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TRANSIENT THERMAL STRESS IN BIMODULUS SPHERE WITH
ORTHOTOROPIC TEMPERATURE-DEPENDENT PROPERTIES

-

N. KAMIYA (TSU)

Transient thermal stress problems for a bimodutus elastic material are anpalysed in this paper.
* Temperature-dependent mechanical and thermal properties of the material are considered. Fun-
damental governing equations for an orthotropic spherically symmeitric bimodulus model are
derived. Nurr:erical Hlustrations of transient thermal stresses in a hollow sphere are presented,

1. INTRODUCTION

As an idealized material model, AMBARTSUMYAN and co-workers, e.g. [1,2],
formulated a so-called “bimodulus or different modulus elastic material”, whose
uniaxial stress-strain relation is represemted by two respective straight lines emerging
from the origin with different slopes under tension and compression. Systematic
study on different response materials was initiated Bff'l these authors and has attracted .
wide interest among several investigators. WESOLOWSKI [3-3] treated with a piece-
wise linear material, which involves the bimodulus material, as a special case. Some
stress and deformation analyses of fondamental siructural elements such as plates
or shells have partially been performed, but investigation as a whole is now at an
initial stage. Constitutional microscopic mechanisms yielding the above-mentioned
difference in tension and compression have not been sufficiently interpreted.

In the present paper we iniend to analyse transient stress or deformation of
idealised bimodulus elastic bodies due to thermal loading. Some introductory prob-
lems on stationary and transient thérmal stresses have been considered by the pres-
ent author [6-8]. It has been known for a long time that thermal and mechanical
propei'ties of solids are not constant for a wide range of temperature; i.e. they are
in general, temperature-dependent. Therefore we must take into account these in-
fluences in designing structural elements which are subjected to high temperature
gradients. Several investigations on transient thermal stress problems conside.ing
temperature-dependent properties for classical elastic, plastic, viscoelastic and visco-
‘elastic-plastic materials, except for the bimodulus case, are found in Refs. [9-22],
Som: of these papers treated with anisotropic temperamre-dependeﬁt elastic ma-
terials such as artificial graphites [10, 13, 14]. The constitutive equations for a general
anisotropic bimodulus material are extremely complicated, so the present conside-
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ration is bounded to an orthotropic bimodulus material. First, the fundamental
equations of a temperature-dependent bimodulus material are derived and then an
example concerning hollow sphere is discussed.

NOMENCLATURE

@, b inner and outer radii of hollow sphere,
¢ specific heat,
E; Young’s modutus,
' K heat conductivity,
F, 0, ¢ spherical coordinate system,
s reduced time, ‘ oo
$1; compliance matrix, )
T temperature (measured from a reference temperature, T=0),
T?:T,f T, dimensionless temperature,
Ta ts:mperature on the inner surface,
¢t time,
u radial displacement,
a; thermal expansion coefficient,
y Imass density,

&; strain,
&; thermal strain,
o Stress,

vy, Poisson’s ratio.

SUBSCRIPTS

0 value at a reference temperature,
1,2 - correction coefficients due to temperature change,

i,j=r, 99 ?,

SUPERSCRIPTS

t tension value,
¢ compression value,
*  dimensionless correction function due to temperature change.

2. BIMODULUS MATERIAL MODEL

-

One of the essential difficuliies we encounter in analysing bimodulus stress/
deformation problems is that the emiries of elastic compliance and stiffness ma-
trices have direct correlation to the sign of the corresponding stresses and are not
known in advance. In order to describe properties of a bimodulus model, let us
consider a polar-symmetric problem. Mechanical as well as thermal properties of
the material are thought to be orthotropic (presently, polar-anisotropic). -
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According to the Ambartsumyan-type formulation [1, 2], the relations between
stress-and strain components are written in reference to the spherical coordinate
system as follows:

8r=Srr o-r+'5'r0 GH +Srdx 0¢+é’r »
2.1 _ E0=5y5 Or+Spp ToF 504 o +&o,
‘ Ep="5r¢ G5+ 8pe O'g'!‘&',f,d, U¢+é¢ .
The directions ¢ and ¢ are reckoned identically on account of the spherical sym-

metry.
The diagonal elements of the compliance appearing tn Egs. (2.1) are coanected
to the sign of the principal stresses as follows:

20 _JVEM @0, _{UE;(T] (Go=04>0),
¢a- " Nyge (<0, B (op=0,<0).

