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ANALYSIS OF MEMBRANES STRETCHED OVER A UNILATERAL
SUPPORT - :

L.BINDA and R. CONTR O (MILANO)

The main objective of the present paper is to find the equilibrium configuration of membranes
of various shapes, stretched over a plane frame, in the vicinity of a rigid, two-dimensional profile
which supplies unilateral constraints to its deflections, The probiem is considered under the following
conditions: (i) the membrane is subjected to assigned, constant tension forces and to transversal
loads; (ii) boundary conditions of the membrane are given by zero displacements along the contour
of the frame; (iii) the deformations are smail; (iv) the contact is frictionless and reactions are
assumed to be wvertical.

1. INTRODUCTION

The solution of contact problems, that is, the analysis of structures subjected
to unilateral constraints, is currently attracting growing attention in civil and me-
chanical engineering.

Most of the recent studies on the subject can be regarded as the further devel-
opment of the mathematical theory of contact problems in linear clasticity, formu-
lated in the early 30's; the same problems have been the object of theoretical appro-
aches based on classical or modern functional analysis [1, 2, 3].

More recently, in the case of discrete (finite element) structural models, simi-
larities and equivalence were pointed out between elastic analysis in the presence
of unilateral constraints and holonomic anasis of elastic-plastic and elastic locking
systems, [4,5], with piecewise linear constitutive laws; a systematic recourse to
mathematical programming methods was made in developing the latter approach
[5, 6, 71.

In a previous paper [8] the authors presented some theoretical results and
computational solution procedures in search o equilibrium configurations of cables
(c.g. submarine energy—transmission lines) subjected to given transversal loads
and given tension force in the vicinity of frictionless rigid ground of known profile
under a small deformation hypothesis. .

The problem dealt with in the present paper concerns the search of the equili-
brium configuration of membranes of various shapes, stretched over a plane frame,
in the vicinity of a rigid, two-dimensional profile which supplies unilateral constraints
to its deflections. For the preliminary determination of the overall stress state in
-the membrane the following hypotheses can be assumed in practical engineering
situations:
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a) the membrane is subjected to assigned, constant tension forces and trans-
versal loads;

b) boundary conditions of the membrane are given by zero displacements
along the contour of the frame;

c) the deformations are small, in the sense that displacements referred to the
original straight configuration are regarded as vertical and intervene linearly in
the equilibrium equations (“second-order” geometrical effects);

d) the contact is frictionless and reactions are assumed to be vertical.

A discretization of the system is assumed in the sense that all active and reactive
forces are considered to be lumped in joints chosen-at suitably small intervals on
the surface of the undeformed membrane (orthogonal to the plane of the contour).
As a discretization the partial (linear second ord'er) differential equation of equilib-
rium is replaced by finite difference equations. The analysis  problem becomes

a “linear complementarity problem” associated to a symmetric, p051t1ve-deﬁn1te
sparse pentadiagonal matrix, the entries offdiagonal of which turn out to be all
non-positive. In analogy to the case of the cable studied in [8], these characteristics
of the finite difference formulation allow to use, for the numerical solution, some
recently developed algorithms of mathematical programming.

The iterative overrelaxation method devised by CrYER [9] turns out to be partic-
ularly efficient for these large size problems, '

A monotonicity property of the local dlsplaeements under proportxonal loading
is pointed out on the basis of the nature of the matfix involved in the linear comple-
" mentarity problem, and the extremum propertles of the solutlon are estabhshed
and mterprtted in mechamcal terms.

2. FORMULATION OF THE PROBLEM AND DISCRETIZATION
Consider a membrane stretched over a, plane | frame as shown in Flg 1. Let T
(force per unit length) denote the tension which defines the (Isotropm constant)
membrane stress statc; p (x, ¥), 2 (x, 3) mdxcate the active and reactive forces per
unit surface (positive. downwards and upwards respectlvely) the 1atter b.,mg supphed
by an underlying smooth, rigid and frictionless surface. This is defined by its ordi-
nates f(x,y) (positive downwards) referred to the plane of the ongmal unde-
formed membrane, and bounds from above the deflections. w (x,»).
Under a small deformation hypothesis, by which, the slopes. dw/dx, dw/dy and,
-as a consequence, dffdx, dffdy can be dealt with as infinitesimal, the equilibrium
of the present structure is expressed (see Fig..2) by the classical equation

. 32 32 .
: . ——|+p ..
(21) _ T( o + - e ) —p=0.

Let mtroduce the aumhary vanable @.(x, ¥) .

(22) '  wlfw,
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which represent the vertical distance of the deformed membrane from the obstacle
defined by f(x, »). '

" Thus the original formulation becomes . -
| (32m+32¢)+ ~ N (azf+a_2f_)
2.3) B W N MO AR oy vy

where the nonnegative unknowns (x,») and p (x, y) are related by the comple-
mentarity relation

24) o por=0,

Rozprawy InZynierskle — 10
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the nonlinearity of which is due to the unilateral nature of the supports provided
by the I‘lgld profile. The association of Egs. (2.3) and (2.4) with the nonnegativity
conditions

(2.5) p=0, w;O
referred to the whole area of the membrane and ‘with the boundary condition

w==0 along its supporting frame, provides ths set of reIahons govermng the struc-
tural response of the membrane to loads.
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Fic. Sa Finite difference discrotization net. b, Cablcs »»algebraically conespondmg” to the ith
row and Jj-th column.

