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SOME COMMENTS ON THE RESISTANCE EXPERIENCED BY A POROUS ‘
SPHERE MOVING IN A VISCOUS INCOMPRESSIBLE FLUID AT LOW
' - REYNOLDS NUMBERS

J.A.KOLODZIET (POZNAN)

The formulae for viscous drag force experienced by a porous sphere falling in a viscous fluid
at low Reynolds numbers which have been given by several authors are compared with one another
and with the Stokes formula. The problem of these formulae, justified to apply in the cases of real
porous media is discussed. It is shown that in many cases of “standard” porous material (for example
sand, felt) the differences between the viscous drag force due to the Stokes formula and others are
non-essential, independently of the forms of boundary conditions and filtration equation by the
use of which these formulae were obtained. A fibrous medium with very large porosity (for example
cotton) is given as an examplé of the porous medium in the case of which some of these formulae
may have a practical meaning. A new proposition of an experimental method of determining
both the constant appearing in the Beavers-Toseph condition and the effective viscesity in the
Brinkman equation is given.

1. INTRODUCTION

The problem of the resistance experinced by an. impermeable sphere moving
slowly with a comstant velocity ¥/ in a viscous incompressible fluid is one of the
most classic and most elemeatary problems of {luid mechanics. This problzm was
solved by Stokes in 1851. His investigation was based on the assumption that the

Reynolds number is much less than unity, i.e. Re= <1, where R denotes

the radius of the sphere, p and u are the density and the dynamic viscosity of the
fluid, respectively. In this way, Stokes found the drag force of the impermeable
sphere to be

(1.1) Impermeable sphare drag force=6auRU. .

The purpose of this paper is to find the changes of the Stokes formula (1.1) as a
result of replacing the impermeable sphere by a porous one with non-negligible
permeability. Several authors have found the formulae for porons sphere drag
force assuming different forms of boundary conditions and the filtration equation.
In order to find the above mentioned changes and to confirm the applicability of
different porous medium models, we compare these formulae with one other and
with one given by Stokes (1.1).
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In deter'mining porous sphere drag force at low Reynolds number one usually
describes a flow within the sphele and outside the sphere using the Darcy equation
{1, pp. 61}:

k

1.2 =—-—Vyr
(1.2) __ =",
and the Stokes equations {]2], p. 60}:

(L3 - HvVrv=vp,

respectively. Here ¢ denotes the filtration velocity, & is the permeability of the sphere
material and P is the pressure within the porous sphere; v and p denote the fluid
vélocity and the pressure outside the porous sphere (free flow region), respectively.-

The above flow equations are considered together with the available boundary
conditions which must be fulfilled on the porous sphere interface. Recently, the
Beavers-Joseph boundary condition [3] has often been applied. This. boundary
condition can be written as follows: :

dug

dn I/I(’ sl

where Yy and g, are the componeants of the velocities v and q, respectively, tangent

to the porous sphere mterface, o is a dimensionless experimental constant, do,/dn

denotes differentiation in the direciion normal to the porous sphere interface.
Some authors suggest applying the Brinkman filtration equation [4]

(1.4)

U
(L.5) iV q = q=VP

instead of the traditional Darcy equation and the condition (requirement) of velocity
and stress continuity across the porous sphere interface [5-7). Here i denotes the
ellective viscosity.

- To give a new experimental method of determining 7 and « is one of the aims
of this paper.

2. REVIEW OF THE VISCOUS DRAG PROBLEM SOLUTIONS FOR A PORQUS SPHERE

In this section a review of several formulae av::uiablc for the determination of
the drag force exerted by the viscous fhuid on a porous sphere is presented, In the
following, T" denotes the dimensioinless drag force defined by the relation

porous sphere drag force

@

B impermeable sphere drag force

GHEORGHITZA [8=10] was the first to solve the problem under consideration
in the present section. His idea is based on the following three assumptions.

The first assumption requires that a flow within and outside the porous sphere
be governed by the Darcy equation (1.2) and Stokes equations (1.3) (for Re<1),
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respectively. The second assumption is the requirement of pressure and normal
velocity component continuity across the porons sphere interface, The third assump-
tion is that the tangent velocity components on both sides of the sphere mterface
are equal to zero (the slip absence condition) Making use of these assumptions,
Gheorghitza found that the viscous drag force T has the form

1
@ | T

L+

DR®
k being the sphere permeability.