The off-diagonal compliances are expressible if we suppose the symmetry of
the compliance, 5;;=45;, (i#)), as follows:
%@ %@ w1
UUEMEM B@M EO
vﬁ‘rp (T)
SO

(2.3)

In deriving these formulae, we employed the reciprocity relations from classical
orthotropic elasticity

(2.4) . )
2, —_—— = i#f).
Ei Ej .

For the bimodulus material we postulate the simflar identities

@.5) - o= D).

Consequently, s,y and s, are determined independently of the sign of stresses as
opposed to the diagonal elements of the compliance. Furthermore, for an isotropic
bimodulus material 5,6=s5,.

3. TEMPERATURE-DEPENDENT MATERIAL PROPERTIES
E

The Young’s moduli and Peisson’s ratios which are the basic _engineering para-
meters of a linear elastic material are known to vary with a change of t *mperature.
They are not constant for a wide range of temperature. Let us define these para-
meters as Lollows

@Gy E{(N)=ELEF (T Ef (T)=E5, B (D),
(3'2) (T.) sz(] V:J (T)J vgj (T)=1’§jo vti:j: (T) ]
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where the values at a reference temperature are denoted by a suffix 0 and the correc-

tion functions in terms of the dimensionless temperature arc marked by an asterisk,
" “The generalised reciprocity identitics, Egs. (2.4) and (2.5), must hold not oniy
at the reference temperature but at any temperature, therefore

i TN L Vo
3.3 ij0 _ ij :__:i;i= 'J!c
¢ By~ Eo Bo Ep
and
yE@ M v i)
64 ; _j'( Ty Y i

E{(T) E‘*(T) E'*(T) G

Familiar empirical temperature-dependent formulae for E and v are linear,
guadratic and exponential. If we use the linear f’ormulae

EY Dy=14E,T, E (D=1+E,T

(3.5 .
"u (Ty=1+viy T, v (T—)=1+Vicj1 r

by virtue of Egs. (3.4), we derive the following identities: either

; C By . Vii _ P Vi Ef _"gn _
(.6 c=—=1, ==L . ==
Eii © Vin Ef Vg it Vi
or
Vi Vi Vi Yin Viie Vi
(3.7) —=———=1, i :—c—=13 ._J.=m=1.
E]fl Eitj Eu Eil Eitl 'fl -
For the quadratic functions for E
(3.8) E* (T)=1+E,T?, E*(D)=1+E,T? (lincar forv)

we obtain Eqgs. (3.6) [suffixes 1 of E, must be converted into 2].
As shown in the above illustrations, the cocfficients of cerrection terms due to
temperature change, F;,, E;, and v,;,, are not independent.

4. GOVERNING EQUATIONS FOR SPHERICALLY SYMMETRIC PROBLEMS

Consider a transient stress field due to a polar-symmetric thermal load. Accord-
ing to ths classical uncoupled thermoelasticity and the heat conduction theory,
the temperature field is determined independently of the stress field; in other words,
indepently of the mechanical properties of material. This fact is invariable even
when the thermal properties of a material may be influenced by temperature change.
In the present polar-symmetric problem, the temperature field T==T (r, ¢} is obtained
by solving the heat conduction equation sub;ected to given thermal conditions.
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By considering identical cond1t1ons in the 0 and ¢ dnectmns Egs. 2.1 are re-.

writt:n as
Er =Sy Jr+25r0 Ue+§|- ’
{4.1) :
E9="5rg Oyt (Sop 1 S54) 0o+ &g,
where the thermal strains are defined as follows:
. . T T
(4.2) , &= f o, dT,  &y= [u, dT.
o 0 .

