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A six-node triangular element is presented in this paper for structural analysis. With
this approach, the approximation functions of the interpolation strategy are given by using the
double interpolation procedure, which includes nodal values as well as averaged nodal gradients.
The numerical results are, therefore, achieved following the proposed element. The efficiency of
this element and its comparison is described by some fundamental examples. Better numerical
solutions and smoother distributions of stresses not achieved by the standard elements will be
provided when using this element. The computational time is also presented to overview the
pros and cons of the proposed element. In fact, the new element’s computational time is higher
than that based on the standard element because of the double interpolation procedure, but
one does not need post-processing of any smoothing operation.
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1. Introduction

Proper design processes of structures are often expensive. Numerical simu-
lations have become very popular and have emerged rapidly around the world.
Numerous important engineering structures, such as storage tanks, pressurized
aircraft fuselages, pipelines, ship hulls, and so on, are carefully designed. The
exact numerical model of the structure is still a challenge to the scientific com-
munity of computational mechanics. Many analytical, semi-analytical, experi-
mental, and numerical methods have been presented over the years. Based on the
numerical methods, it is easy to realize that the finite element method (FEM)
is an effective tool because of its wide application in solving many technical
problems. Besides, several developments of new or improved numerical tech-
niques were introduced to resolve the existing disadvantages of the traditional
methods. Among these developments are the extended finite element method
(XFEM) based on the FEM, which was specially designed for treating discon-
tinuities [1, 2], the meshless method (MM) that does not require a connection
between nodes of the simulation domain, i.e., a mesh, but it is instead based on
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interaction of each node with all its neighbors [3], the smoothed finite element
method (SFEM) developed by combining MM with FEM [4–6], the isogeometric
analysis (IGA) – a computational approach that offers the possibility of integrat-
ing finite element analysis (FEA) into conventional NURBS-based CAD design
tools [7–11], FEM based on the C0-HSDT to use lower-order elements [12],
FEM related to Chebyshev polynomials for analysis of plate and shell struc-
tures [13–15], the twice-interpolation finite element method for solid mechanics
problems [16, 17], etc. In this paper, the author presents a six-node triangular
finite element based on the double interpolation procedure with smooth nodal
stresses that can overcome the difficulties in the standard FEM. Besides advan-
tages, FEM also has some disadvantages, such as the discontinuity of gradients
of field variables among elements. In application, the post-processing procedure
is often required to obtain the smoothing operation to the nodal stress. In recent
years, Zheng et al. [16] presented an improved triangular element for elastostatic
problems related to the new concept of the double interpolation procedure. This
element with various desirable features, such as the continuous nodal stress and
higher accuracy of the solutions, is not available in the standard elements. The
main idea of the double interpolation procedure is based on the approximation
functions that control not only the nodal values but also the averaged nodal
gradients as interpolation conditions, see Zheng et al. [16] for more details.
Nevertheless, this procedure is mainly applied to formulate a trial solution and
its continuous derivatives across inter-element boundaries. The stress generated
while using this procedure can be smoothed over each domain of the element
to improve the solution accuracy without the post-processing process. Another
important issue to be noted is that the double interpolation procedure does not
change the total number of degrees of freedom of the whole system. The main
objective of this study is to introduce a six-node triangular finite element based
on the double interpolation procedure for structural analysis with all the above
advantages. In the near future, the proposed element will be modified to accu-
rately model singular stress fields near crack tips. The results calculated by the
proposed element are validated against reference solutions.

This paper is organized into four sections. In Sec. 2, a formulation of this
novel element for structures is presented in which the construction of the shape
functions and their properties are recommended. Several examples are subse-
quently presented in Sec. 3. The author ends this article with some concluding
remarks in the last section.

2. Formulation of a six-node triangular element

In this section, the construction of the novel six-node triangular element
shape functions and their properties are briefly given. Point x (x, y) is in the
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domain of this element with six nodes i, j, k, m, n, p, as schematically shown
in Fig. 1.

Support domain Dknp

Support domain Dimp

Support domain Djmn

Point of interest
m

n

k

p

i
j

Fig. 1. A six-node triangular element in 2D with the double interpolation procedure
and its support domain.

Dimp, Djmn and Dknp denote elements that share nodes i, j, k, m, n, and p.
All nodes of elements Dimp, Djmn and Dknp are called the supporting nodes
of point x in this novel six-node triangular element. This leads to the support
domain for point x of this element being larger than the support domain of
standard FEM. The trial solution at point x is then shown by:

(2.1) uh(x) =

nsp∑
l=1

Ñl(x)dl = Ñ(x)d.

