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MAXIMUM STIFFNESS BEAM-COLUMNS

B.L. KARIHALOO (NEWCASTLE)

The problem considered is that of maximising the flexural stiffness of a simply supporied elastic
bar of given length and volume which is acted uwpon simultaneously by an axial cc')mpi‘ession and
a transverse uniformly distributed force. The cross-section of the bar is of efther sandwich or solid
construction. Simple formulas are presented to calculate the. minimum midspan deflection for
prescribed axial compression and transverse force. It is shown that by maximising the fexural
stiffiness of the bar its lateral deflection can be substantially decreased,

1. INTRODUCTION

Over the past two decades considerable attention has been paid to the optimal
design of structural members which had to act as a beam, column or plate (ref.
[1-71). Optimal design meant both the design which used the Ieast amount of ma-
terial to fulfil certain prescribed requirements such as restrictions on frequencies
of natural vibrations, static deflection, buckling load and so forth and the design
which, for a given volume of material, had the best mechanical properties (the
maximum buckling load, the least static deflection, etc.). More recently, optimal
design of structural members which have to perform several functions at different
times during their design life has been cousidered (ref. [8-13]). Thus, for example,
the member was expected to actasa beam for a part of its design life and as a column
for the rest, but was not expected to perform both these functions simultaneously.

However, a very common sitnation in the design of structures is when a member
js simultaneously acted upon by axial and lateral forces. Such a member is com-
monly referred to as a beam-cohimn. In this paper we present the design of a simply
supported, elastic beam-column which, for a given volume of material, has the
maximom flexural stiffness distribution’ along the length. The beam-column is
under the combined influence of axial compression and lateral uniformly distri-
buted load. It is assumed that the fiexural stiffness of the member is related to its
mass by a simple power law. The need to maximise the flexural stiffness of a beam-
-column can arise’ because the designer wishes to either maximise the allowable
axial compression when the lateral load and the maximum permissible deflection
are prescribed or minimise the makimum transverse deflection when the axial and
lateral forces are prescribed. The optimal beam-column design presented here is
also applicable to other homogeneous boundary conditions,” provided the length
of the member is properly interpreted. Simple formulas are suggested relating the

midspan deflection to the applied axial compression apd lateral uniformly distri-
buted load.
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2. MATHEMATICAL FORMULATION AND OPTIMALITY CONINTION

Consider an elastic, simply supported beam-column of length L and volume ¥
under the smmltaneous faction of an axial’ compressive force P* and a transv" §a"

’umformiy dtstnbuted load of mtenszty 2q per umt length, If shear ‘and torsiohal ar
deformatlons are neglgaci the’ ‘:‘;“ (C) of the beam-column will
satisfy the following ﬁlﬂ'erenﬁal cquatlon and bounda‘ry ‘conditions:

BT Q) ) +P* u*+gl (L—=0)=0, 0<{<L/2;
u* (0) ‘””c (L;2)=0,

_where I ({) is the second moment of area of the cross-sectlon and the subscrlpt C )

“denotes differentiation with respect to this longltudmal coordmat _
that the lateral deflection function #* ({) is symmetric about the midspa

38 are

tis as_ 'med

. the second moment of arca J({) and the cross-sectional area A ({). It i fdrther

" agsumed that the latter two are related through I=cA4", where the constants ¢ ana n
are defined by the cross-sectional shape. In particular, n=1 corresponds to a cross-
-section of sandwich construction or to a universal rolled section, 7=2—to a geo-
metrically similar solid cross-section (say, circular) and n=3--to a solid rectan-
“igular section with a constant width and variable depth along the length of the
mcmber o - S o

It is convement to work with nondimensional quant:txes Accordmgly, let X =
={/L, y=u*/L, and a.=AL|V. The differential equation and boundary conditions
therefore take the form

o i+ Pu+Ox (1 —-x)=0, 0<x<g12;
u (0)=u, (1/2)=0,

where P=(P*L**2/EcV") and Q=(qL"**/EcV") is one-half the total lateral force
on the beam-column, E being Young’s modulus.

