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STRESSES, TEMPERATURE AND OSCILLATIONS OF THERMOELASTIC
LAYER SUDDENLY EXPOSED TO SYMMETRIC PRESSURE

M. M. MARJANOYV. (BEOGRAD)

In the Principles of Thermoetasticity [1], Kovavenxo presented the limit values of temperature
increase in a thermoelastic Tayer, exposed to a symumetric step in time pressure. This work treats
the -same problem. The approximate solutions are found for temperature, stresses and displacements
in function of time and space variable. :

1. THE PROBLEM

Surfaces of the isolated thermoclastic layer, being in the homogeneous tempera-
ture field 7 (x, t)=T,=const (r<0) at first, are pressed in the moment =0 with
constant pressure po. ‘

Pg

The stre§ses, the temperature and the oscillations of the fayer in function of
space and time variable are to be found. :

If the unit of length, time, temperature and siress are taken as
. a a . 1 B
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where ¢; represents the isothermic velocity of the longitudinal wave, @ — thermal
conductivity, « — thermal dilation cosfficient, £— modul of elasticity and v —
Poisson’s ratio, one gets the following set of partial differential cquations, initial
and boundary conditions of this coupled thermoelasnmty problem in dlmenswnless
form ([1], 275):

Ly 3 g—82 g—d? y=0,
(1.2) 2*0—(1+e) 8, Q—20; 6=0,
(13) a (x, 0)=28, g (x, 0)=0 (x, ()=, & (>, O)=0,

0 (X )= —py H(1),
30 (xp, )=0, x,=0 and h.
In the equations above, & represents the coefficient wich couples stress and tem-
perature fields and H (¢) represents the Heaviside unit function.

The system (1.1), (1.2) can be replaced by the following system of partial differen-

tial equations expressed m the matrix form:
o 0 (1-+&) o —a°f [o

(1.5) dlo|=]é 0 0 al,
: 6 o -0 & ||é
where the comma beside and the dot above the symbol means partial diffe-
ientiation of corresponding variable by space and time, respectively.

Briefly, Eq. (1.5) can be written in the following form:

{1.6) O, U(x, t)y=LU(x,0),
where the meanings of the vector function U (x, t) and the matrix differential oper-

ator L (-) are evident,
Initial and boundary condltlona for Eq (1 5) are

(1.4)

wn U (x, 0)=0,
0 (X, £)="Pps 5 (t) ,
{1.8) . x;=0and A.
! 69 (xba t)=0 !

d (t) being the Dirac symbolic fanction.

To simplify the procedure of solving the problem posed above, one can replace
this problem, with homogencous initial conditions (1.7) and nonhomogepeous
boundary conditions (1.8), by an equivalent problem with the nonhomogeneous
initial conditions :

(1.9 U (x, 0=-po |6 (i—h)=8 (x)
o
and the homogeneous boundary conditions
(1.10) G (X, 1Y=00 (%, 1)=0, x,==0 and k.
It is easy to show that those two problems are equivalent by s1mp1y comparing
their extraded dlﬂ'erentlal operators [4].
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2. FIGENVALUES AND EIGENVECTOR FUNCTIONS OF MATRIX. DIFFERENTIAL OPERATOR L

In order to get the spectral representation of the operator L, we seck the solution
of the esigenvalue problém

2.1 L, (=2, ®,(x), xe(0,h), i=1,273,.
where A, are eigenvalues and
Pis (X)
D; ()= @iz (x)
®i3 (X)
are eigenvectors satisfying the homogeneocus boundary conditions
2.2) @i (%) =0@;3 (x)=0, x,=0 and k.

By eliminating the second and the thitd coordinate functions from the system (2.1),
one finds a differential equation of the rank four, for ¢, (x). Applying the Fou-
rier finite sine transform [3] to that equation and taking into account the bound-
ary conditions ¢ (x;)=0, together with the approximate boundary conditions
@5y () =0Y) (x,=0 and f), we reach the characteristic equation :

(2.3) ' Aol A2 4(1+8) ef A+oi=0,

where a,~knfh (k=1,2,..). The sign of approximate equahty is the consequence
of adopted approximation in boundary conditions.