A few years later JosepH and Tao [11] examining the considered problem under
the same assumptions as Gheorghitza obtained = similar result. They probably
did not know Gheorghitza’s works: '

SutHERLAND and TAN [I12] have agreed with all Gheorghitza’s assumptions with
the exception of the tangent velocity component being equal to zero on the exterior
side of the porous sphere interface. Taking this condition to be not natural, they
tried another approach: instezd of the ship’ absence condition, they assumed that
the tangent velocity componznts are continuous across the porous sphere interface.
In this way, they fouad the viscous drag force 7" to be

1

3k

@.3) o 7=
‘ 1+-Q.Rﬁ'

The fofmula (2.3) differs slightly from the formula (2.2). .
Replacing the slip absence conditior by the Beavers-Joseph’s condition (1.4),
Nears, Epstein angd NEADER [7] have arrived at the following formula for

k
1+OC]/T
2.4 r= ]/ »
, 2 ,/k)s
1+2R2+20c—-—-§-r5m( R

where o is the same dimensionless quantity which appears in the Beavers-Joseph
condition (1.4). By comparing the formula (2.4) with- the formula (2.2) one can
find the change in the form of the Gheorghitza’s formula (2.2) due to replacing the
slip absence condition by that of Beavers-Joseph (1.4).

It should be stressed that the formulae (2.2)—(2.4) ware cbtained under the assump-
tion that the flow within the porous sphere is governed by the Datcy equation (1.2).
" Even a rough examivation of the formulae (2.2)-(2.4) shows that these formulae
may have s practical meaning only in the case when the ratio k/R? of the permeability
k of the porous sphere to its squared radius R? is of order greater than 10=* or
equal to 10~ 2 (the quantity « is of crder unity). 11 our opinion, such a large value
of o may be achieved only in the case of a porous medium with large porosity.
As it is known, to calculate the viscous drag force T in the case of large porosity,
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some authors have proposed replasing the Darcy equation (1.2) by Brinkman’s
one (1.5). Considering the discussed problem, YAMAMOTO [5] made use of this idea
and found the viscous drag force T to be

7
a¥i;
s ae)
(ZR" vk VEk
where Iy, and Iy, are the modified Bessel functions of order 3/2 and 1/2. The
formula (2.5) has been obtained on the basis of the following assumptions:
 a) flows within and outside the porous splhiere are governed by the Brinkman
equation (1.5) and the Stokes equations (1.3), respectively;
b) the ratio of the effective viscosity appearing in the Brinkman equation (1.5)
to the dynamic viscosity of the fluid in the free flow region is equal to unity;

c) the finid velocity vector and the fluid stress temsor are continuous across
the porous sphere interface.

(2.5) ' T=

3. SOME COMMENTS

N R
Figure 1 presents the values of the drag force T exerted by the fluid on a porous
sphere falling with the constant velocity U. These values are calculated on the basis
of the formulae (2.1)-(2.4). In order to make the discussion easier, we give in Table 1
the values of permeability & and porosity ¢ of some “standard™ porous materials.
It is rcasonable to regard a sphere being made of one of the above materials as
a porous one if the radius R of the sphere is much greater than the size of an aver-

1 =

r\

[rE]

1— Gheorghitza [8-10]

2:- Sulkerlgnd, Jon [i2]

3— Neale, Epstein, Nader [13] cc=01

4— Neale, Epstein, Nader [13] a=10

- 3= Neale, Epstein, Nader [13] a=40
£~ Yamamoto [5]

1] 1 | I O L [T I
a.601 001 - o1

Fic. 1. Dimensionless viscous drag force of a porous sphere.
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Table 1.

Porous material | Permeability & [m?] Porosity ¢

Quartzz powder | 1.3+10-'4 5,1+ 10-14 0.37—0.49
Sand 2.0-10-11.8- 1010 0,36—0.50
Ground 29-10-*3.1.4-10-12 0.43—0.54
Sandstone 5.0°10-1_3,0- 10712 0.08—0.38
Skin 95-10-%—1,2 10" 0.56—0.59
Brick 48101522 1p-13 0.12—0.34
Felt 83-10-10—1.2-10"° - 0.63—0.74

age grain. In this case, however, the ratio k/R? is very small as compared with
unity and the drag force T experienced by the porous sphere may be determined
by using the Stokes formula (1.1). In other words, the formulae (2.1)-(2.4) have
not any practical meaning in the case when the sphere is made of any material
given in Table 1. It should be pointed out that these materials have small or mod-
erate porosity. On the contrary, the problem of these formulae (2.1)(2.4), justified
to apply in the case of large porosity, is unsolved. In order to shed new light on

this yroblem, we Fave determined the function F{g) presented in Fig. 2. ¢ has
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FiG. 2. The function F(p) for p<€1,

been defined as 1 & We have found the value of this function on the basis of the
results of experimental and theoretical investigations of several authors [14-22].
The above function I (p) enables us to find ths value of the permeability of a systom
consisting of fibres randomly distributed in a domain. We can do it by using the

following formula:
: 2

(3.1) | k=3—Flp),

where J is the fibre diametér.
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Consider as an example the case of d=0.2 cm, ¢==0.02, R=5 cm. Using Fig. 2
one gets k/R* ~0.025. As it follows from Fig. 2 the formula (2.4) given by Yamamoto
may have in this case a practical meaning. The sam= goes for the formula (2.3)
given by Neale, Epstein and Nader if « reaches sufficiently large values. However,
the results obtained with the help of these formulae differ from each other. Beavers
and Joseph formulating the condition (1.2) proposed an experimental method of
determinating the constant «, The idea here is to perform two méasuraments of
the efffux in the case of a Poissenille flow through a rectangular chanael with one
permeable wall being replaced by an impermeable one before taking the second
measurement. The ratio of the results of thesé two measurements allows us to deter-
mine the constant . ' ' ‘

