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ON THE LONGITUDINAL VIBRATIONS OF TAPERED BARS

D.S. CHEHIL (HALIFAX) and R.5. DHALIWAL (CALGARY)

In this paper an attempt is made to improve the elementary theory that describes the longitu-
dinal vibrations of a tapered rod. The differential equation incinding both lateral inertia and sheas
is derived. In order to facilitate comparison with the known results, numerical values of the funda-
mental resonant frequencies and velocity gain factors are obtained for conical bars with linear
taper.,

i. INTRODUCTION

Rods of different shapes with varying cross-section and under longitudinal
vibrations are widely used in ultrasonic installations for producing a gain in the
particle velocity. An extensive bibliography and brief discussion of the various
important works on this subject is available in Ref. [5]. The problem of longitud-
inal vibrations of tapered rods with a circular cross-section has been investigated
by several authors. Most of these authors have assumed that the lateral conctractions
and extensions of the cross-section of the rod are small and, therefore, may be
ignored. The results obtained by these investigators appear reasonable provided
that the Iength of the rod is large in comparison to its diameter.

RavieicH [11] showed that, in prediction of the period of vibration, the error
caused by ignoring the lateral motion is of the order of (r/b)* where r is the radius
and b is the length of the rod. Thus, for sufficiently short rods the lateral motion
of & particle is comparable in amplitude to its longitudinal motion and must not
be ignored. :

In the senior author’s previous paper [1], the effect of Poisson’s ratio on the
longitudinal vibration was considered and it was found that it does have some
eficct on the desired parameters. - o

MARTIN [5] has derived a new wave equation for a conical rod which includ-
es lateral inertia and shear. The numerical results presented by him show that
Poisson’s effect is appreciable and that it becomes more pronounced as the value
of Poisson’s parameter i8 increased. This author used the variational technique.

In this analysis the problem of longitudinal vibrations of a tapered rod is set
up as a boundary value problem of the second kind. The displacement components
as-assumed in various papers are improved and then by satisfying the three equations
. of equilibrium, a differential equation is derived which seems to be more general
. as compared to those presented in the previous investigations.
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2. EQUATIONS OF MOTION

Let S be the cross-sectional area of the beam at any distance x. The origin of
coordinates is taken at that end of the rod with a large cross-section, The rod
being of varying cross-section thus, § is a function of x. Let u, v, w be the displace-
ment component in the x, y and z directions, respectively, The equations of
motion are : :
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where p is the density.
For the first approximation let us assume that the stresses oy, and o, are small

as compared to o, and therefore be neglected. The displacement components
may be choseii as . - S o

du - : u .. .
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where ¢ is the Poisson’s ratio.
The shear stresses are given by
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where G is the modulus of ‘rig'ri'd.ity.‘-.: s - o e .
© Using Eq. (2.3) we can integrate the last two equations of the set (2.1) and obtain
the normal stresses g, and o,
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Substituting in the first equation of the set (2.1), the equilibrivin equations are
satisfied provided
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where E is the Young’s modulus and °
T= [ [(p*2+2%2) —(y2 +27)] dS.

Usnder a suitable assumption this differential equation reduces to the ones reported
earlier in Refs. 1,4, 5, 7]

To improve the theory of longitudinal vibrations of the tapered bars, the expres-
sion for v and w as assumed in Eq. (2.2) should be improved. In the second approx-
imation the values of a,, and o,, are chosen as in Bq. (2.4) and then the value
of stress gy, and displacements v and w are obtained from the stress-strain relations.
These are given by
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From the cxpressions for displacement functions, the shear stresses are given by
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With these values for displacements and shear components, the improved value
of normal stresses a,, and a,, is now obtained from the last two of the equilibrium
equations (2.1)
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The value of the normal stress o, is now obtained from the stress-strain relation
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The equation of motion in the x-direction requires that the following differential
equation be satisfied:
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Equation (2.11) is a differential equation that describes the longitudinal vibrations
of a bar with a variable cross-section and includes both the inertia and the shear
effects.

