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BALANCING AND UNBALANCE IDENTIFICATION OF MULTI-SUPPORT
SHAFTS AND ROTORS

Z. WALCZYK (GDANSK)

The paper presents the theoretical foundations of a method to eliminate the effects of induction
forces originating from the unbalancing of multi-support flexible rotors or transmission shafts,
The method provides an adequate control of the rotor or shaft mass distribution and it includes
the technical viability to carry out changes in this mass distribution.

Also, a proposal is given as to how unbalancing in rotor or transmission shafts can be identified,

INTRODUCTION

One of the methods used to improve the dynamic conditions of a machine struc-
ture consists in reducing induced forces acting on its components, Among the struc-
tural components of machinery often in use are rotors and shafis of various types.
The specific operational chatacter of rotors and transmission shafts (rotational
movement) is the reason why induction forces, proceeding from a lack of balance
in the system, make their appearance. The term of “unbalance is used here to
denote the nonlinearity of geometric centres of symmetry of the rotor (shafts) cross-
-sections which fail to coincide with the mass centre-line of those cross-sections.

The measure of unbalance is the distance between the two lines above. The
unbalance, thercfore, is a function which is defined along the whole length of a rotor
or a transmission shaft. The unbalance is caused by the non-homogenity of a material
and a fault in the assembly or machining of the particular rotor or transmission
shafts. ' ‘

Each shaft or rotor has some unbalance inherent and this may be the cause of
the poor dynamic condition of the machine. Hence we note a great interest in secking
a method which would eliminate the effects of rotor or transmission shaft unbalan-
cing. The elimination of rotor unbalancing effects is called balancing,

The dynamic condition of a piece of machinery is determined from a set of phys-
ical parameters which appear during its operation. Some of those magnitudes or
parameters have become the subject of standard specifications, ‘instructions for
assembly and service recomendations {8, 9, 10].

The dynamic condifion of a machine is most frequently determined from the
amplitudes of rotor (shaft) vibrations and those of their bearings, as well, as from
the amplitudes of vibrations of certain parts of its base-plate. The so-called admissible
residual unbalance value is also stated for some types of machinery.
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Considering the fact that the problems of unbalancing rotors and transmission
shafts are essentially similar, we shall discuss the balancing of rotors forthwith.
Additionally, we shall restrict our study to the balancing of flexible rotors only,
because the balancing of rigid rotors is by far easier and can be achieved, for instance,
by means of the so-called method of three starts [11].

Further in this study the term “rotor balancing” will be used to denote such
an elimination of unbal‘ancing effects due to which the amplitudes of vibrations in
rotor bearings will not exceed their admissible values. A natural way in which a rotor
can be balanced is by an appropriate control of rotor mass disiribution along the
rotor length. This mode of rotor balancing will be discussed further in the course
of our considerations. In theory the effect of rotor balancing can be achieved by an
appropriate selection of other parameters of the rotor or the machine as a whole,
for example, by matching appropriately the values of shifts and skews of the geo-
metric axis of symmetry of the rotor on its couplings. The problem. can also be
altered by changing the dynamic properties of the rotor supporting components
(e.g. of oil film on the slide bearings of a rotor) so as to make the rotor run possibly
far from the critical rotational velocities. The induction forces originating from
unbalancing will practically affect the rotor at any of its rotational speeds. If so, the
balancing of a rotor at any of its rotational speeds would be equivalent to an elimi-
nation of its unbalancing along its entire length.

However, from the point of view of application, we are generally interested in
having the rotor balanced within a closed interval of its rotational speeds. The ap-
propriate control of the rotor mass distribution can take place in a finite number
of rotor cross-sections which are called the planes of balancing. The change of
mass distribution in the plane of balancing most frequently consists in affixing in
an eccentric way additional masses or the so-called masses of balancing, The choice
of number and location of the planes of balancing are of significance.

The “modal-balancing” method [3,4, 5, 6,7] is one of the balancing modes
widely described in technical literature; it consists in balancing an adequate number
of fundamental forms of free vibrations of the rotor. The planes of balancing
in this case are closely connected with the nodes of these forms, The method be-
gins with the method of solving the problem of forced vibrations of a rotor.