A central finite difference scheme applied to Eg. (2.3) with f:qual int‘ervals
Ax=Ay=4 and the node numbering shown in Fig. 3a (where a rectangular membrane
is represented for the sakc of sxmphmty) leads to m - n algebralc linear equations. .
For each node belongmg to the i-th row and to the j—th column (marked by a heavy
circle in Fig. 3a) and distant not less than 24 from the edges, the finite difference
equatlons reads

(26) pdP=p, A+T(— — 0, - y AWy =0y — W1, 3 Wiy, J)‘“‘
"T(“fu 1+ g —fien i~ S, J)
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When a node adjacent to the edge is considered, Eq. (2. 6) has to be slightly modified
in a self- evrdent way in view of the boundary condition.

By arranging all the m - n equations thus generated in a system accordmg to
Fig. 3a, the matnx collecting, the coefﬁclents of the m - n unknowns w, ; {and of
Ithe data £iy) turns out to exhrblt the foﬂowmg three-block- dlagonal structure

M -1 0 -
-i M -1 .
0 -—-I M -

@.7) | GT

In the matrix (2.7) there are m - n blocks. specified as follows: I=1den’rtty matrix
of order n; O=null matrix of order n, M==rridiagonal positive definite matrix of
order n with the entries specified below:

[ 4-1 0 0 0o . . . . .}
-1 4-1 0 0 - . . . .
2.8) m~| 0L 4-1 0 Co
. . . . . 0 -1 4 —1

| o . . . . 0 0 -1 4

fet us form the vectors: ‘
R~{R;..R;.. R}, Px{P ..P,..P,)7,
wR{w; . w0 .. 0,}7, 2} P N0 A LN
where
Rix{pit .. pun} 4%, Pim{pyy ... pr} 4%,
o, {wy . O}, fi={fi .. fin}-
With these symboEsIEqs. (2.6) can be writien in the following matrix form:
2.9 R=P+Gw—Gf,
The algebraized problem is completed by the nonnegativity conditions
{2.10) _ R:0, w>=0

and by the complementarity-condition which now can be equivalently expressed
as an orthogonality requirement:

@10 © wTR=0,

These relations can' be interpreted as governing a discrete mechanical model of the
membrane, namely a net of equally spaced and equaHy tensioned orthogonal ca-
bles, with loads and possible reactions or unilateral supports acting on the (internal)
.nodes alone. In fact, the points of the finite difference can be regarded as the nodes
of a weightless cable net; Pi=p,, 42 and R;;=p,; 4% can be though'of as the re-
sultant of the active and the reactive force respectively, distributed over the surface
4% around the node ij.
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The matrix G is péntadiagonal, symmetric, sparse and positive definite. This
sign definition can be shown by means of algebraic considerations based on the
associated quadratic form or by discussing: the energy variations ds for geometric
«disturbances” with respect to the undeformed membrane configuration. Assuming
the latter (mechanical) standpoint, et us consider the discretized structure as a
cable plane net stretched by the tension force T': the total potential energy change is

(2.12) 5s=2m:;(——T5V¢)+ Zn,‘, (—=ToV),

where ¥, and 6V are the lenght variation along the i~th and j-th orthogonal “ca-
bles”, corresponding, from the algebraic point of view, to the i-th row and j-th
colummn. 1 the membrane is conceived as a set o continnous strips around the
single “cable” (Fig. 3b) then

§Vi= = [ ds—d)= [ v (dx—ds),

§V,= — [ 1, s—dy)y= [, (dy—ds),

{2.13) _1/_ (3“,)2
ds= 1+ ™ dx,

e
ds= I 3; dy.

Substitming into Bq. (2.13), the expression (2.13), of ds, expanded up to the
quadratic terms, we obtain :

aw;

) B 1 ] ( 2 1 " aw.j 2
(2..14) aa—ETZl],fn EF) dx+ET;‘¢f1,(ﬁ) dy.

This shows that for T>0, de>0Vdw#0, ie. static stability is ensured. If follows:
that for the algebraic (discretized) model 1 [26P7 Sw>0Ydw#0 and since 5P =Gow,
we have 1/26wT Géw>0Vow+0, i.e. G is positive definite. The positive definiteness
of the matrix G ensures the existence and uniqueness of the solution of the LCP
(2.9)-(2.11) for any given vector, i.e. for any load distribution on the membrane.
The evident analogy between the single cable and the membrane conceived as a
cable net permits to extend to the present casc some properties proved in [8] for
the cable contact problem. In particular, the reference made so far for convenience
to rectangular contours (Fig. 3a) does not mean loss of generality: different shapes
would not alter the essential features of the mathematical model formulated and
the mechanical conclusions derived through it; “in primis” extremum and mono-
tonicity properties will still hold.