3. SoLuTiIoN

The purpose of this investigation is to provide an improved engineering theory
and, in particular, to study the effect of lateral inertia on the longitudinal vibrations
of a variable cross-section beam. Taking the shear component to be zero, the differ-
ential equation {2.11) is specialized to account for the effect of lateral inertia only.
This is considered appropriate at this stage as results obtained can be meaning-
fully compared with those already known. Consider simple harmonic vibrations
with angular velocity w, that is, take u (x, #)==u (x) sin wt, the differential equation
(2.11) becomes

. {:1_4120'25‘+/14SZO'2(20‘2+0'—1)] d>u
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where A* =pw?[E and s in the area of cross-section and s’ =ds/dx. For a half wave
resonant system, if U denotes the amplitude of vibration at x=0, u{x) may be
chrosen to satisfy the boundary conditions

(3.2) w@=U, u (0)=0, u (d)=0.

It must be noted that no attempt is made here to satisfy boundary conditions
on the curved surface of the bar. If 5" is sufficiently small as compared to s, the sur-
face stress condition has little effect on the average displacement u.
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FiG. 1. Tapered rod of length & and area of cross-section s (x).

In general it will be impossible to obtain solutions of Eq. (3.1} in a closed fornu.
For a simpler equation [5], power series solutions have been obtained and are
expressed in terms of Legendre functions.

Examination of Eq. (3.1) indicates that for a circular cross-section and Poisson
ratio ¢=0, the differential equation reduces to that given by MerkuLoy {7]. The
presence of high order terms in Eq. (3.1) is a consequence of considering o not equal
to zero. It follows that the solution of the differential equation (3.1) may be expressed
as a power series of o.
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Let u, (x) denote the solution of Eq. (3.1) in the special instance when o:=0
and let u(x) be expressed as .

(3.3) u (x)m‘z1 i, (x) o".

=0
Substituting Bg. (3.3) in Eq. (3. 1) and comparmg terms with like powers of ¢”,
we obtain
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These equations are valid for any form of taper and for any form of cross-section.
s and & are functions of x and depend on the particular variation of the cross-
-section,
The value of u, is determined from Eq. (3.4), subject to the boundary conditions

(3.2),, whereas the solutions of Bgs. (3.4);, 5,4 Will be chosen to satisfy the boundary _:
conditions _ ':fg

(3.5) : 4y (0)=0, i, (0)=0.

The solution given by the expansion Eq. (3.3) will then satlsfy the boundary
condition (3.2),, from which the value of (d) will be determined. In order to carty
numerical calculations, it is essential that Egs. (3.4) be solved for a specific case.

The differential Egs. (3.4) arc specialized for a rod with a circular cross-section
and having a linear taper. This case is chosen as a model since the numerical data
for this case is available in literature. '

Without getting into further explanations, the solutions of Egs. (3.4) are
presented and are given by
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Thus the solution of Eq. (3.1) may be represented as

(3.10) u(x)= ;_U—x [P (x) cos Ax+Q (x) sin Ax],
where
P (x)=Py+02 Py (x)+0° Py (x)+o* Py (%),
Q ()=Qo+0? 0, ()+0° Qs (x) +6* Qs ().

The value of 1 must be chosen to satisfy Eq. (3.2), which in turn requires the fol-
lowing equation to be satisfied:

P (@) ,
~_—,—,—+(1~_) [P’ (@) +2Q (&)
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Having found the value of A from Eq. (3.12), the velocity pain ratio is then
obtained from

u (d)
u(O)

(3.13) 7 [P (@) cos d+Q (d) sin Ad].