In the case of forced vibrations, the solution for non-homogeneous equations of
motion is sought in a functional space in which the basis is constituted by the forms
of rotor-free vibrations. Still, in practice it is not always possible to attach the balan-
cing masses in the planes of balancing resulting from this method because the rotor
can be inaccessible in these planes.

Furthermore, the *’modal-balancing” method fails to take into account the free
vibrations which are dependent on the rotational speed of the rotor. Such being
the case, if we assume a wider range of rotational speeds,'the possibility of rotor
balancing by way of balancing its particular fundamental forms of free vibrations
may be practically non-existent.

The above facts have coused the problem of rotor balancing to be solved in
a different manner.
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The number and location of the planes of balancing were assumed to be known
beforehand as, for example, they could be predicted by the rotor manufactures.
It was also assumed that the magnitude of the balancing masses is limited from the
above, due to the sirenght of their connections to the rotor. An algorithm to slove
the problem of forced rotor vibrations is the basis of any method of balancing
a flexible rotor for a wide interval of its rotational speeds.

The induction forces originating from unbalancing will prediminantly result in
rotor deflection, wherefore the solution is restricted to the question of forced flexional
vibrations of the rotor. According to the presented method, the algorithm to solve
the forced flexional vibrations of a rotor is applied to determine the so-called rotor
sensitivity on the unit unbalancings, that appear successively in the particula. planes
in which the blancing occurs.

Since the problem is solved according to the linear theory, the magnitude of the
balancing masses can be determined in & simple manner, from the known rotor
sensitivity, as its susceptibility to unit unbalancings. A collection of vibration am-
plitudes of the rotor supports was adopted as a measure to indicate rotor sensitivity
when applying unit unbalancings in the particular planes of balancing the rotor.

The above colleciion of amplitudes of vibrations in the rotor supports can be
interpreted in terms of physics as a collection of dynamic numbers of influence.

An algorithm which matches well the above assumptions has been presented in
the study [1] or, in its supplemented form, in the study [2]. The unbalancing according
to the above algorithm can be an arbitrary function, continnous within intervals
and defined along the whole rotor length. Such being the case, it is possible to satisfy
the assumption on the definite location of the planes of balancing because one can
apply, among others, unit unbalancings at any cross-section of the rotor.

It is practically almost impossible to determine by experiment the rotor sensitivity
to unit unbalancings within a wide interval of rotaticnal velocities and a high number
of balancing planes. At times, in the case of two-bearing rotors, there are attempts
to proceed similarly as in the mentioned method of three starts applicable to rigid
rotors. Consequently, this method of balancing requires great practical experience
on the part of the person conducting the balancing and, further, it is often run by
trial and error,

All this testifies to wide interest in the rational methods of rotor balancing.

1. ALGORITHM TO SOLVE FORCED FLEXIONAL ROTOR VIBRATIONS

As already mentioned in the introduction, the proposed method of rotor balan-
cing makes use of an algorithm to solve the problem of forced rotor vibrations, as
presented in the study [1], or a supplemented algorithm, as proposed in [2]. Its
supplementation consists in including the effect of shearing forces acting on the
rotor deflection. ’

Apart from this, both algorithms apply the same physical model of a rotor and
its supporting structure,
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The following phenomena accompanying rotor vibrations are taken into consid-
eration in the physical model of the rotor: 1) external damping; 2) internal damping
of material according to the Voight-Kelvin hypothesis; 3) the gyro effect; 4) inertia
of rotor components during the flectional movement; 5) accelaration of gravity;
6) effect of shearing forces on the rotor deflections according to the Timoshenko
hypothesis (in algorithm [2] only); 7} rotor unbalancing as an aribirary function
defined along the whole length of the rotor and capable of developing into a Fourier
series,

The 1otor supporting structure has been divided into two sub-systems: the oil
film of the rotor slide bearings and rotor supports plus the machine bedplate. The
oil film of the rotor slide bearings is accounted for by the hydrodynamic charac-
teristics ils flexibility and damping. The rotor supports plus the bed-plate of
the machine are presented by dynamic influence numbers. Here we also have such
numbers which depict the coupling of rotor supports by the machine bed plate.