In Eq. (2.1), the double interpolation shape function Ñl is recommended

(2.2) Ñl = ΞiN
[i]
l + ΞixN

[i]
l,x + ΞiyN

[i]
l,y︸ ︷︷ ︸

node i

+ ΞjN
[j]
l + ΞjxN

[j]
l,x + ΞjyN

[j]
l,y︸ ︷︷ ︸

node j

+ ΞkN
[k]
l + ΞkxN

[k]
l,x + ΞkyN

[k]
l,y︸ ︷︷ ︸

node k

+ ΞmN
[m]
l + ΞmxN

[m]
l,x + ΞmyN

[m]
l,y︸ ︷︷ ︸

node m

+ ΞnN
[n]
l + ΞnxN

[n]
l,x + ΞnyN

[n]
l,y︸ ︷︷ ︸

node n

+ ΞpN
[p]
l + ΞpxN

[p]
l,x + ΞpyN

[p]
l,y︸ ︷︷ ︸

node p

in which df and N
[i]
f are called the nodal displacement vector and the shape

function related to node i, respectively. Furthermore, nsp is the total number of



224 L. HOANG THAT TON

the supporting nodes related to point x. At node i, the average derivative of the
shape functions is presented below and the same is built for other nodes:

(2.3) N
[i]
l,x =

∑
e∈Dimp

(
ωeN

[i][e]
l,x

)
, N

[i]
l,y =

∑
e∈Dimp

(
ωeN

[i][e]
l,y

)
.

In Eq. (2.3), the term N
[i][e]
l,x is the derivative of N [i]

l calculated in element e,
and ωe is called the weight function of element e ∈ Dimp, which is defined by:

(2.4) ωe =
∆e∑

e∈Dimp
∆e

with e ∈ Dimp,

and with ∆e being the area of the element e. In Eq. (2), the functions Ξi, Ξix, and
Ξiy called the polynomial basis functions associated with the node i must fulfill
the following conditions:

(2.5)

Ξi (xl) = δil, Ξi,x (xl) = 0, Ξi,y (xl) = 0,

Ξix (xl) = 0, Ξix,x (xl) = δil, Ξix,y (xl) = 0,

Ξiy (xl) = 0, Ξiy,x (xl) = 0, Ξiy,y (xl) = δil,

where l is from the indices i, j, k, m, n, and p, and

(2.6) δil =

{
1 if i = l,

0 if i 6= l.

Note that the above conditions need to be applied in a similar way to different
functions, i.e., Ξj , Ξjx, Ξjy, Ξk, Ξkx, Ξky, Ξm, Ξmx, Ξmy, Ξn, Ξnx, Ξny, Ξp, Ξpx,
and Ξpy. These polynomial basis functions Ξi, Ξix, and Ξiy for the proposed
element are given by (2.7), (2.8), and (2.9):

(2.7) Ξi = Ai +A2
iAj +A2

iAk +A2
iAm +A2

iAn +A2
iAp

−AiA2
j −AiA2

k −AiA2
m −AiA2

n −AiA2
p,

(2.8)
Ξix = −(xi − xj)(A2

iAj + 0.5AiAjAk + 0.5AiAjAm + 0.5AiAjAn + 0.5AiAjAp)

− (xi − xk)(A2
iAk + 0.5AiAkAj + 0.5AiAkAm + 0.5AiAkAn + 0.5AiAkAp)

− (xi − xm)(A2
iAm + 0.5AiAmAj + 0.5AiAmAk + 0.5AiAmAn + 0.5AiAmAp)

− (xi − xn)(A2
iAn + 0.5AiAnAj + 0.5AiAnAk + 0.5AiAnAm + 0.5AiAnAp)

− (xi − xp)(A2
iAp + 0.5AiApAj + 0.5AiApAk + 0.5AiApAm + 0.5AiApAn),



ANOTHER SIX-NODE TRIANGULAR ELEMENT. . . 225

(2.9)
Ξiy = −(yi − yj)(A2

iAj + 0.5AiAjAk + 0.5AiAjAm + 0.5AiAjAn + 0.5AiAjAp)

− (yi − yk)(A2
iAk + 0.5AiAkAj + 0.5AiAkAm + 0.5AiAkAn + 0.5AiAkAp)

− (yi − ym)(A2
iAm + 0.5AiAmAj + 0.5AiAmAk + 0.5AiAmAn + 0.5AiAmAp)

− (yi − yn)(A2
iAn + 0.5AiAnAj + 0.5AiAnAk + 0.5AiAnAm + 0.5AiAnAp)

− (yi − yp)(A2
iAp + 0.5AiApAj + 0.5AiApAk + 0.5AiApAm + 0.5AiApAn).

