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MAGNETO-ELASTIC STABILITY OF AN UNCONSTRAINED ASSEMBLY
OF COILS

I.B. ALBLAS (EINDHOVEN} and K. W, GRY SA (POZNAN)

The mechanical stability of a solenoid in the form of a taroidal helix in its own magnetic field
is investigated. 'The solenoid is mechanically unconstrained, i.e. the coils are not. supported by
a rigid or elastic base. In the first part of the paper, the magnetic ficld, the forces and the moments
acting on one single coil are calculated. The calculations are performed for the undeformed and
the deformed states of the torus. The second part contains a stability analysis for the model of
a cuculal elastic spring, which accounts for the extension and the shear deformation.

1. INTrODUCTION

This paper deals with the magnetoelastic stability of a set of coils in the form of
a toroidal helix. The number of coils in the set is sufficiently large so that coils are
nearly planar and approximately normal to a common base plane. They lnteract
with each other through the forces and moments that result from the magietic
feld which originates from the currents in each coil.

This type of construction is used for the design of fusion reactors. In general,
these structures are constrained by a relatively rigid base and in the study of their
mechanical stability these constraints are taken into account. It appears that the
mechanical instability of these structures is due to the mutual magnetic forces by
the currents in each coil. These forces depend on the mutual distances of planes
of the coils and as soon as one coil moves out of the mid-plane between its neigh-
bours, the equilibrium of the forces is disturbed and instabilily may result. Thus
the physical origin of this instability is well understood, and there is the same kind
of mstability observed at the magnetized beams and plates in a strong magietic
field, cf. e.g. [1].

In contrast with this type of instability, another type of instability is investigated
in the present paper. We consider the mechanical behaviour of an unconsirained
set of coils in which instability may occur as a consequence of the interior pressure.
It appears that there exists a resultant radial force affecting every single coil and
directed to the center of every coil. If the force is large enough, the structure will
buckle, just as a ring will do.

A number of investigators have studied the stability of the constrained assembly
of coils, both theoretically and experimentally. F. C. Moo~ and S. CHATTOPADHYAY
give a detailed analysis of the stability and the vibration modes of one siugle isolated
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coil in the field of the others, [2]. They find a critical current for superconductive
material of 7.,=3.7-10° Amps, which has to be compared with the design current
5.6+ 106 Amps, as given by FiLE at al [3]. In feference 2] are given some other con-
tributions, mainly in the field of the reactor magnet design, In his recent paper i4]
MoonN reviews the problem anew. He also proposes a theory for the vibrations and
stability of the constrained toroidal set, based upon the work by Moon and SWANSON
[5]. In this work the forces on the coils are taken proportional to the differences
in displacements of the planes of the coils and thus a system of differential — differ-
ence equations is obtained. The magnetic force constants are calculated from the
mutual inductanes between the separate coils [5].

It is obvious that the radial force found in the unconstrained set is counterbal-
anced in a set constrained by a rigid base. Thus in the references [2] to [5] this force
does not appear. Since it may be expected that the constraint has a stabilizing in-
fluence on the structure, it seems worthwhile to study the unconstrained case sepa-
1ately. The important question here is also whether a reasonably still structure may
become instable only in the superconductive state, or already in the normal state.

An exact calculation of the instability of a toroidal helix secms to be impossible-
Therefore we have to consider a simplified model for which the calculations may be
carried out and for which it is also possible to evaluate errors introduced by the
model. This model consists of two parts. In the first one we calculate the forces and
moments on every single coil, both for the undeformed and the deformed states.
We note that even for the model under discussion the force is only approximately
determined, but the error is small if the spacing between the coils is small. If the
magnet consists of a few number of coils, the force can only be found by numerical
integration.

Having determined the force per unit of length of the center-line of the torus,
we investigate the mechanical stability of a spring in the form of a tours. The spring
here is approximated by a continuous body, but the extension of the spring, the
shear deformation, the torsional moment which acts along the central line of the
spring, and the bending moment are taken into consideration. The torsional moment
resulis not only from the rotation of a cross-section, but also from an extension.
Correspondingly, a bending moment results from an extension. In the stable position
the magnetic force lines are nearly circular. As soon as the spring bends out, the
magnetic force lines are deformed, There are two extreme cases: In the first one the
force is a follower-force, which maintains its normal position with respect to the
plane of the cross-section, while in the second case the force is conservative and
retains its original direction. We shall assume that the force is partly a follower-force
for which an angle over which it rotates is a fraction of an angle of rotation of a
cross-section. It is further assumed that the ratio of the two angles is independent
of the rotation itself. This ratio has to be determined by an experiment.