With respect to the rotor geometry, the rotor is assumed to consist of circularly
symmetric cylindrical sections. According to the assumption, the rotor is a mnlti-sup-
port structure resting on N supports. The equations of motion, following from the
above physical model of a machine, are solved by a particular integral only. This
follows from the assumption that the rotor free vibrations decay with time.

From the point of view of the possibility of balancing the rotor, this is a necessary
condition.

The above solution of rotor movements is true for an actual rotational speed
of the 1otor. Among others, the solution of rotor motion equations includes the
amplitudes of vibrations of the rotor supports, which are essential in the process of
balancing. The values of amplitudes of the vibraticns of rotor supports are designated
as follows:

Cicrys o=ty Where =12, N

The above values are complex, their real parts being the amplitudes of support
vibrations in the horizontal plane and their imaginary parts, the amplitudes of
support vibrations in the vertical plane. Since properties of the supporting structure
are anisotropic, there are two harmonic components of machinery parts vibrations
for the given rotational speed. One of a frequency corresponding to the velocity Q,
the other of a frequency corresponding to the velocity —£. This has been shown
by the index sings in brackets. Rotor unbalancing is denoted by C(z), where the
variable z i3 a coordinate of rotor cross-sections measured along its length,

The unbalancing C (2) is a conjugate function of a real variable. The real and the
imaginary parts of unbalancing are its coordinates connected with the rotor and
with those parts that are rotating jointly with the rotor, respectively. -

2. ROTOR BALANCING

Let us assume that we are to balance a rotor and have s planes of balancing at
our disposal, their location being determined by the coordinates z; where k=1, 2, ..., 5,
Further, let us assume that the rotor should be balanced for rotational speeds falling
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. within the interval <£,; 2, >.The magnitude of the balancing masses, attached
in the particular planes of balancing, is designated as m; where k=1, 2, ..., s.

It is assumed that the balancing masses induce a change oaly in the unbalancing,
without affecting any other parameters of the rotor. The acceptability of this assump-
tion follows from the fact that the magnitudes of the balancing masses, compared
with the rotor mass, are negligibly small.

An additorial assumption is that the balancing masses take up sections, & (k=
=1, 2, ..., §) long, measured along the rotor axis and that these sections are located
symmetrically with respect to the planes of balancing.

1

The application of a unit mass of balancing m; =1 in the %-th balancing plane
causes the following change in vnbalancing of the rotor, into sections of ¢ length,
situated symmetrically with respect to this plane of balancing:

i

2.1 AC (D)=RedC; (z)=——,
TR & p

ImC(z}=0.

For the sake of simplicity it is assumed here that the unit (test) unbalancing takes
place along the axes of the system of coordinates rotating together with the rotor.

In the formula (2.1), r; denotes the radius of attachment of the balancing mass;
R;; the radius of the cross-section determined by the k-th plane of balancing and p
denotes the density of the rotor material, The change in unbalancing of the entire
rotor, caused by a unit unbalancing applied, is as follows:

ldq for ze <zp——g 5+

2 2
lO, for the remaining rotor part.

L

@2 &(2)=

When the function (2.2) is applied as the rotor unbalancing, we can obtain (with,
the use of the algorithm [1] or [2]} the rotor sensitivity to unit unbalancing in the
k-th plane of balancing, in the form of amplitudes of vibrations of its supports:
{iqyg  for the frequency £,

(2.3)
£y for the frequency - £2,

where i=1,2, ..., N.
The following vectors are constructed from the value (2.3):
(2.4) ZE(L)=COI ¢ ks 5..'2(1.)‘#, ey ":N(L)E} s
ZE(—l):COI {‘:1(—1)E= Cz(—l)i, s CN(—I)}E}’
(2.5) ch =COI {Zi(l), ZE(—l)}'

Counsidering the fact that the values (2.4) were determined for just one actual rota-
tional speed of the rotor, we propose to denote it by using the symbol Zio and in
this way we denote the vector (2.5).
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If we apply unit unbalancing in each of the balancing planes, we obtain a whole
collection of the above vectors from which the following matrix is formed:

(2.6) Zo=Z50: Z30, ... Z5n-

Let us select a finite number of rotational speeds from that range of rotor speeds
€24, Qe for which.the rotor is to be balanced:

max,
2.7 6, Q,,825, ., Q=82

The selection of the above speeds should be adeqﬁate to make the rotor balancing
at these revolutions tantamount with the balanciog of the rotor within the entire
interval. Such a procedure is dictated by the possibility of rotor balancing for a finite
number of rotational speeds only. Otherwise, rotor balancing might result in the
elimination of its unbalancing, which may be impossible to accomplish with the
finite number of its balancing planes.