Equations (2.3) gives three eigenvalues for every k:iwo of them are complex
conjugate A, =1 (With a negative real part) and one A is real (also negative).

Now, having found the eigenvalues 4, (k=1, 2, ...; m=1, 2, 3), we can easily
find the eigenvectors @y, (x). The first and the second of these vectors are complex
conjugate @, (x)=&,, (x) and the third &5 (x) is real.

We must add that the eigenvalue A,=0 give an untrivial solution of Eqs. (2.1)
and (2.2), as well. So we include zero in the eigenvalue spectrum and a non-zero
eigenvector @, in the set of eigenvectors &, (x) (k=1,2, ... ; m=1, 2, 3), which
form the base of our vector space. '

3. ADJOINT MATRIX DIFFERENTIAL OPERATOR
We seek the adjoint matrix differential operatof ‘L* by using the following equal-
ity of two complex scalar products:
3.1 {G,LF>={L% G, F.

The domain of the operator L represents the set of three-dimensional square
integrable vector functions F(x) (x_(0, 1)), satisfying the homogeneous boundary
conditions of the type (2.2) and the domain of L* represents the set of three-dimen-

(‘)-These boundary conditions are equivalent to ¢’/ (x,)~0, which are satisfied identicaily
in an uncoupled solution.
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sional vector functions ¢ (x) (AE(O #)), the boundary conditions of which can
be determined from the demand that the transformation of the left side of Eq. (3.1)
into the right side becomes homogeneous. - ;

In such a way we find the adjoint operator

0 =2 0
(3.2) L*=| —(148)@ 0 22
—g2 0 &

and its adjoint homogeneous boundary conditions

.
. . or X _—_—4—~—§ X ,
3.3 Sl =78 xp=0 and #.

gy (x)=083 (%),

The bars over the symbols mean that the adjoint boundary conditions are given
by the complex conjugates of the respective functions.

4. EIGENVECTIOR FUNCTIONS OF THE ADJOINT OPERATOR L¥
B oy
If 4y, is an eigenvalue of L, then 4., (complex conjugate of 1,,), is an eigenvalue

of its adjoint L* [4]. Now it is easy to find the eigenvectors ¥y, (j=1,2,3, ...,
m=1, 2,3) in the eigenvalue problem

(4.1) LEW (X)=4 ¥, (x),  xe(0,h), i=1,23,..

with boundary conditions of the type (3.3). Therefore, for every k we shall get the
set of three vectors again: two of them are complex conjugates and the third one
is real. We complete the set of adjoint eigenvectors with W, obtamed when
we use the zero eigenvalue in Egs. (3.3) and (4.1).

The complete set of adjeint eigenvectors form the inverse base. of our vector
space.

5. THE SOLUTION

‘As usual, we replace the sets of eigenvectors by, Dy and adjoint eigenvectors
Yo, Y by two orthonormalised sets of vectors. They must satisfy the conditions

<g}07 gp‘l}>h:1 E]
<qjij: (pkm>=5r‘k 5_;’»1 (ln k= 17 2= ’J'b I?I:l, 2’ 3) ‘
We now seck the sclution of the problem (1.5), (1.9), (1.10) in the form

(.1)  Ulx, =4, (r) Do+ N ) 2 i (£) Bran (%),

klml
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where d, (t) and dy,, (¢) are, for the time being, some unknown complex functions
of time. Substituting Eq. (5.1) into Eq. (1.5) and using Eq. (2.1), we have

) «© 3
. (52) d(} @0+ 2 2 (d-km"—)"km dﬁ:m) (ﬁkmzo .
k=1t m=1 ‘

The eigenvectors &y, &y, are linearly independent, so Eq. (5.2) is equivalent to
an infinite system of the ordinary differential equations of the first order with respect
to time. The solutions of these equations are dy=4a, and dy,=dqy, "', where a,
and g, represent complex constants of integration, Therefore, the vector function
U(x; #) has the following form: '