The importance of the present study is that it gives some insight in the physical
and mechanical aspects of the deformation patterns that may occur in a helix that
carries sufficiently large currents. For practical applications the study may be ox-
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tended by taking into account the constraints that can be present in an actual design.
In a’'paper to follow, we shall discuss the influence of some constraints on the stability
of this structure.

2. THE MAGNETIC FIELD

We consider a set of coils in the form of a toroidal helix which may be represented
as follows:

x=(a+b cos np) cos p,
2.1) y={(a+b cos ng) sin ¢,

z=—b sin ne,

where x, y, z are Cartesian coordinates with the z-axis perpendicular to the middle
plane of the torus and the x- and y-axes in this plane. The origin of the coordinate
systems is placed in the middie of the considered set. In Eqgs. (2.1) a is the radius
of the center line of the torus, while & is the radius of one coil. The angle ¢ is
measured counterclockwise from the x-axis, while n is the total number of coils
in the set.

The magnetic field of the solenoid is given by

il dsxr ’

(2.2) B=_-§ ——
In Eq. (2.2) u is the magnetic permeability of the surrounding medium and I is
the current carried by the coils. If B is measured at a point 2, r denotes the vector
from a point @ on the helix to P and r is equal to |r}. The line-element in Q is denoted
by ds.

If » is very large, we may consider the solenoid to be a continous torus and the
field inside the torus may then be approximated by

unf

{2.3) = 2R’

BR =Bz = 0:

where B, and B, are the radial and circumfeiential components of B. In Eq. 2.3
R is the distance of the point P from the center axis of the torus (x=y=0), and the
curreint is positively oriented in the clockwise direction. We have

(2.4 R=a+bcos yp,

where  is the angle in a cross-section of the torus perpendicular to its center-line,
measured in a clockwise direction.

As has been stated above, the formulae (2.3) hold only approximately. In
the Appendix we prove that they are asymptotic approximations of the exact
formulae. '

9
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3. THE FORCES AND THE MOMENTS

For the continuous model we have for the force per one coil

(3.1) | F=1fds><B,
while the moment N per one coil with respect to the cetiter of cross-section is given by
G2y oo n o oo . N=I f pX(dsxB),

where p is the vector from the center to a point of the coil. The formula (3.2) may
be rewritten as i -
(3.3) N=1 { [(p, B) ds—(p, ds) B].

Making use of Egs. (2.3), (2.4) and (3.1), where the line-element ds is taken
for the continuous torus (i.e. we put y instead of ng into the formulae (2.1) and
later we express ds in term of dy), we find

6y . p=- e ©
R T '/az_bz(a+-'/a2_b2 R>

where ep is a unit vector.

To determine the moment N we have to admit a small inconsistency in our
model. We have assumed above that the set of coils is approximated by a contin-
wous torus because of # being large. With such an assumption all coils are planar,
an event which does not happen with a real toroidal or straight helix. If the coils
were planar, no moments would have existed. This statement may be easily verified
by making use of Eqgs. (2.3), (2.4) and (3.3) and by replacing the real ds by one sim-
ilar to that used for the calculation of Eq. (3.4). Therefore, when looking for the
moment N, we have to take into consideration the varying slope of each coil with
respect to the proper, perpendicular cross-section of the torus. By replacing ny by
v € (0,27) and by applying the line-element ds exactly in accordance with the formu-
lae (2.1), we obtain the non-vanishing relations that describe N. A careful calculation
allows us to find, for » being large, the following results:

Np=—pl* b,
G.5) N,= 26817 o,
N,=0.

It is clear that the moment Ny acts so as to place the coil exactly in the plane
perpendicular to the center-line of the solenoid.