4, CONCLUSIONS

To dcmonstrate the eﬁ'ect of lateral inertia eﬁ'ects numerical resuits were com-
puted for various conﬁguratlons These are shown in Table 1. For each particular
case, five numerical values are listed. The first and second values are taken from_
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Ref. [1]. The other three values have been computed from Egs. (3.12) and (3.13),
when. the Poisson’s parameter ¢ is chosen to be 0.3, 0.35 and 0.4, respectively.
For comparison, the values corresponding to 6=0 have also been included. Tt must
be noted that when =0, the value of Ad depends only on the ratio b/d and hence
on the ratio D,/I},. For computing numerical results the ratio d/D, is taken greater
than 1. This is necessitated by the fact that series converge only when th_ls ratxo
is maintained greater than 1.

* Table 1. Values of gain for avious valnes of D,/D,
diD; when 0=0.0, 6.3, 0.35 and 0.4.

o’ ~D~i - Ad GAIN

.DI D}

0.0 2.0 1.0 3.286 . 1935
0.30 2.0 1.0 3.177 1.88

0.30 2.0 1.0 3.1856  1.8459
0.35 2.0 1.0 3.1510  1.8319
0.40 . 2.0 1.0 31128 18247
0.0 20 15 3.281 1.935
0.30 2.0 1.5 3.236 1.914
0.30 2.0 L5 3.2495  1.9009
035 - 20 15 3237 1.8912
0,40 2.0 1.5 32220 1.8817
0.0 3.0 1.5 3.473 2.647
0.30. 3.0 15 3,426 2.605
0.30 3.0 1.5 3.4395  2.5811
0.35 3.0 1.5 34272 2.5626
0.40 3.0 1.5 34134 25441
00 -30 2.0 3.473 2.647
0.30 3.0 2.0 3447 2605
0.30 3.0 2.0 3.4550  2.6137
0.35 3.0 2.0 3.4494  2.6031
0.40 30 20 3.4420  2.5918
0.0 4.0 1.0 - 3.629 3.148
0.30 4.0 1.0 3.517 3.009
0.30 4.0 1.0 3.5256  2.8967
0.35 4.0 1.0 3.4876 28573
040 40 1.0 34454  2.8364
0.0 8.0 10.0 1.979 4,048
0.30 8.0 10.0 3.978 4,044
0:30 80 100 3.978 4.045
0.35 8.0 10,0 3.978 40430

0.40 8.0 10,0 39775 4.0428

From Table 1 it is evident that the inertia terms are significant only for short
rods and especially when the taper is large. In that instance the difference in the
computed values differs by as much as 109, For rods with sharp tapers and of'
considerable length, the lateral inertia effects are almost insignificant.
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STRESZCZENIE

O PODLUZNYCH DRGANTACH ZWEZAJACYCH SIE PRETGW

W pracy zaproponowano ulepszona teorig, ktora opisuje podiuzne drgania zwezajacych sig
pretow, Wyprowadzono réwnanie rézniczkowe uwzgledniajace zardwno poprzeczne sily inercii,
jak réowniez inercie Scinania. W celu zapewnienia pordwnaf ze znanymi rezultatami, wielkosci
numeryczne podstawowych czgstodci rezonansowych oraz wspolezynnikéw wazrostn predkodci
obliczono dla pretow stozkowych z liniowym zwezeniem.

PeswomMme

O TTPOJAJTBHBIX KONEBAHUAX CYIXHBAIOIIMXCH CTEPKHEN

B paBore Guma NpeIoieHa yIyyIieRHas TCOPHHA, ONHCHIBAIOUIAS ITPOACHLHbIEC Kogcbanus
CYKHBAIOUMXCA Crepkueld. Broparcs muddepemimansibie YpaBHEHNN, YYMTHBAOIME KaK HO-
HEPETHEIE CHITE! AHEPIMEA TaK M MHepUHIC casura, C e obecnedes CpanEeHnil ¢ H3BECTHEIMHI
PeIYNBTATAMH, THCHAOBBIE SHAYCHIA OCHOBHEIX PE3OHaHCHEIX YACTOT M KOM)DRUNCHTOS YBCITHICHAS
cxopocry Orn paémTaHm AT KOHYCHBIX CTEpIKHEH ¢ JMHeHHsM CYRCHACM.
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