and the surrouding medium. For a cylindrical puil
at considerable values of v, (Fig. 8a) all streamlines of relative motion are directed
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into the thermally active zone, and the entrainment velocity is distributed rather
uniformly along its boundaries. Such a flow pattern is maintained roughly at
v,>0.04. But as v, dimishes the relative part of fluid entrained into the active zone
through its front boundary increases, while through the rear boundary a substantial
entrainment takes place only near the axis of symmetry. In the range of 0.02<v, < 0.04
the flow pattern changes (Fig. 8b). There appears a zero streamline (as shown in the
dashed line) dividing the flow into two regions as in the case of Hill’s vortex. As oppo-
sed to the latter, however, this streamline is not closed. The vorticity and heat pene-
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. trate from the inner region into the outer by diffusion, forming at the rear of the
puff hydrodynamic and heat wakes.- Thus, at values -of v, lower than a certain
critical value the momentum and heat content of a cylindrical puff are no longer
conserved. This fact, not considered by the accepted theoretical model, is to all
appearances the reason for the deterioration of numerical solution convergence at
small values of v,, The possibility of wake formation is confirmed by experimental
data of MaxworTHY [11] on vortex rings.

- Unlike cylindrical puffs the vector fields of relative velocity for cylindrical thermals
(Fig. 7) do not point in the whole calculation range of v, and Pr, to the formation
of a wake. : '

It may be stressed that in numerical calculations the ordinate” of point where |
w has its maximum value coincides sufficiently well with the value of x, calcuolated
by the formula (2.5) for cylindrical puffs at sufficienily great values of v,. However,
for cylindrical thermals, as well as pufls at small values of v,, the formula (2.5) does
not yields satisfactory results. '

5. COMPARISON WITH EXPERIMENTAL DATA

Comparison with the experimental data of RICHARDS [3, 4] and Tsanc {5, 6]
shows a good gualitative agreement concerning flow patterns, velocity distributions
and character of entrainment, as well as general contours of the zone, where the heat
(or passive admixture) is concentrated. However, the separation of thermals,
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4

characteristic of small values of v,, was not observed. While comparing the corpu-
tations with .experiments in quantitative characteristics it must be kept in mind
that the real values of Pr, for vortex pairs are still unknown. We might suppose it to
be between 0.7-1.0, i.e. the same as for the turbulent jets and wakes. Besides, it is
not clear to what relative concentration of admixture in the experiments the visible
outlines of puffs or thermals correspond.

In the case of the 31m11ar1ty regime we may write in the dimensionless variables
{at k=y,=1)
(5.1) - a® =Kn?,

where n=a/b, a is the maximum ordinate of the front boundary, b the maximum
half-width of the vortes pair, K a proportionality coefficient. In Richards’ experi-
ments {3, 4] on cylindrical thermals and puffs the value of X appeared to be practically
constant with the mean value of 0.33, though the expansion rate n changed in a rather
wide range, as the result of difference in conditions of the vortex pair formation.
In Tsang’s experiments [5, 6] on cylindrical thermals a comparatively small change
of n was obtained owing to a good ordering of the vortex pair formation while the
mean value of K was rather close to' Richards’ results.
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Figure 9 represents graphs which show how K and n depend on v, at Pr,=1.
The boundary of the vortex pair is defined as an isotherm corresponding to the
temperature 0.3 T, where T, is the maximum value of temperature. As the graph
shows, for cylindrical thermals the value of K is practically constant being close
to 0.33. For cylindrical puffs K varies more noticeably, however, in the range of n=
=2.6-5.7 observed in Richards’ experiments the mean value of K is also close to
0.33. Analogous dependencies of X and n on v, take place also by defining in a differ-
ent way of the vortex pair boundaries and at different values of Pr,, however, the
numerical values of these coefficients are somewhat different.