4. FORCES AND MOMENTS IN A DISTURBED PATTERN

1t is well known from the experiment that the assembly of coils may be unstable.
A very small change in the position of -one coil gives rise to the creation of some
additional forces and moments that can even destroy the constiuction. -Such-a
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change also gives rise to changes in the magnetic field B, The exact analysis is highly
involved and leads to very complicated formulae. Therefore we consider the simpli-
fied model which, however, describes the phenomenon studied with sufficient accu-
racy. The model takes into comsideration a disturbance of the magnetic field as
weli as of the position of the coil,

Let one coil be displaced out of its original position. If the displacement of the
center point of the coil is negligible (as we shall assume), such a change can be describ-
ed by a vector.of small revolution w,. Additionally, a change in the position of
the coil causes a distance in the magnetic ficld B. Therefore we introduce another
vector w, responsible for this. Of interest to us is the relative change of the coil
and of the field B.

We shall assume. that
4.1) Lowy=(l—a)w,; .
with O0<o< 1, where an exact value of the parameter o Is unknown and should be

determined by an experiment.

" Hence the relative position of the disturbed field and displaced coil can be describ-
ed by a difference between w, and @,. To avoid any additional calculation con-
cerning ds and p it is better to keep the coil fixed and to rotate the field only. Thus
the vector describing the small relative revolution of the field is

4.2) W=, W= — .

Notice, that Eq. (4.2} includes both cases of disturbance considersd above.

For o=0 we have @, =w,, i.e. w=0 and then we deal with a kind of follower-
-force. As may be expected no extra forces and moments occur. For the conirary
case of =1 the relative revolution of the field B is equal to —w, because w,=0
and in fact we find the field B to be conservative. The intermediate case, defined by
the parameter «, seems to be the closest to the real situation.

Thus the disturbances of forces and moments are determined as jollows:
AF=I)( dsx(mxB)=Ij£ (w,ds) B,

(4.3)
AN:prx[dsx(wXB)]:If(pr)(m, ds),

where p, ds and B are the same as in the previous analysis and «w is defined by
Eq. (4.2). Making use of Eq. (4.3), we find
A4Fy=0, AdF,=0,
(4.4) Aby=—awy, 2anl* K, ANy=ow, g 2nnl? Km* a,
AN,=0, and AN,=owm,, 2ani? Ka,
where

um* b
K= G (i " mheViond,




488 J. B, ALBLAS and K. W. GRYSA

and o, and w,, are the components of the vector of a small revolution of the coil
;. In our further analysis these quantities will be expressed in terms of the displace-
ments and of the angle of rotation describing a kinematics of the toroidal solenoid
being considered.

5. KINEMATICS OF THE TOROIDAL HELIX

To consider the mechanical properties of the toroidal helix we have to introduce
certain geometrical and kinematical quantities such as displacements and curvatures.
‘We shall treat the helix as a toroidal spring.
 Let u, v and w be the coordinates of a displacement vector in radial, circumfer-
ential and z-directions, respecively. Let f stand for a small angular displacement
with respect to the center-line of the toroidal helix. The curvatures and the twist
of the disturbed toroidal helix ,when treated as a ring, are given in the general case
by the following equations:

B diw it d?u 1 dv d,B 1 dw
GO =g ST Tt T a T d ds

In Eq. (5.1), 5 denotes the line parameter in the circumferential, counterclockwise
direction, and & is the radius of the center line of the spring, as formerly.

Thus defined curvatures and twist are in agreement with the system of coordi-
nates introduced in Chapter 1. For an undisturbed toroidal spring we have, of
course, kz =0, x,=1/a, and =0, where «, stands for the initial radius of the toro-
idal helix. Hence, in fact, for the deformed spring xg=Akg, k,=1/a-dx, and
T=AT.

The elongation of the spring in the circumferential direction is defined by

52 dv u
(5.2) - &= s + P

If 8, » and w are equal to zero, i.c. if the ring is compresed in its plane with a

constant pressure, we get

1 g
(5.3) k=0, T=0 and k= - = ———=

These formulae will be useful in our further analysis.

Now we will determine the relations between the geometrical quantities that
describe the spring. The following notations will be used:
a and b are radii defined formerly, and we assume a> b; ! is the length of the wite,
so that 0</<2nbn, L=2nbn is the total length of the wire; s is the length of the
center line, so that 0<s<2na, S=2na is the total length; » is the total number
of the coils; £ is the average angle between the coils and a plane perpendicular to
the center line of the spring, so that the total Jength of the spring can be expressed
as 2zbn tan . We may define ¢ by virtue of the assumption a>b.
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Now the formulae (2.1) can be rewritten in the following approximate form
that holds locally: '

a
(5.4) . x(@)=a+b cos v, y(gy)m_-*ﬁhﬁ w, z(y)=-bsiny,

where y stands for ng; v € (0,271). Hence we obtain

s by ds  bdy b 1
(5.5) I=——= , dl=—= , and -~—=m= .
. SINE cose SINE COS & a ntan g

Thus we have found that for the toroidal spring with a3 b the geometrical rela-
tions that concern a straight spring can be approximately adapted.