. - e 3 : .
(5.3) Ulx, )=a, G+ 2 D i €7 By ().
k=1 m=1

We introduce the initial condition (1.9) into Eq. (3.3) and form the left scalar
product with the adjoint eigenvectors wo, Wy, h=1,2,3, ...; m=1, 2, 3). Integration
of the obtained equations in the space mnterval (0, /) results in the integral constants -
to, Uy 7 po . .
Integrating the first and the third coordinate of U (x, ) with respect to time and
using the initial conditions ¢ (x, 0)=40 (x, 0)=0, we obtain

(5.4) . Vix, t)= [g gcc 3}= Vi (x, O+ V. (x, £),
where ‘ ‘

g [akl bis [9”1 (x)] } Reli,)e -
(5.5) szzé’ Re 1=, =10, (9 “ [eRe0 005,y () £ 11,

¢

, 3 bis [‘Pl (x)] ket
(5.6) Ve—kg A es (9 “(? -1, |

and b, and by, are complex multiplicators of corresponding (orthonormalised)
eigenvectors. :

' The vector V,, represents the stress-thermal wave (%) travelling through the layer
with the velocity ~¢, V1 +e, € being the velocity of the longitudinal “isothermal”
wave (of the wave travelling through the medium with the coupling factor zero).
This result is in accordance with the one obtained by Cmapwick ([5], 291). The
components of this vector are multiplied by the damping factors exp [Re () ¢1/
/Re (A1) <0, so the form of the wave is being changed constantly.

The second vector ¥, represents the stress-thermal field originated by the conduc-
tion of heat from the thermal wave during the compression phase and vice vaisa,
during the dilatation phase. This shows that in the coupled thermoelasticity solution
the wave front is not a well-defined line of discontinuity, but a diffusive zone.

(?) The stress wave and thermal wave are similar in shape during the whole, process as it will
be hown later in the approximate solution.
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Ouae can get the funciion of dimensionless displacements u (x, ¢) from
. . Ty :
(5.7) U(x, t)=mf(‘a+6) dx+e (1),

where the function ¢(f) is to be found from the symmetry conaition u (#/2, )=
=0.

6. APPROXIMATE SOLUTION

We shall discuss the approximate form of selution (5.7) which one obtains
considering the fact that for real technical materials the thickness of the layer is
greater than [, and the sufficient number of summation terms k< 10%—10°% the
strong inequality o, <1 is valid.

In this case, solutions of the characteristic equation {2.3) are

(6‘1) . }ukl‘:zkzz 2(1+ ) o +i’0’k ]/1+E
&
%
6'2 bpq RE .
62 A 1+e

Using thesé values and neglecting the contribution of the thermal diffusion to
the shape of the stress-thermal ficld, we get

-1 . 102-10%

o{x,t 4 1 & .

6.3 [6 (x, t;]%vo £ {1»—--; Z = ¢ 2{1+2) "tcosock]/1+stsinqckx].
1+8 k4:1’3"" '

H we put ¢==0 in this solution, we obtain a vector the first coordinate of which
(stresses) is represented by a rectangular wave propagating with the velocity ¢, and
the second (temperature) is equal to zero. Those are the well-known results-of un-
coupled thermoelasticity. '

Expression (6.3) shows that the stress wave and thermal wave are similar in shapa
to within a constant multiplicator. Opposite signs of these multiplicaiors mean that
during the compression phase of the oscillation, the temperature of the thermal wave
is increased and during the dilatation phase — decreased.

When z-»c0, the existence of damping muliiplicatiors makes all the terms of
the functional series in Eq. (6.3) tend to zero and in a limit we obtain a constant
vector the coordinates of which represent dimensionless expressions for the limit
values of the stress and of the temperature increase, obtained by Kovarenko [11.