Certain indication can be given regarding the selection of the rotational speeds
(2.7), viz. these should include possibly all the critical revolutions falling within the
interval of {Qq, €,,,.>. The matrix (2.6) is to be determined for the particular vel-
ocities (2.7).

A successive matrix is constructed from those obtained in the above manner:

(2.8) 2=Zpos Loy, s Lag]-

This matrix is the requested collection of the numbers of influence of unit unbalan-
cings on the rotor. _ '

The process of balancing takes place according to the measurements of ampli-
tudes of support vibrations, while the rotor rotates at the successive speeds contained
in the collection of its r.p.m. numbers (2.7). The measured magnitudes of the ampli-
tudes of support vibrations are marked thus:

(2'9) C?(I)Q,u., g?(_ ESYe TR Whel‘e i=I, 2, ey N
and
n=0,1,2..,4q9.

The following vectors are constructed from the magnitudes (2.9):

Ziya=col He e (3 (o cf\’(l)ﬂ} s

(2.1 .
Zf—l)s;v:ml {Ci(wl)gi Cag=1ygs o ‘:N(—lm}:

2.11) Zi=col {Zyq, ZE ot

(2.12) Ze=col {25, 25, , . qu}.

Next, the permissible value of the amplitude of rotor support vibrations is to be
determined for each of the rotor supports and every velocity from the collection
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(2.7). The vectors to be constructed from the permissible amplitudes of support
vibrations are

(2.13)  Agp=col {AI(L)Qo Azu)m ey AN(l)ﬂ s A1(—1)9, Az(—ajm eey AN(—-.I).Q} ’
and
A =001 {Ag_, Ag,, s Ag}.

Each balancing mass can be treated as a certain additional unbalancing of the rotor
which, on the principle of superposition with the unknown balancing of the rotor,
will eventually vield its balancing. The following vector is to be constructed from
the above additional unbalancing of the rotor, due to the attachment of the balan-
cing masses on the rotor:

(2.14) C=col {AC}, AC3, ..., AC}.

The purpose of the presented methods of rotor balancing is to find the expression
(2.14).

From these considerations it follows that the expression (2.14), which solves
the problem of rotor balancing, can assume the form of any vector C, satisfying
the relationships

(2.15) ' |ZC+Z°|< A
(2.16) ICc|<C

Miax *

max ?

The condition (2.16) appears when the magnitudes of the balancing masses are

limited, due to 4 limited strength of the connection between these masses and the
rotor.

Let us introduce an additional designation:
(2.17) 2C+Ze=F(C).

The magnitude F (C) is a complex linear vectorial form. The solution of the problem
(2.15)-(2.16) can be formulated as follows:

Find 2 minimum value of the form F(C) on a hypercubicoid 0<1C< C,,, from
the point of view of a certain norm (to be designated as ||- [)) of this form, in other
words find such a value 0<Co < C ., for which ||F (Co)n:min.

When F(Co)< Apa, then the problem of rotor balancing has been solved sa-
gisfactorily.

Such a formulation enables us to apply linear or nonlinear programing methods,
depending on whether the mentioned norm, || || links the ‘coordinates or the form
F{C) into a linear or into nonlinear combination. Furthermore, with such a formula-
tion we obtain an equivocal solution, whether or not it is possible to balance the
rotor in the case when F (Co)2 Ay, One of the reasons why rotor balancing might
be impossible to be effectuated is an insufficient number of the available planes
of balancing, or else their inconvenient location on the rotor.
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3. IDENTIFICATION OF UNBALANCING:

A complete recognition of rotor unbalancing may be useful to climinate system-
atic errors in machining and assembly of the 1otor in a large-bath manufacturing
process. Similarly, as in the case of rotor balancing, we apply here the same algo-
rithms that were described earlier-in the studies {1] and [2].