6. CONSTITUTIVE EQUATIONS

We derive constitutive equations by means of the energy method. To this end
we have to calculate the forces and moments acting in an arbitrary cross-section
of the wire. Let us represent a straight helix by (cf. (5.4))

6.1) x=bcosy, yp=bytans, z=-bsiny.

A natural coordinate system consists of three unit vectors in the directions of
the tangent €, the principal normal n, and the binormal b. The direction cosines of
the t, n, b-system with tespect to -the original xyz-system may be obtained with
the aid of the Serret-Frenet formulae. In Table 1 we give the resulis.

Table 1.
X ¥ z
t —sinycose sine —cosycose
o —cosy 0 sin w
b sinysine cose cosysing

Having determined the direction cosines, we may resolve the forces and moments
in these directions. We find

M,=W sin e+Nb cos &~ M, cos y cos e+ M, sin y cos g,
(6.2) M,=M,sin y— M, cosy, : ;
My=W cos e—Nb sin €+ M, cos w sin e+ M, sin y sin ¢.
From Eq. (6.2) we obtain a formula for the strain energy from the moments,
) {Mj—i—Mf{ 1  sin*s  cos? s]
—+ +
2 EL EI,

63 U

1 .
= e ing— 2
2sing T, (Nb sing— W cos £)*+

1
+ - W sin €)
‘ GIO(Nbcoss-i— sms)},
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where E7, and EZ, are the bending stiffnesses in the normal and binormal directions,
respectively, while GI, is the torsional rigidity.

There is also a contribution to the strain energy from the shear forces, cf. 61
We find

Qi+0; s 03+Q:

6. . —_—— 3=_ 2
( 4) U, 2EL, nnh T sine \2EII b% cose.

The strain energy U per unit of length of the coil, expressed in the local forces
and moments, is obtained by combining Egs. (6.3) and (6.4), with the result that

65 0=

auv dU1+dU2__ 1 {M;-&-M;( +sin23+cosza)
ds ds  ds 2sins 2 EI, EI, Gl

2 2

1 1
EI —— (Nb sin e— W cos a)2+ e [(Nb cos £+ W sin g)* + = b? cos c} .
2 .

ZEI1

We differentiate T with respect to N and W and we obtain the following formulae:

N=gy,,—A4ty;2,

(6.6)
W= _8?L2+AT}’22 s
where
. i\
sin ¢ .
YT (GI, cos? e+EI, sin* g),
6.7) 7,2 =5in (Gl sin’e+El, cos® 8),
sin? g cos £
}’12 = *_'—““'b—'_" (EIZ - GI()) .

In Eq. (6.7), y;; stands for the compressive rigidity and y,, is the torsional
rigidity of the spring Note that if the angle & is small, we can assume with sufficient
accuracy that sin® e=0 and cos? ¢=1. Then, since sin £=S/L, we may express the
rigidities y,,, y2o and vy, as follows:

aGl, aEl,
(6.8) 3’1154“1"’&}7, ?zzECﬁﬁ, P12=0.

To derive the other constitutive equation we consider only that Mg#0 and
Q,#0. Then we have

6 g U2, 0
ds 2B 2D’
where
2sine 2FEL a 2El a
(6.10) B= =

EI,' EI, GI,

1 sine cos’g (1 EIl)’ b= nb?
H
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In Eq. {6.10), B denotes the flexural rigidity of the spring and D stands for the shear
rigidity. _
The relation (6.9) may be rewritien in the following form:

_ do
(6.11) 30=Myu - +0. 0y,

where 8 is a rotation of a cross-section and y= —8+ [ dxg ds. It follows from Egs.
df) s . .
(6.9) and (6.11) that Mp= Bd_ and Q,=Dy. Eliminating 0 we atrive at the following
constitutive equation: g o
M, 1 dQ,