Of some interest are also the results of comparing the calculated temperature
distributions in vortes pair with the temperature or admixture concentration distribu-
tions found in the experiments with a jet in a cross stream [12-14]. In particular, for
non-buoyant jets it seems to be possible to determine qualitative and quantitative
dependencies between the eddy diffusivity coeflicient v, of the vortes pair and the
ratio of the initial jet’s dynamic pressure to the dynamic pressure of the cross flow
g, the greater values of v, corresponding to the smaller values of g and vice versa.
The result of these coroparisons confirm a possibility of principle to create a method
of calculating the parameters of a jet in a cross flow, in particular, a smoke plume
in a windy environment, basing on the turbulent vortex pair model.
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STRESZCZENIE

RUCH I PRZENCOSZENIE CIEPEA W TURBULENTNYCH PARACH WIROW

Rozwazany jest dwu-wymiarowy problem turbulentnych par wirdw wywolanych naglym impulsem
dynamicznym (podmuchy cylindrycene), badZ przerwaniem ogrzewania (termiki cylindryczne).
Rownania wirowodcd 1 przenoszenia ciepta dla burzliwego przeplywu niescisliwej cieczy przeksztal-
cono do postaci bezwymiarowej, zawierajacej radanie osiagnigeia stanu samopedobiefistwa. Uklad
réwnai rozwigzano numerycznie dla réznych wartodel przestrzennej stafej lepkosdcl wirowej i wspol-
czynnikow dyfuzji ciepla. Przedyskutowano otrzymane rozkitady podobiefistwa wirowosci, pred-
koéci i temperatury dia cylindrycznych podmuchéw i termik, i porownano je z dostgpnymi danymi
doswiadczalnymi. Wyniki obliczei dla podmuchéw liniowych wykazuja istnienie krytycznej wartojcl
bezwymiarowego wspdtczynnika lepkosei wirowei. PoniZej tej wartosci wystgpuje zanik pedu i ciepla
dla éladu na tyle par wirdw.

PeswoMme

IBWKEHNUE W IMEPEHOC TEIIIA B TYPEYJIEHTHBIX BMXPEBBIX TTAPAX

PaccMaTpUBAeTCA IUIOCKO-TADaNNe sHAsA 344343 O DasBHTHA TypOylneHTROR BMXpenod Hapwl,
BOIHHUKAIOMEH 3a CIeT MIHCBEHHOTO ITHHAMMYCCKOTO HMIVIbCA (LMmdHAprYeckEi xny6) mmm
MIHOBERHOTO TEMNOELIIeNeHHs (IIWIHAAPAYECKHHE TepMHUK). YpasHeHHA TEPEHOCA 3ABAXPEHHOCTH
¥ Tenila miua TYpOYIeRTEOrO ABMMeHHs npeobpazopadel K Ge3pasmMepROMY BEAY, KOTOPLIH BKiO-
yaer B cebst TpebOBAHEA JOCTINEHHS ABTOMOIEIBHOTO pexaMa. Cmcrema ypasHenw# pelneHa
YHCIERHO 1P PA3IHYHLIX 3HAYEHHAX He 3aBHCALIMA OT TPOCTPAHCTBEHHBIX XoopmwHaT koehdn-
LHEHTOB BRXPEBOH BI3KOCTH H TEMIEPATYPOIPOBoAH0cTH, OOCyKIat0TCA M CPABHMBAIOTCA C AMEIO-
MWHMHCA AKCOCPMMCHTANBHEIMA JAHAELIMA TOJYYCHHBIE ABTOMOMENBLHBE DPACOpCAC/ICHWT BHXPS,
CKODOCTE K TEMMEPAaTYPHL. Pe3ylLTaThl DACYETOB A LMIHHEDHYCCKAX XIyGOoB YKA3LBAlOT Ha
CYIIecTROBAHME KPHTEMECKOTO 3HAYCHHs OeipasMeproro KodddmuEeHTa BHXPeBOH BAIKOCIH,
HEDKE KOTODOTO HMEeT MECTO IOTEPS WMIyJhGa ¥ TeIia Ha o6pa30paHHue Cliefla 32 BUXPEBOil mapoil.
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