Together with the above beam-column consider another beam—column under
the simulianeous action of an axial compressive force £ and a transverse midspan
unit concentrated force and denote the transverse defection by v {(x). In the same
nondimensional variables the differential equation and boundary conditions are

2.1

o ,axx+Pq;+x,I2.'=0, 0-.<,x€1/27;

(2.2
) o (0)=v, (1/2)==0.

We are now in a position to use the well-known unit load theorem to derive
an expression for the midspan transverse deflection u (1/2). Denoting by M (x)=
‘=—Pu—0x (1—-x) and m (x)=—x/2 the bending moments due to £ and the uni-
formly distributed Ioad-Q and due to P and the midspan unit load, respectively, it
follows from the unit load theorem that

172

u(l)2)=2 f M (x) m (x) dx/oa® (x).
0 .
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Substituting for M (x) and m (x) from Eqs. (2.1) and (2.2), respectively, we get

12

u(1)2)=2 f " (%) thyy Vs dX .

The aim of the optimisation problem is to minimise the midspan beam-column
deflection
172

2.3) 4 (1/)=2 [ o (%) hyy Oy dx—min,
0

subject to the isoperimetric condition that the beam-column use a prescribed volume
of material V. In dimensionless variables the isoperimetric condition takes the form

1]2

(2.4) _ 2 [ a(w)du=1,

In order to derive the necessary optimality condition for the optimization prob-
lem (2.1}-(2.4), an auxiliary functional is established by inclnding the constraint
(2.4) through a Lagrange multiplier. By setting the first variation of the auxiliary
functional with respect to « to zero and noting that the various functionals are
stationary with respect to variations in v caused by variations in o, [14], the fol-
lowing optimality condition results:

(2.5) ot Uyy Vnx =p? 5

where the Lagrange multiplier v is defined by the isoperimetric condition (2.4).
Note the necessary optimality conditions (2.5) is a special case of a well-known
general optimality condition, [15].

It is possible to relate the unknown Lagrange multiplier v to the minimum mid-
span deflection u,,;, (1/2). To this end, raultiply both sides of Eq. (2.5) by « (x) and
integrate from 0 to 1;2. On making use of the isoperimetric condition (2.4) it fol-
lows that

(2.6) Umin (1/2) =y,

Before presenting the solution to the optimization problem it is expedient to
investigate the behaviour of the area function, « (x), and the lateral deflection,
u (x), in the vicinity of the simply supported ends x=0 and 1. From symmetry
consideration we need only to study the behaviour in the vicinity of one of the ends,
say, x=0, Note that both the deflection function, # (x), and the bending moment,
" #,, vanish at x=0. It follows, therefore, that « (0)==0. The differential equation
(2.1) is identically satisfied, but the curvature, u,,, could well tend to approach
infinity, as x—0. To investigate such a possibility, assume that in the neighbourhood
of x==0 the deflection function can be expanded in a power series u (x)=C, x+
+C, x™+..., where m is the lowest noninteger power. Substituting for u, #,, and
o (from the optimality condition) info the differential equation (2.1) and equating
the coeflicients of like powers of x, it follows that m=(n-+3)/{(n+1). Therefore,
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in the vicinity of x=0, u,, varies as x{1 =047 and o (x) as x*/"+ D, Note that the
optimal beam and the optimal column area functions exhibit an identical behaviour,
[1] and [3]. Note also that v, exhibits a similar singular behaviour near x=0.