(612) AICR=—B—"+“ 3 ds
In the same way we obtain

M, 1 dQg
6.13) Aicz—?—""&r I

The rigidities 4, B, C and D are inversely proportiondi to the number of coils
per-unit of length of the spring, hence:

a a d
A = ) T ? BmB - b4 = - L) = - 3
(6.14) A=A4; o % C=C, a and D=D, .
where the subscript o denotes the values of the rigidities and of the radius & for
the spring when unloaded. With regard to the radius b we assume b=b,.
Thus, making use of Egs. (6.6), (6.8), (6.12), (6.13) and (6.14) we obtain the
following constitutive equations:
q a
N=EAO_, W=ATCD'—,
ao [41

0

(6.15)
My ay + do. ay M, ay, dQOn a

Boa ' ds Dpa> MO AT

Awg= .
*r Bna ds Doa

7. THE GENERAL EQUATIONS OF EQUILIBRIUM

In the general three-dimensional theory, the set of equilibrium equations for
a curved beam has the following form:

dQxr dMy
—+ Q. —x, N+ Pr=0, + M, —1, WHQ,+Ly=0,
ds dy g
dQ, aM,
(7.1) — b kg N—t0p+P;=0, ——+xg W—tMp—0x+L,=0,

ds ds ‘

dN dw

—+ 1, Or—xg @+ Pp=0, et e, Mp—xg M,+L,=0.

ds ds
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In Eq. (7.1), xg, %, and ¢ are the curvatures and twist defined by Eq. (5.1); @, and
0, are the shearing forces; N is the normal force; My, and M, stand for the bending
moments; W denotes the torque; Py, P, and P, are the external forces; and Lg, L,
and L, denote the external moments.

By virtue of the considerations given in Chapters 3, 4 and 5, we have

L Y S e "RK PO
szna_ _E ] 2 I - 0 2 a ’ z— My
n{Ng+ANg) unl* b
(7.2) L@=TELRO+ ALR= - 2?:“ + o g nz IZ Km*,
. _ nAN, A
o=, SRy == gy, 2[4 K
where
73 1 ( du) i deoz
(7.3} @ = 'a—a:i;d an 5 =R

The full set of equations describing an equilibrium of the assembly of coils
under consideration contains also the constitutive equations (6.15).

We shall split up the set (7.1) into two sets. The first one will describe the so-called
intermediate state, when AF and AN are equal to zero and curvatures and
twist are given by Eq. (5.3). The second set will deal with the disturbances
themselves. Then we shall determine the equation describing a dependence between
the critical current [, and the mechanical properties of the set of coils under
consideration.

8. TUE INTERMEDIATE STATE

The set of equilibrium equations now consists of the equations (7.1) with the
curvatures and twist being given by Eq. (5.3) and with the external force Py and
moment Ly, given by Egs. (7.2), and (7.2),, respectively. In addition, the constitu-
tive equations have to be taken into account. For the intermediate state only Eqgs.
(6.15), and (6.15), are essential. Thus this state is described by the following set
of equilibrium and constitutive equations:

dQro No dQ.o ANy Oro
— W..i_ — e = — [
s Pro=0, ds 0, ds + a 0,
dMgo W, dM,, dW,  Mpgo
8.1 e 0. oo -
( ) dS a + Qzﬂ +LR0 0: dS QRO Os dS + a 0!

a B,
Ny=edyg—, and M,=——=¢.
a a

0
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In Eq. (8.1), we have marked the internal and external moments and forces with
the subscript o to distinguish them from the disturbances. Hence we obtain

uabp
(3.2) 0o=0, Q,0=0, No=—ap, Mp,=0, M,= AP’ W, —m—,

where we have denoted
‘ "
8.3 p=-—KI?
a
In the system of equations (8.1) as well as in the further analysis, the radius a
of the deformed spring is unknown. To determine it we can use the equations (8.1)
and (8.2);. Hence, by virtue of Eq. (5.3); we find the following equation:

8.4 (1 b )
(8.4) a=dg Ao

Of course, p itself also depends on g {cf. (§ 3)). However, the formula (8.3) will
allow us to replace @ by a value p that is to be determined in the further analysis.