The information on rotor unbalancing due to the vibrations of its supports will
be restricted to an analysis of their synchronous harmonic components. The basis
for the identification of balancing will thus be the measured values of amplitudes
of the synchronous harmonic component vibrations of rotor supports. As in the
previous chapter, the following vector can be constructed with the use of these
magnitudes;

(3.1) Z&y=col {Z8a,s Ziya, s s Zina,) -

Hence we seek the unbalancing of the rotor in the form of the finite expansion into
a functional series as follows:

(3.2) C@= D bioi(2).

The complex functions ¢; (z) (=1, 2, ..., k) are the pre-set, lineary independent
functions defined along the whole rotor length and developed into a Fourier series.
This is how they satisfy the assumption on the unbalancing, set out in the algo-
rithm [1] and [2]. Among others, a polynomial or trigonometric functions can be
adopted as functions:

g (2)fi=1, 2, ..., k.
The problem of identification of rotor unbalancing can be sclved after the coef~l

ficients b, (i=1, 2, ..., k) are determined.
The subsequent vector to be construed from these coefficients is

(3.3) B=col {by, ba, ..., b} .

Similatly, as in the problem of rotor balancing, we proceed here with the determina-
tion of rotor sensitivity to the action of induction fosrces following from the unbalan-
cing which is described by the successive functions ¢; (z) (i=1, 2, ..., k).

To do this, one has to bring successively to zero all the expansion factors in the
expansion (3.2), except the factor next to the function for which the rotor sensibility
is to be determined. This factor shall be taken as equal to one.

The results of calculations for the above unbalancing can be recorded in the
form of amplitudes of the synchronous harmonic components of the supports
vibrations as follows: '

(3.4 Uig,=col {§1(1)Qu s gz(i)s?u PRI gN(I]ﬂ,u}-

where
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The subsequent vector is construed from, the value (3.4) in the form of
(3.5 U,=col {Umo, Uigrs -sy UiQﬂ}a

where
i=1,2,.., k.

The vectors (3.5) will serve to prepare a matrix containing all the numbers of the
effects of ynbalancing ¢, (2) (i=1, 2, ..., k) on the rotoi:

(3'6) . U:[U1> U2= Ter Uk]'
The expansion factors (3.2) can be found by solving the linear system of equations:
(3.7) UB=2Z¢.

In order to solve the indentification problem compietely, one should develop
a method for error assessment in the determination of rotor unbalancing.
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STRESZCZENIE

WYWAZANIE I IDENTYFIKACIA NIEWYWAZENIA WIELOPODFOROWYCH WALOW
I WIRNIKOW

W pracy podano teoretyczae podstawy metody eliminacji skutkéw dziatania sit wzbudzajacych,
pochodzacych od niewywazenia wielopodporowych gietkich wirnikéw Iub waldow napedowych.
Metoda polega na odpowiednim sterowaniu rozkladem masy wirnikéw Iub walow — z uwzgled-
nieniem mozliwoscl technicznej realizacji zmiany tego rozkfadu.

Podano réwniez koncepeje identyfikacji niewywazenia wirnikéw ub waldow napedowych,
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Pearome

VPABHOBEIMMABAHUE M HJIEHTHGUKAITAA HEVPABHOBEIIEHHOCTH BAJIOB
U POTOPOB C MHOTHMM OIIOPAMH

B pabGore IawmTcs TEOPETHUECKHS OCHOBLI METONA RCKITOYEHHA CISACTBHAH ASHCTBHA BO3-
OYRIAIOMMX CRII] TPONCKONALHA OT HeyPaBHOBEIICHHOCTH THOXEX POTOPOB MIH NPHBOZHLIX
BANOB ¢ MEOTEME ONOPaMA. METOR 3aKiIOYacTCA B COOTBETCTBYIOIICM YIPABINCHHH Dacmperie-
NEHASM MACCH! POTOPOB HAH BATIOB] C yIeTOM TEXHHYECKOM BOIMOKHOCTH DEAlU3atHd MIMEHeHun
ITOTO pacupenencEus, JaeTcd ToXe KOROEUIHA HIACHTHQUKAIINE HeyPABHOBEMIEHHOCTH POTOpPOB
AIH DPHBOAHBIX BAJIOB.
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