3, SOLUTION PROCEDURE ~

The optimisation problem (2.1)-(2.5) does not seem to have a closed form so-
lution for any value of #. An iterative scheme was theréfore designed to arrive at
the solution. The scheme was based on the integration of regular functions. In
view of the singular behaviour of u,, and »,, near x=0, the regular functions g (x)
and f(x) were defined in the following manner:

g (x)‘:xw(l “"V(l +") u.xx 3
FEy=x~tiomitian g

For prescribed values of Py and Q the itéra'tiéns proceeded in the following

sequence: _ _
Assume g, (x)=f; (x)=—1 in the first iteration (i=1)
R ifz2 ] )
()=~ [ Y- g )y (u (1/2)=0),
w=[ wydy (O=0),
0 N ) L
- 1/z ' ‘ ’

(3.1) )i=— [ =0 £ (ydy (v, (1/2)=0),

w=[Exdy (#©=0),

o { {(Pov;+x/2) (J!’0 u,+0x (1 —x)) }1/(»+ 1)
= u (12)

The above expfession follows from Egs. (2.1}, (2.2), (2.5) and (2.6).
Normalise o«; (x) such that

1j2 :
(3.2) , 2 f o; (X} dx=1;
: 0
3.3) i1 (== xmDIED (P4 O (1 - X)) o] (%);

€ S ()=—x- DD (Pog, 4+ x/ Do} (x). _
‘Note: | '
(3.5 &1 (0, fit1(0)#0. -
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- Regeat steps (3.1), (3.2) and (3.3)
. (1/2)—"15 (1/2)|!<71‘0“5 .

(3.6)

Repeat steps (3.1)-(3.6) for various values of P, and 0.

Table 1. & (x) of a beam-column with geometrically simijlar cross-sections (#
of axial compression Py, inchiding P,=13.16 {optimal column). Note that
the lateral force Q.

385

=2) for various values
« (x) is independent of

: ™
* 400 T 6.00 8.00 10,00 11.00 1316
0.000 £.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0005 °  0.0947 0.0979 0.1009 0.1038 0.1052 0.1081
* 0,010 0.1495 0.1543 0.1588  0.1632 0.1653 0.1696
0020 02353 0.2422 0.2489 0.2552 0.2583 0.2647
0.030 03059 03144 0.3225 0.3303 0.3341 0.3419
0.040 0.3679 03775 03808  0.3956 0.3999 0.4088
0.050 0.4239 0.4344 0.4445 0.4542 0.4588 0.4686
0.100 0.6516 0.6637 0.6755 0.6869 0.6924 0.7040
0150 0827 08390  0.8499 08606 . 08658 . 0.8769

0.200 0.9725 09810 09894 0.9978 10019 . 10108
0.250 1.0937 10983 1.1031 1.1679 1,103 1.1158
0.300 1.1959 1.1957 1.1957 1.1960 1.1963 1.1971
0.350 1.2816 1.2758 1.2703 1.2652 1.2628 1.2579
0.400 1.3525 1.3404 1.3287 1.3174 13118 1.3002
0.450 1.4094 1.3906 1.3721 1,3537 1.3446 1.3251
. 0.500 1.4529 1.4271 1.4012 1.3751 1.3620 1.3333

Table 2. o (x) of a beam-colunm of solid conshuction (eSS

3) for various values of the axial compression

Po, including Po=13.88 (optimal cohumn). Note that « (x) is independent of the lateral force Q.

Py

X 4.00 6.00 8.00 10.00 11.00 13.38
0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.005 0.1765 0,1819 0.1869 0.1915 0.1937 0.1997
0.010 0.2479 0.2549 0.2613 0.2674 0.2703 0.2781
0.020 0.3471 0.3560 0.3641 G.3718 0.3755 0.3856
0.030 0.4219 0.4317 0.4409 0.4496 0.4537 (14651
0.040 0.4838 0.4943 0.5041 0.5134 0.5178 0.5300
10,050 0.5375 0.5484 0.5586 0.5683 0.5728 0.5855
0.100 0.7395 0.7501 0.7602 0.7699 0.7746 0.7875
0.150 0.8834 08920 . (.9003 0.9084 0.9124 09235
0.200 0.9957 1.0014 1.0071 16127 1.0155 1.0236
0.250 1.0867 10850 1.0913 1.0939 1.0953 1.0993
0,300 1.1618 " 1.1600 11587 1.1577 1.1573 1.1566
0.350 1.2234 1.2176 1.2123 1.2073 1.2049 1.1987
0.400 1.2738 1.2637 1.2540 1.2447 1.2402 1.2275
0.450 1.3141 1.2995 1.2853 1.2713 1.2643 1.2445
0.500 1,3450 1.3257 1.3067 1.2876 1.2780 1.2500
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Numerical results showed, that for all values of #, the cross-sectional variation