The displacement, in the approximate form, is-given by
64 vxn=

+v p R S T § _
Iy I-:g {x_z-l_?c? 2 752_6 20+ cos C’»kl/l-ljSICOSockx .
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¥

If we put =0 in this equation again, we shall obtain the well-known displacement
function of the classical theory of elasticity. '

The term tending to zero exists as well in Eq. (6.4) when time tends to infinity.
Therefore, the displacements are going to stabilise in one position — the position
of the static displacements for t=oc. The term 1 +¢ by which the static displacement
is divided represents the influence of heating (i.e. coupling) on the displacement.

7. BXAMPLE

We shall expose the isolated steef layer to the pressure pg== 100 MPa. The thermo-
mechanical characteristics of the material are: ¢=0.0114, ¢,=5%10 m/s, a=
=0.13 em?/s, v=0.3, F=2.06-10° MPa, 2=1.2-10"° grad—. The temperature
of the natural state is taken to be T,=293"K.

The limit temperature increase, i.e. lim 7—T, (see: Eq (6.3) and introduce the
dimensions):

' I ¢ 1-2»

< 11e 7Efpol=0’.18 gra,d.

{(T—To)yim=

Figures 2-6 represent the stress-thermal waves in different phases of oscillations.
The velocity of wave propagation is ¢,V 1+¢ and the period of oscillations is
2h/e, ]«/1-%.9. :

0 X —e  0)15 0,250 ) 0375 0500

Fra. 2. Beginning of the oscillations. The stress-thermal wave for r=T/8 (T:?./r_.’]/ E_J—Hé)

1+ ¢

é(x,ﬂ

635 0500

Fic, 3. The siress-thermal wave for #=0,005x, T--T78 {# is the total number of oscilfations).
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Fia. 7. The displacement field. Beginning of the oscillations.
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Fra. 8. The displacement field after 20% of the total number of oscillations.
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Fig. 9. The displacement field. End of the oscillations
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At the beginning of oscillations the magnitude of the greatest (the first one)
damping factor is close to one, so the shape of the wave is tectangular. Figure 2
tepresents such a wave for £=778. At the beginning there is no difference between
the stress wave of this solution and the stress wave in the elastic solution but one
must not forget that here we have the thermal wave as well. ,

Figurs 3 represents the Htress-thermal wave after approximately 0.5% of the
total number of oscillations (3): t=0.005 #,+7/8. The wave in the moment -
t~0.05 n, T+1/8 is represented in Fig. 4,

After approximately 20% of the total number of oscillations, because of damping,
there remains the first term of the functional series in Eq. (6.3) only and instead
of the wave travelling along the x axis; we now have a standing wave (Iigs. § and 6).

Finally, when the greatest term of the functional series becomes practically ZEr0
(t=t,) (*), the stresses and temperature of the layer stabilise to their limit values —
broken lines in Figs 5 and 6.

Figures 7, 8 and 9 are stereometric representations of the displacement fanction .
u{x, ) in different phases of oscillations,

At the beginning (Fig. 7), the displacement function corresponds to the ome
obtained in the elastic solution, taking into account the heating of the layer due
to coupling. The figure in the upper right side represents the oscillations of the
point x=0.

The same function after aprroximately 20%, of the total number of oscﬂlatwns
appears in Fig. 8, Its shape is perceptibly modified, due to the thermoelastic energy
dissipation. The triangular wave describing the motion of the point x=0 at the
beginning becomes now a dlslocated sinusoidal wave with considerably smaller
amplitude. ‘

The last figure represents the displacement function after re-establishment of .
the stability.

8. CONCLUSION

The analysis of the limit value of the temperatute increase in the layer indicates
that it is a function of the pressure the layer is exposed to, of the coupling coeilicient,
of the thermal dilatation coefficient, of the Poisson’s ratio and of the elasticity modu-
Ius. The limit does not depend on the thickness of the layer.