9, THE GENERAL CASE OF THE THREE-DIMENSIONAL DISTURBED STATE

Now we deal with the deformed toroidal helix, Let the disturbances be denoted
as Qg, @, ..., and xy, dr,, 7. Making use of the formulac (7.1) to (8.2) we arrive
at the following set of linearized equilibrium equations:

i

r N ! QR
Op=—tapdc,=0,  Ql—apin=0, N+ “—oupdi,=0

+B : W’ Jieth
(9.1 My A—pr — 2K

pdic,+0.+ay apm* =0,

11

Ha ’ ’ B MR BO
= %prcR—QR-[—aaprz:O, W +7—IOPICR=O.

d .
In Eq. 9.1}, (-)’EES—(-). The set of equations (9.1) has to be completed by the

constitutive equations (6.15). The latter can be rewritten in the form

ay W o MR+a0Q; p doM dy QR

©-2) T Co *r™ aB, aDOM’ = aB, aDO )

Equation (6.15), is, in fact, the definition of ¢ and therefore we do not use it.

‘The complete system of equations consists of Eqs. (9.1) and (8.2) and, in addition,
Eq. (8.4). This set contains 11 unknown functions: Q, Q., N, My, M., W, kg
Ax,, T, @ and p. The equations are nonlinear, but-the products of the type picp or
pt are not troublesome because p is assumed to be independent of 5. Thus, in fact,
p is a kind of parameter in the system (9.1) and (9.2), and so is a.
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In the following analysis we determine the value p that leads to instability. Later
on, making use of Eqs. (8.3) and (8.4), we shall be able to determine the critical
current I, and the radius of the deformed spring a.

Resolving the system (9.1) and (9.2), we arrive at the following two equations
for My and M,:

A agp ( 1 az)] . LGP .,
2g* M, +-—t bt — | M =vat g M
a q -4 +q[1 BO Oﬁﬂ'op DD B{) z q BO R +
Vg P o
©.3) | + B" (1+ °p)M;.
0

Dy

b a M Ta?v?p? o
OPQM;, _ o P4 M'=R[*O Pw+ q(l+‘ opﬂ_l_
DO BO z v Bo.Do DD i

M o ) ao B a & pt By, dga? da
+ f(l‘i‘ op)lq(l_i?__o)m OP_‘__O_EJEE,{H;’,J_F mn*ﬁ“g],
a D, Codel Ay Codi  Bo B,
where
ub dy P
0.4 = =1- .
( ) v 2nKkn i 4 1 Do

Now, substituting into Eq. (9.3) the moments My and M, in the form
k |k
(9.5) My=.# g cOS ) M, =.#; sin =)
and making use of Eq. (9.4);, we obtain the equation for p:
Ly
©.6) PV L Ly [k —1—(k*4) pLi} | K>+ - (1-P) | =
1

‘=ag [k* —1—pL, (k*+e)—pla (1 —p)? (140} (1~ &%) (14+pLy) (1 —FL1) —

2

)
—k* 5 p* Ly Lyt pWo+p? W, 453 Wat+ap* L, Lal,
4]

where
Wi=—1=L,+L;(14um*), Wy=oliL, (L+L,)+Ly—al; Ly 2+4am*),
Wz 3L1 Lz (1 —d.)"}"Lz—Ll +L1 L3 (} +0!m*)_L3 (2+0€m*),

Ao By ag Ao _ dop
Ll_"_b;; z_aa LS— BO and = AO .

As Eq. (9.6) is rather complicated, we shall try to find the critical pressure pg.
for the simplified case, when the out-of-plane displacements are neglected.
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10. THE PLANE CASE

The force N, and moment M, given by Eqgs. (8.2); and (8.:2)5 hold for the inter-
‘mediate plane state. Then we consider the deformed state, The complete system
of equations for the disturbances reads

z 4 N ’ QR
On—No Arcz—;= 0, N +*;z-* +P,=0,
{10.1) )
ag M, a QR

Mzﬁ"QR'!‘LzzOs A’Cz= aBo aDo »
where P, and I, are given by Eqgs. (7.3), and (7.3),, respectively.