along the length of the member was independent of the lateral load Q. The values

" of « {x) as a function of P, are tabulated in Tables 1 and 2 for n=2 and 3, respec-

tively. The values for n=1 are not tabulated because it was found possible to derive
them from the following simple analytical expression:

_ Pox(1-%) + (12—Py) x (1=}
2 2.44 o

(3.7 « (X)

The absolute maximum deviation from the above expression was less than
0.5%. It is worth pointing out that the expression for « (x) does not include the
lateral force Q@ explicitly. Note also that the two terms on the right hand side of
Eq. (3.7) are, respectively, the column and beam contributions to the beam-column
design. In fact, the maximum buckling load of the optimal column of prescibed
volume can attain the value 12. .

Numerical results also showed that the minimised value of the midspan de-
flection was a linear function of the lateral load Q. The values of Qi (1/2) for
various values of axial compression are tabulated in Table 3 for all values of .

Table 3. Percentage reduction in the midspan deflection of the optimal beal_ﬂ-coimnn emin (12D
compared to that of a prismatic heam-column (u,, (1/2)) of the same volame for various valies of
Po(<n?), Q and n.

O/t (1/2) 'Prismatic beam-column (4~ tynftepe)- 100
P, for various n Qi (1/2) for various n
1 2 3 for all # 1 3 3

0 48.00 54.00 58.10 38.40 20.00 28.90 34,00
4 32.00 31.77 41.52 22,75 2891 39.63 45.07
5 28.00 33.62 37.26 18.88 32.57 43.75 49.26
6 24.00 29.47 33.04 C15.02 37.42 49.02 54.53
7 20,00 2533 28.81 11.14 44,33 56.33 61.35
8 16.00 21.19 24.60 725 54,70 65.78 70.52
9 12.00 17.06 20.39 3.37 71.92 80.25 83.47
10 8.00 12,95 16.20 o —_— — —_
1 4,00 8.84 12.01 — — — —
12 — 4.74 7.85 — —_ — —

From the results of numerical computations it was possible to deduce {to within
an accuracy of +0.5%) the following explicit relations for #,, (1/2) as a function
of the prescribed axial compression Py and one half the total uniformly distributed
lateral load Q:
: {0.250 0;(12.60—P,), n=1,
(3.8) Haun (1/2)=10.244 0/(13.16 - Py), n=2,

0.239 Q}(13.88—P;), n=3.

In deriving the expressions (3.8), we considered the fact that the maximum
value of P, attained by the optimal column design is equal to 12.00, 13.16 and
13.88 for n=1,2, and 3, respectively.
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An alternative interpretation of Eq. (3.8) is also possible. Given the permissible
midspan deflection u, under an axial compression and a uniformly distributed
lateral load of total magnitude 20, the expressions (3.8) specify the maximum
axial compression that can be applied to the optimal beam-column without ex-

" ceeding

12.00—0.250 Qfug, n=1,
(3.9) Prer=113.16—0.244 Qju,, n=2,
13.88—0.239 Qyury, #=3.