K we analyse the exponent of the damping function of the greatest term in the
functional series of Eq. (6.3) or Eq. (6.4) —i.e. Re'(d;,) £, we see that the number
of oscillations until total damping is accomplished is proportional to the thickness
of the layer, the velocity of the wave propagation, the coupling coefficient and
that it is in inverse proportion to the coefficient of the temperature cenduetivity.

(®); (%) Reestablishment of the mechanical and thermal stability in this solution fequites of
course t=c0 but for the practical purpose one can take that there is no more motion when the greatest
damping factor exp [Re (4,1) 1} becomes smaller than a given small and positive number J, In this
work we took 6=10"* and so we could compute the ““total numbert of oscillations™ #, and the
“decay fime” #,.
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Proportionality to the thickness indicates that a ten times thickeer layer of one
material gives a ten times greater number of oscillations.

The decay time is also in inverse proportion to the coefficient of the temperature
conductivity and it is proportional to the coupling coefficient and to the square of the -
thickness of the layer. Consequently, a ten times thicker layer of one material oscﬂla-
tes a hundred times longer. |

Now, if we want to see the influence of the coupling factor in the problem we
can take, as Kovalenko did, polyvinyl-butiral and suppose that this material is
thermoelastic. The thermomechanical characteristics of this matetial are; g=0.432,
¢, =2344 m/s, a=0.0016 cm?/s, y=0.4, E=2747 MPa, x=2.3-10"% grad~!. The
pressure is po=100 MPa again and the temperature of the natural state T,=293K.

The limit increase of the temperature is now

(T—Tolym=9.4 grad,

The coupling coefficient is an impoitant factor as regards the temperature increase
in the layer. On the other hand, the coupling coefficient does not influence the stress-
-thermal wave or the displacement to a great extent. After the same number of oscilla-
tions, a wave (primary rectangular) in the polyvinyl-butiral layer will not be more
deformed than a wave in the steel layer. Moteover, dne-to their dependence on
other thermomechanical factors, the total number of oscillations and the decay
time in a ,,thermoelastic” polyvinyl butiral are greater than correspondmg quantities
in the steel layer of the same thickness.
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~-STRESZCZENIE

NAPREZENIA, TEMPERATURA T DRGANIA WARSTWY TERMOSPREZYSTEJ
PODDANE] NAGLEMU DZIALANIU SYMETRYCZNIE ROZEOZONEGO CISNIENIA -

W ksiazce ,,Zasady Termosprozystodei™ [1] Kowalenko przedstawil graniczne wartodci wzrostu
temperatury w warstwie termosprezystej pod dzialaniem symetrycznego cinienia pezylozonego
w sposéb nagly wedhug funkcji Heaviside’a,. W pracy niniejszej rozwazono podobny problen:;
wyznaczono pzyblizone rozwiazania dia femperatury, naprezedi i premieszczen jako funkcje czasu
i zmiennych preestrzennych.
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Peswme

HATIPSDKEHWE, TEMIIEPATYPA .M KOJIEBAHUSA TEPMOYIIPYTOIO CHOS
IOABEPTHUTOTO BHE3AITHOMY JIBACTBHUIO CHMMETPUYECKHM PACIIPEIRITEH-
R HOL'O JIABJJBHMS

B wnure ,,Ilpmaopier repmoynpyroctr” {1] KosaneHko OpeacraBui mpeneisHble 3HAYEHAS
. POCTA TEMUEPATYPLE B TEPMOYIPYIOM CIO® WO JEHCTBHEN CUMMETPIYHOTO JIABNEHNS, TPHIONKCH-
HOI'C BHE3AOHEM 0GpasoM CorimacHo yHKLHN Xenucauna B nacrosmeit paGore paceMorpena
anajioryyHas OpobneMa; OmpemeneHEl npnﬁnmrcelmble PEIIEHESA A TEMIFEPATYPSI, HaHpFDI(CHHH
H TepeMeileHuil xak QyHKnEd BpeMGHH ¥ OPOCTPAHCTBEHHMIX HEPeMEHRHLIK,:
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