»
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3. COMPUTATION REMARK AND NUMERICAL EXAMPLE

The membrane contact analysis can be carried out by solving the linear comple-
mentarity problem (LCP) resulting from the finite difference discretization of Egs.
(2.3)-(2.5), or by solving the quadratic programming problem (QP) to which LCP
is equivalent. Moreover, an alternative approach, due to MANGASARIAN [10), is
possible; since a Minkowskian matrix belongs to the class of real square matrices
‘with nonpositive offdiagonal elements, the LCP problem is solvable by a single
linear program.

However, in this paper CryER’s method [9], a modified version of SOR (syste-
matic overrelaxation), the brief outline of which is given in [8], is used; in fact, it is
particularly efficient when, like in this case, the problem is characterized by a large
size, “finjte difference” thatrix and nonnegative variables.

. ox!
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Frc. 4. Map and middle section of rigid surface underlying membrane (x*, 3, z'=x[A, y{4, zl4).

» The algorithm efficiency is tested by analyzing the hexagonal membrane drawn
in Fig. 4. The numerical program is conceived to permit rather a general membrane
boundary shape and rigid surface over which the membrane is stretched. There
are no special reasons for the example chosen except for the fact that it is easier
to check the numerical results, particularly the symmetry of the structural response.
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'

The dots plotted in Fig. 5a represent the disiribution of the 1857 variables correspond-
ing to the finite difference discretization net. In Figs. 5b-h the stars replacing dots
indicate the points where the membrane seftles on the constraint surface; the se-
quence of those figures, which are a sort of contact maps at increasing loading
levels, shows the monotonic behaviour of this type of structure. In Figs. 6, 7 and 8,
for the dimensionless loading values P’'=P[T'=pA*/T4=001,0.03, 0.05, the
following dimensionless quantities are represented: the reactions R'=R/T" =p A*[T'4,
the membrane-constraint surface distances @’ =aw/4 and the displacements w'=w/d
from the undeformed configuration at the middle section (in abscissa the distance
have been divided by 4). L

Computational aspects of this example, analyzed with a tolerance &=0.001
and an initial vector w=~0, are summarized in the following table; for each load
P', the optimal overrrelaxation factor f,, the iteration number N and CPU time,
in seconds, with a UNIVAC 1108 computer, are indicated (Table 1).

Table 1

P | 001 | 002 | 003 | 004 | 005 006 | 007 | 0.08 | 009 ] 0.1

Bo | 170 | L65 160 | 1.50 | 145 | 145 | 140 ; 1.40 | 135 1.35

N

iter 53 45 31 27 23 21 20 19 18 17
CPU

time |17.04 |14.74 |13.13 | 897 | 7.65 | 7.02 | 6.39 | 6.39 | 6.08 | 5.80
(sec) -
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STRESZCZENIE

ANALIZA MEMBRAN ROZCIAGANYCH WZDLUZ JEDNOSTRONNEGO PODPARCIA

Glownym celem pracy jest znalezienie konfiguracii rownowagi membran o roéinyeh ksztakach.
rozciaganych wzdhag plaskiej ramy w otoczeniu sztywnego dwuwymiarowego profilu, ktory stanowi
Jjednostronne wigzy dia ugicé. Zagadnienie jest rozwazane przy nastgpujacych warunkach: (i) mem-
brana jest oddana okreflonej, stalej sile rozciagajacej i obciaZzeniom bocznym; (if) warunki brze-
gowe meinbrany sy oOkreflone Zgdaniem znikania przemieszezen wzdhiz konturu ramy; (iii)
deformacjé""sq male; (iv) kontakt jest beztarciowy 1 reakcje sa przyiste jako prostopadie,

Pesome

AHAJIN3 MEMBPAH PACISTMBAEMbBIX BAOJE OTHOCTOPOHHER TIOIIOPHI

Tnassoit gensio paloTsl Apgercs HaxowneHIeH RORGATYPALNHE PARHOBECH MemMbpay pasmoit
BOPMEL, PACTArEBAEMEIX BAONL ILIOCKOH paMsl BHYTPH JKECTKOIO ABYXPA3IMEPHOro mpodmmd,
KOTOPBIA COCTABNAST ORROCTOPOHAYIO CBA3L I mporkGa. 3amada PACcCMATPHBAETCH B CHEHYIO -
ngmxest yemosmax: () memGpana momsepracres OHPEACHEHH0N MOCTOMHHOM pacTarHBaowel cure
¥ Goxoprv Harpy3xaM. () KpacBEIC YCHOBAST MeMODAHS! OIPE/EICHE TPEGOBAEEEM HCTEIHOBERI
mepeMeIICHAN oM XOHTYpa. pamer, (D) nedopMamms maner; ([v) xouraxr Ges TPEHHS H PeaxiiHl
HPEIHONAraRTCH TePIEH U KY TADBHIME.
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