The above review and discussion lead us to propose an experiment. The point
of this proposition is that one can determine the constant « in ths Beavers-Joseph
condition (1.2) or the effective viscosity fi in the Brinkman equation (1.5) by mea-
suring the velocity of a falling porous spkere the permeability of which is known.
it may be expected that this experiment will 'shed new light both on the problem
of the Beavers-Joseph condition justified to apply in a case of non-Poisseuille flow,
and on the relation between « and effective viscosity ji.
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STRESZCZENIE
PEWNE UWAGI O OPORZE POROWATET KULI OPADAJACEY ZE STALA
PREDKOSCIA W PLYNIE LEFKIM NIESCISLIWYM PRZY MALYCH LICZBACH
REYNOLDSA

Ze wzorem Stokesa pordwnuje Sie wzory otrZymane preez roznych autordw, rozwazajacych:
problem opadania porowatej kuli w plynie lepkim przy malych Hezbach Reynoldsa. Dyskutwje sig
sensownosé wprowadzania fego typu wzordw w zastosowaniu dla rzeczywistych osrodkow poro-
v{ratych, Wykazuje sie, ze dla wielu “standardowych”™ ofrodkow porowatych (np. piasek, filc) po-
prawka wnoszona przez te wzory w porownaniu ze wzorem Stokesa jest mieistoina, niezaleznie
od zalozed odnosnie do warunkéw brzegowych i rownania filtracji, przy jakich wzory te zostaly
otrzymane. Odrodek porowaty o budowic “widknistej” i bardZo duZej porowatodci (np. wata) po-
daje sig jalko przyklad, dia ktorego niektére z podanych wzordw moga mieé praktyczne Znaczenie.

Podeje sie ré&wniez nowa propozycjc eksperymentalnego wyznaczania stalej w warunku Bea-
versa-Josepha 1 lepkodci efektywne] w rownaniu Brinkmana. :

PeswowMme

HEKOTOPBIE 3AMEYAHWSA O COIIPOTHBIRHUN TIOPHCTOTO HIAPA
TADATOMEFO C.TIOCTOSHHOM CKOPOCTBRIO B BA3KOM HECKMMAEBMOM
KHAKOCTH TP MAJIBIX UHCTIAX PEVHONBACA

C dopryaoii CTOXcA CPaBHEARAIOTCH QOPMYIHI, TOIYYeHHbIE PAIHEIMIA ABTOPAMH, B KOTOPRIX
PACCMATPEBACTCA 33]1298 HAJCHAA HOPHCTOTO HIADE B BA3KOH KAENKOCTH IPH MAIBIX WHCIAX
Peitmomnzca. O0cykIaercs CMBLICH BBEAEHHS HTOTO THHa QOPMYyNl B OPEMCHCHA® % PCA/IBHBIL
nopuersix cpen, IToEaskinaercd, ¥T0 AN MHOTEX ,,CTAHIAPTHEIX UOPHCTHIX Cped (HaupmMep
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[ecka, BOMIIOKA) IOMpaRwa, BEOCHMAH STAMH (HOPMYAaMM IO CPABHEHHIO ¢, thopmynoit Croxca,
HECYTHECTBENHA HEe3aBHCAMO 0T HpPEANOFOKEHNE OTHOCHTENBHO TDAHAYHLIR ycnopait @ ypasHe-
Hws (QUIBTPALNEH, HpE ROTOPHIX 5TH (opmMyisl GLIME monydenbl. ITopHCTas cpemia ¢ ,,BOJIOKHMC
PEIM” CTPOSHHEM ¥ C OYeHE GONBIIOHN IOPUCTOCTEIO (HAmpuUMep BATA) IPEBOAXTCS KAK LpUMED,
IUI KOTOPOTO HEKOTOPHIE W3 LPABCACHHEIX OPMYN MOIYT MMeTh NMPAKTHYECKOS 3HATeHUE.

TIpHBOOMTCA TOXEC HOBOS NPEIIOIONKCHHAE SKCHEPHMEHTATEHOTO ONPOICTCHRA [EOCTOSHHOMN
B yoropud bBmpepca-J#osedha ¥ 3hdieRTEBHOH BASKOCTH B YPaBHEHHH BpHAKMEHA.

POLITECHNIEA POZNANSKA
INSTYTUT MECHANIKI TECHNICZNEY

Praca zostala zlozona w Redakcji dnia 20 kwietnia 1978 v,