After finding the solutions for the above equations and then making use of
Eg. (9.5),, we find the relation

(k*—1) B,

{10.2) ‘ do p= e
a* (1+ o)+ (k2 +o)
D,

The critical pressure p,, is determined by k=2. However, Eq. (10.2) also con-
_ tains the radius a, an unknown. Therefore, the formula (10.2} has to be considered
together with Eq. (8.4). Combining these two formulae we arrive at the following
equation:

By (4+a) ) . 3B,

_ 0,
az Do(1+a)

A3 252 + — —
(10.3) pr-2p +(1 7 Z Aol ¥

__top
where p= a4,
The determination of g, (i.e. also p.,) allows us to find & from Eq. (8.4) and .
later on to find the critical current ;. The latter can be expressed by

) 2T5A0 N S
(104) Iczr = Wﬁcr (1 _pcr)V(l _ﬁt:-r)2 —m? [1 _ﬁcr+)/(1 _pcr)2 _mZL

b
where m=—.
ay

I1. DI1SscuUssION

This investigation of instability has led us to an equation determining the dimen-
sionless critical pressure f.. that causes the loss of stability in thie helix under con-
sideration. In the thres-dimensional case we have obtained for p.. an algebraic
equation of degree 7 that has at least one positive root. The equation simplifies
considerably when the planer model of instability is investigated. In this case we
have obtained an equation of degree 3 that also has at least one positive root. For
the planar case we have performed some numerical calculations considering a toroi-
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dal helix with #=120, g=6 m and #=0.5 m made of a copper wire. We have listed
in Table 2 the more interesting results of the calculations for some sizes of the wire
and for two values of «.

Table 2.
c . Circular, the radius of |Circular, the radius of Rectangular,
ross-Section | o wire =001 m | the wire =0.1 m 0.1 mx0.2 m

Ao, N 289 2.89,109 3.83.105
By, Nm? 66.2 6.62.10° 4.85.10*
Dy, N 490 4.90.10° 2.60.10%
R & 1.86.10"2 1.86.1074 292,10+
a,— 0.3 0.7 0.3 0.7 0.3 0.7
Dors — 0.0206 § 00153 | 00206 | 00152 | 0.0069 | 00050
Per, Nm™? 09954 | 07365 | 9945 7365 442 321
L., Amps 745.8 648.5 74580 64850 16100 13750
IR kW 10.35 7,82 1035 782 75.45 55.21
B, gauss 30 26 2980 2594 644 550

In Table 2 the dimensions @ and b of the coil are of the order of magnitude of
the corresponding dimensions of the magnets designed for fusion reactors. It appears
that the magnetic fields are much weaker. To increase these fields the currents have
to be increased, a state which may be realised by enlarging the dimensions of the
wire. When such action is taken, the Joule heat becomes dangerous, and for this
reason superconductive material has to be used in the design of fusion reactors.
However, even with this kind of material it appears that the unconstrained set of
coils becomes mechanically unstable at a much smaller critical current than the
constrained one does, as could be expected. If the dimensions of the magnet are
decreased, the phenomenon of magneto-elastic stability may be studied in the la-
boratory at room temperature. Such a study is important for the understanding
of the physical basis on which the technology for the design of fusion reactors rests.
The study may be extended by the introduction of constraints.

APPENDIX

The formula (2.3) that describes approximately the magnetic field B in the to-
roidal helix is derived here.

Let us consider a discrete model of planar coils insteated of the helix. A para-
meterization of such an assembly may be given by

(A1) x=(a+bcosy)cos ¢, (at+bcosy)sing, z=-—bsiny.

Ank
In Eq. (A1), = > where ¢, denotes an angle that determines the place of each

coil in the xy-plane, and k=1, 2, ..., n. w stands for the angle in the plane of the coil.
Making use of the formula (2.2) with

(A.2) r=[R—(a+bcos ) cos g,; —(a+bcos y) sin ¢, bsiny],
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(since we can choose the coordinates of any point, we will look for the field B at
x=R, y=0 and z=0, a choice which is allowed because of. the symmetry of the
assembly as well as because of the assumption b < a), we obtain the following coordi-
nates of the magnetic field B:

ul Fody
(A3) Bp=0, B,=0, and B,= E in f;é—[bzcosqak—b(R——acos Pr) COS 1],
k=1

where r=|r|. Now we are interested in the integral on the right-hand side of Eq. (A.3).
We introduce the abbreviations

p1=b2 COS @y, p2=—b(R—acos q’k)a
p3=R*4+a*+b*—2aRcos g, and p,=2b{a—Rcosg,).