By solving Eqs. (4.1} with re:pect to stress components, we obtain

I N
O’ =
r Spr (SGB +'S{Dd>) - 2S;-20
i

Spr (Spa +S9g) — 257,

(a0t 50) (6r— &) = 2sva (80— E)],
(4.3)

T =

2 [Slr (80 56)_' »@ (ErH ér)] .

The equilibrium equation and the kinematic relations for polar-syinmetric stress
and deformation fields are respectively

do, 2
4.4) 5 T (cfr—ae)=0
and
. - du u
(4.5) ‘ &= 3!‘ . 89=?.

4
Since the elastic compliances are determined d1st1ncily in relation to the sign

of the pringipal stresses, a body under consideration is supposedly divided into
a finite number of domains by combinations of their signs. On the domain bound-
aries, the stress and deformation components normal to the boundary must be con-
tinuous. In the present polar-symmetric problem, a finite number of concentric
holiow spheres correspond to such a partition and o, and #-are continuous on the
spherical boundaries. o, may suffer some discontinuities. Thus it will be convenient
to take o, and u as the basic variables in the following aaalysis.

Substitution of Eqs. (4.3) into Eqs. (4.5) and (4.6) vields the following derivatives:
2

0 G- [ewesron G- eanan -
( ar [ (a0 -+ S0) — 255 ] (Sea‘f‘s'm'l‘ﬁfre) ar S — (2519 + 50} " Calfs

.7 o T {Ga I3 (5001 So) — 2Sre]+2‘5'.a +(S98 +596) £ — 2509 6&}-

~ Also, o, becomes
1 u

4.8) =t e
“8) % So0 + Sagp L‘ Se0 G~ ;a]-

" Rozprawy Inzynierskie — 5
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5. SOLUTION PROCEDURE

Inside each domain, the equations corresponding to Egs. (4.6} to (4.8) should
be satisfied. Usually, we analyse solid bodies, which are supposedly divided into
a finite number of domains, by arranging unknown constants involved formally
in the solutions for each domain, so as to satisfy the prescribed boundary conditions
and continuous quuireménts. The problem of bimodulus material, however, belongs
to a category of so-called “unknown boundary problem,” and therefore the con:
ventional method seems inadequate for our purpose. In our transient stress problem,
we first separate two independent variables r and ¢, the latter being ouly coutained
in the temperature field 7, and next apply an integration scheme, such as the Runge-
-Kutta and Milne methods, to the differential cquations (4.6) and (4.7).

At each r, by starting [rom, appropriate magnitudes of s, and sy based on the
initially supposed signs of ¢, and gy, we repeat the trial-and-error procedure uatil
we gain perfect correspondence between ths magnitudes of the compliances and the
stresses. This procedure determines the right-hard sides of the derivatives (4.6)
and (4.7) at any r, and makes it possible to determine the values of 7,, u and also
g, at r+ Ar, where Ar is a finite small value of r. ‘

6. JLLUSTRATION

In what follows we consider as an exampls a hollow bimodulus sphere which is
 affected only thermaily on the surfaces and is free from mechanical loading.

6.1. Temperature disrributioﬁ

The following temperature condition is considered : the temperature at the inner
" surface of a hollow sphere which was initially in the reference temperature 7=0
is elevated by 7, (>0) at the time =0 and held thereafter. It suffices to consider
only the thermal properties in the radial direction because of polar-symmetry of
the temperature field. ‘ : :

* 'The temperature-dependencies of thermal conductivity, mass density and specific
heat are expressed as follows:

(6.1) K(T)=Ko K*(T), where K* tTj=1+K1'T,
62 ‘ y M=o y* D,
{6.3) _ - ¢ (N=co c* (D).

Substitliting these functions into the heat conduction equation and assuming that
the temperature correction term K*/p* ¢* is negligibly small [23], we obtain the
fellowing solution: ’

1
(6.4) : T=—-[(1+2K, w11,
1
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where

. a K\lbfa—rfa 2 2,1 _ |nn@la—1) nn \?
(6.5) “”*7(”7){5/[;—1 H,?";: ZS’“[ bla—1 ]ep[ bla— 1) S]}

and the time parameter s is defined as follows:

K

t
a* ye

(6.6) | 5=

If K, =0, i.e. for ths temperature-indepandent thermal conductivity, Eq. (6.4) becomes
(6.7) ‘ T=wly _q.