In order to judge the advantage gained by optimising the beam-column design,
the minimised midspan deflection of Eq. (3.8) was compared with that of a pris-
matic beam-column of the same volume and subjected to the same axial and lateral
forces as the optimal beam-column. The cross-sectional area of a prismatic beam-
-column of a given volume (3.4) is o (x)==1, 0<x<1/2 for all # and its midspan
deflection u,, (1/2) under an axial compression P, and uniformly distributed lateral
load of total magnitude 2Q is given by [17] '

(3.10) Upr (1/2)—2 (sec (3 Po/2) ~ 1)~ A
o

Clearly, the comparison is meaningful only when P, is less than the Euler buck-
ling load of the prismatic column for all n (Po<z?).

The values of u,, (1/2) for various @ and P, are tabulated in Tabie 3 alongside
the values of w,;, (1/2). From the last column of Table 3 it is quite obvious that the
lateral deflection of the optimally designed beam-column. is substantially lower
than that of a comparable prismatic beam-column. Care should, however, be exer-
eised in judging the gain achieved for large values of u,,, (1/2), i.e. small values of
Qi (1/2), in view of the limitations of thc linear elastic beam-column theory
used in arriving at the results.

The work reported here has clearly demonstrated that optimization of the design
of a beam-column of a given volume can not only lead to a substantial reduction
of its latera! deflection, but can also provide a design in those situations when the
values of P, and QO preclude the use of a prismatic beam-column. The solution
of the optimization problem also showed that the optimal beam-column design
does not differ much from the corresponding optimal column design. In view of
this observation, the optimal column design may be considered as a quasi-optimal
beam-column design. Finally, it should be observed that the design presented here
is applicable to beam-column with other homogeneous boundary conditions,
provided the forces P, Q and the span are properly scaled. -
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STRESZCZENIE

PRETY ‘O MAKSYMALNEJ SZTYWNOSCI PRZY ROWNOCZESNYM ZGINANIU
I SCISKANIU

Przedstawione zagadnienie dotyczy maksymalizacii sztywnodci gietnej swobodnie podpartego
na koficach preta o okredlonej dlugosci i objgtoéel, poddanego jednoczesnemu dziakaniu jeiska-
jacej sily osiowej I réwnomiernic rozlozonego obciaZenia poprzecznego. Przekrdj poprzeczny
preta moze byé sandwiczowy lub lity. Wyprowadzono proste wzory wmozliwiajace obliczenie
minimalnej strzatki ugiecia preta przy danych wartosciach sit $ciskajacych i obeigzed poprzecznych.
Pokazano, 7e maksymahzaqa sztywnosci glqinej preta prowadzi do :stotnego obmzema jezo ugiecia
poprzecznego., . :

PeswwMe

MAKCHMAJIBHO JKECTKWE CTEPHHM IIPH OTHORPEMEHHOM M3THEE 1 CKATHH

IIpéacraprennsiit BONPOC KaCREICH MakCHMasinsaumi n3reOHOM aecrkocrm cpobopso Ome-
PAIOUIETOCHA HA KOHIAX CTEPIKHHA ONpeeNCHHON JUMA B 00BeMa, NOABEDHSHHOTO OJHOBpeMe-
HHO JEHCTBYMOIHEH CKHMAoulell OCeBOH CHISI H DIBHOMEPHO DacHpEeNeNeyHO# momepedHoi
warpyskn, Ilonepeqnoe cevenue crepicus Moxcér OuIrb CHIIOWHOE 1) THIIA CAHIBEY, BROAATCA
uPocTEe GOPMYJIBI IIOZBOILIOIAE PACUMTATE MHHAMANLHSI NPOTHO CYepkHs IpH JAHHBIX
SHAYCHIAX CHHEMAIONIMX CHA M YIOEDEYHsIX Rarpyiok, TToxasaHo, 410 MAKCHMHEIALAS H3rubuoi
JKECTKOCTH CTEPXHA BEAOT K CYIMIECTREHHOMY CHIDKEHHIO €rQ roiepevHoro mporida.
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