Introducing Eq. (A.4) into the integral we obtain after some calculations

(A.4)

(A5) K(O~ED1+
P ED-; K(t)}

P3—Pa

pitpacosy 4 { P2Ps
J (patpacos w2 Y (patp) \py (Pa—pa)

2
where / 2:;)7—{% and E(/) K (/) and are the complete elliptic integrals of the first
3 4

and second kind, respectively. By virtue of the assumption a<€b we have *~m=>b/a
and /-0 if m—0. Then, taking into account the expansions of K and E with respect
to / [7] and assumning /31, we can write the approximate form
AG l ﬂ:(H_ 12) ) n(l 12) 7l?
(A6  K(=—{1*+|, E@Ox75il-—), and K(h-ED=—.

Now we can evaluate the integral on the left-hand side of Eq. {(A.5) to get the
following approximate form:

Pi+ps cosy _7Cppstp, Ps—3p2 p4)

_J (patpscosy)”? YT (030D (st pa)

(A7)

Hence, by virtue of Eq. (A.3);, we find

E . 2py pa-tpy pa—3p2 pa
4 o (PP (patpa)'”?

(A.8) B,

Now we take R~ a. Moreover, since for n—o0 the sum (A.8) may be treated

approxima.tely like an integral, we make the substitution k= g Ak= % . Thus
we approxunate :
(AS) B,
pnl . [4(1—m)sin® (p/2)+ (44 2m— 2m?) sin® (p/2) -+ m?] dp
“4zr™ Df V£ mysin® (p/2) +m2fA[16 (1 —m2) sin* (¢/2)+8m? sin® (p/2)+m*]’
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where use has been made of Eq. (A.4). Now let us replace

A 10 i gu_m
(A.10) sin—y =5 .

Hence we obtain

: m om? m2 -
#n[ 2{m 14+ 1+72_7 0C2+—"4 &4 det

TR ) (4t —m o I T (R 2 L (TEm) o]

(A1) B,

For m<1 we can write down B, in the approximate form:

3 anl &~ do
* T 2xR (14 o)
4]

(A.12) + 0 (m) . |

Since the integral in Eq. (A.12) is equal to 1, the formula (2.3) is obtained as
a simple consequence of Eq. (A.'12).

STRESZCZENIE

MAGNETO-SPREZYSTA STATECZNOSC UKLADU CEWEK BEZ WIEZOW

W pracy bada sig mechaniczng stateczno$é zwojnicy majacej ksztalt toroidalnej linit srubowej,
na ktora oddzialywuje jej wlasne pole mapneiyczne. Zwojnica ta jest pozbawiona wigzdw natury
mechanicznej, tzn. cewki nie sg przymocowane do jakiejkolwiek sztywnej czy sprezystej podstawy.
W pierwszej czescl pracy wyznaczono pole magnetyczne, sily t momenty dzialajace na kazda poje-
dynecza cewke, zarowno dla zwojnicy nieodksztatconej, jak i odksztalconej, W czgéei drigiej przed-
stawiona jest analiza statecznoscl dia modelu sprezyny zwojowej, ktora uwzglednia rownie? roz-
cigganie oraz §cinanie.
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Peatome

MATHHTOVIIPYTAS VCTORSMBOCTS CHCTEMBlL KATYIIEK BE3 CBSI3EH

B pafore BeonenyeTcs MOXaHWHMErKas YCTOHYHBOCTE OOMOTKH, HMEome dopMy TOPOHIATIb-
Rolt BEETORON IMHEA, FAa ROTOPYF BO3JCHCTBYeT ee coBCTREHHOE MATHHTHOS nosie. Dra obMOoTKa
BE OMEeT CBAzell MEXARHYCCKOW NPEPOOE, T.3H, KATYIIKA e TPAKPEIEHH K KaxoMy-aabyab
HECTKOMY WM YOPYFOMY OCHOBaHH!O. B nepnoil wacrd paGorsy onpenencHsl MaTRATHOE IIOTE,
CHIET H MOMENTHI, MeficTBYIONTHG Ha KaXayko eMHHHMHYIO KATYIEKY, TAx Kif HemedopMEDYBMO,
®ak ¥ gedopvmpyemoii oovoTra. Bo gropoi MacTi HpelcTaBien aRaJm3 YCTOMUIBOCTH AN MOASTH
CUEpANERON NPYXHEEL!, KOTOPAS YYHTEIBAST TOXE PACIIKEHHS W CHBHT.
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