0.2, Field equations

A system of the field equations which must be solved consists of Egs. (4.6) to
(4.8} and the temperature field (6.4) in terms of the independent variables » and f.
In addition, thermal expansion coefficients are assumed to depend on the tempera—
ture as follows:

— ~

o (M=t o) (T), where o (T)=1+a, T,
o (F)=ttg0 %y (T),. where oy (D=1+-05 T

Then, the dimensionless thermal strains become

(6.8)

' 1
o (1 + — 2 g1 T)
Since the sphere is not loaded mechanicai]y but thermally on the inner surface,
the boundary conditions are :

1 ' @
(6.9) &/t Ta=T (1 +—o,, T) Lof tteo T=

(6.10) o= at  r=g and b.

The problem is formally a *“two-point boundary value problem” for each prescribed
time s, and thus the trial-and-error method starting with an unknown value of u
at the inger surface is employed in order to satisfy the above boundary conditions
(6.10). Accordingly, we pursue the two kisds of trial-and-error procedure in the
present analysis; i) to obtain proper correspondence between the compliances and
the sign of stresses at each r, and if) to satisfy the boundary conditions on the surfaces.

-

6.3. Numerical examples

In the following formulatwn the material anisotropy, the blmodulus character-
istics and the temperature-dependencies of mechanics and thermal propertles are
taken into account. With reference to the basic physical quantities ES,, v5,, and
%o, Several parameters are mtrouuced such as

(6.11) Ego /By Ego/Efy, Vooo/Vegos a0/ %o -

(1) In the following example, o, <0 and so E: is absent.
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For the sake of clarity, the correctlon coefficients of the several parameters are as-
sumed as follows:

En=Fgy=Eg, (2E;),  ®1=%:,

t e c
Vg =V '_vﬁ'rl"_vﬂrl [MDI vﬂft'lmv 1= Veo1+

6.12)

The quadratlc functions, Egs. (3. 8) are adopted as the temperaturc-dependent
rroperty of E.

For several values of the ratios listed in Eq. (6.11), v5,, and the time parame,t_ai' S,
numerical calculations are carried out. The bimodulus property in the & direction

- at the reference temperature is represented by the ratio ,

(6.13) o/ B

The anisctropy between the r and @ directions is not described in an cordinary way
because of the bimodulus nature. For this purpose; a ratio of the averages of Young’s
moduli is tentatively employed:

-
(6.14) I 7 oo +-Ego)/Ex

Results are obtained for Ef,/ES,=0.5, 1 and 2 corresponding respectively to
the tensile-weak, conventional elastic and compressive-weak materials when the
above-defined anisotropy parameter § (Fjo-HE5o)/ E,=0.5, 1 and 2. The correction
coeflicients of E, « and K of temperature-dependent material are specified as

E,=-05, o,=05 K =-05,

as well as the 'temperﬁture-independant material (vanishing of these coefficients).
However, the correction terms of Poisson’s ratics are taken as zero because these
are shown to affect stress fields extrinsically whcn compared to the others. The
following values are also used:

Veq:o/Vrou = 1: oo /lxro= 1: V,r:.go =02 3
s=0.1, 0.2 and | {near-stationary),

The results {or 2 hollow sphere with the ratio of outer to inmer radius b/a=2
are shown in Figs. 1 to 6 together with the results of the temperaturs-indepandent
material. The values of the several parameters employed in the calculations are
shown ta Table 1. .

Figures 1(a) and 1(b) show the temperature-independent convéntiona] orthotro-
pic solutions of ¢, and o, as the reference for comparison. The results when one
of the thres correction coeflicients E,, ¢, and K, is non-vanishing are depicted i
Tigs. 2 to 4; for example, Figs. 2(a) and 2(b) correspond fo the case when E,70,
oy =K, =0. Figures 5(a), 5(b) and 6(a) to-6(d) are results with non=vanishing correc-
tion coefficients for ordinary o1thotrop1c and blmoduls orthotroplc materidls re-.
spectively. :
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Table 1. Parameters employed in calculations.

Figure No. B ES Y B TESMES B a4 K Remarks
1 T-ID 1 05,1,2 0 0 0 . orthotropic
2 TD 1 1 0 0 0
T-D 1 B | —05 0 0 varying E, isotropic
3 T-ID 1 1 4] 0 )]
T-D 1 1 0 05 0. varying «, isotropic
4 TID 1 1 0 0 ¢
D 1 1 0 o 05 yarying K, isotropic
5 T-ID 1 2 0 0 0  orthotropic
T-D 1 2 —0.5 —0.5 0.5 varying E, « and K, orthotropic
6 T-ID 0.5 2 2 0 4 0 bimodulus orthotropic
T T-D 0.5,2 2 —0.5 —05 —0.5 varying E, o and E, bimodulus
i _orthotropic
Note: b/a 2, vBrpO/VfBD “oo/“rt):l’ v:ao'zo.z_for all results. T-D: Temperature-depend-

ent, T-ID: Temperature- mdependent.

In previous studies [6-8] the author showed that thermal stresses wére affected
greatly by the bimodulus property of a temperature-independent material. Similar
results are also found in the present examples for a temperature-dependent material.
Furthermore, the present results show that stress distribution in a hollow sphere

“are also influenced by the temperature-d¢pendent mechanical and thermal properties
of a material. The respective influence due to Es, «; and X seems different from each
other. In general, stresses increase with increasing «, but decrease with increasing
E; and K, which are negative. Since K, is accounted for, while E, and «, are not
considered in calculating the temperature field, one may notice from Figs. (4)a
and 4(b) that the results due to K; and those due to E, aad «, are rather distinct.
The situation is further complicated as shown in Figs. 5 and 6 when the three para-
meters E,, o, ahd K, are considered simultaneously. In any case, the results suggest
that the temperature-dependent properties of material parameters cannot be ignored.

v
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STRESZCZENIE

NIEUSTALONE NAPREZENIA CIEPLNE W ORTOTROPOWES KULI DWUSKLADNI-
~ KOWEJ O WLASNOSCIACH ZALEZNYCH OD TEMPERATURY

'Rozpatrzono zagadnicnia -nicustalonych maprezeii ciepinych w dwusktadnikowym materiale
sprezystym. Uwzgledniono, zaleinosé mechanicznych i termicznych wlasnoici materiatu of tem-
peratury, WyprOWadzono podstawowe réwnania dla ortotropowego, kudicie symetrycznego modeld
ciala bimodualnego. Przedstawmno numeryczne rozwigZania problemdéw nieustalonych Stanow
naprezenia dla kuli wydraZonej.

PeaoMme

HEYCTAHOBWBIIMECSA TEPMHUYECKIE HATIPAKEHUA
B OPTOTPOIHIOM OBVXKOMITOHEHTHOM HIAPE CO CBOWCTBAMHK
3ABUCANIAMY OT TEMITEPATYPBI

PaccMOTpeHa 3anads HeYCTANOBMBIIRXCH TEPMHYECKHX RATIPTOKEHHH B TBYXKOMIOHEHTHOM
YOpYroM Mavep#ase. YuTeHa 3aBHCHMOCTE MEXAHHYCCKHX H TOPMEYCCKEX CBOHCTE MaTePHAIL
OT TEMIEPATYPHL. BEIBEJEHS! OCHOBHBIC YDABHEHAS UL OPTOTPOTHOH, chepruetin CMMeTPHTHON
Mogerr GumMonynsproro iena. Hpencravsienbl THCTCHHBE DElEHUS 3afai HeyCraHoBHBIIMXCH
LANMPOKEHHEIX COCTORHAN Hiid IOJIOT0 IIEpa. - .
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