In Eqs. (2.7), (2.8), and (2.9), other functions can also be presented in the
same way by a circular substitution of indices i, j, k, m, n, and p. In addition,
Ai, Aj , Ak, Am, An, and Ap are called the area coordinates of point x in the
six-node triangular element i, j, k, m, n, p, see [16] for more details. It is noted
that these shape functions are complete polynomials, satisfy properties of the
partition of unity, and carry Kronecker’s delta function property. The element
stiffness matrix Ke is then expressed as:

(2.10) Ke =

ˆ

Ωe

B̃
T

e DB̃e dΩ

with D as an elastic tensor and

(2.11) B̃e=

 Ñ1,x 0 Ñ2,x 0 ... Ñl,x 0 ... Ñnsp,x 0

0 Ñ1,y 0 Ñ2,y ... 0 Ñl,y ... 0 Ñnsp,y

Ñ1,y Ñ1,x Ñ2,y Ñ2,x ... Ñl,y Ñl,x ... Ñnsp,y Ñnsp,x


3×2nsp

,

where nsp is called the total number of the supporting nodes due to point x.

3. Fundamental results

3.1. Cantilever beam

A cantilever beam with length L1 = 8 and height L2 = 2 subjected to
a parabolic traction P = −2 on the right end as given in [18] is presented
in Fig. 2. This cantilever beam has a unit thickness and the corresponding
analytical solutions of the displacements and stresses for plane stress condition
are given by [18]:

(3.1) ux = − Py

6EI

[
(6L1 − 3x)x+ (2 + ν)

(
y2 − L2

2

4

)]
,
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Fig. 2. A cantilever beam subjected to parabolic traction on the right end.

uy =
P

6EI

[
3νy2(L1 − x) + (4 + 5ν)

L2
2x

4
+ (3L1 − x)x2

]
,(3.2)

σx = −P (L1 − x)y

I
,(3.3)

σy = 0,(3.4)

τxy =
P

2I

(
L2

2

4
− y2

)
,(3.5)

where I = L3
2/12 is calculated as the moment of inertia of the structure.

Only the regular mesh of 16× 4 triangular elements with six-node per ele-
ment is depicted in Fig. 3, but the other meshes of 8× 4, 12× 4 are also con-
sidered and calculate the deflections at point A. The proposed element provides
much better results than the standard finite element method with a standard
six-node triangular element T6, as shown in Table 1 and Fig. 4.

Fig. 3. The discretized mesh using six-node triangular elements.

Table 1. The deflection at point A is based on the standard element T6
and the proposed element.

Deflection at point A 8× 4 12× 4 16× 4

T6 −0.4822 −0.5003 −0.5071

This study −0.5281 −0.5310 −0.5317

Exact −0.5330 −0.5330 −0.5330
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T6
This study
Exact

Fig. 4. The deflection along the neutral line with (16 ×4) triangular elements.

Furthermore, the irregular meshes of 8× 4, 12 × 4 and 16× 4 are presented
in Fig. 5. Again, as shown in Table 2, the results obtained by the proposed
element show superiority over the standard six-node element. Besides, Fig. 6
shows that the stress field based on the developed element is very smooth for
both regular and irregular meshes though no post-processing is performed.

a)

b)

c)

Fig. 5. The distorted meshes using six-node triangular elements: a) 8× 4, b) 12× 4, c) 16× 4.
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Table 2. The deflection at point A with irregular meshes.

Deflection at point A 8× 4 12× 4 16× 4

T6 −0.4623 −0.4939 −0.5041

This study −0.5181 −0.5270 −0.5289

Exact −0.5330 −0.5330 −0.5330

a)

b)

Fig. 6. The stress field related to the proposed element:
a) regular mesh of 16× 4, b) irregular mesh of 16× 4.

Finally, the computational time needed for the T6 element and the proposed
element tested on three different regular meshes of 8× 4, 12× 4, and 16× 4 ele-
ments is investigated. The comparison is performed on the same PC of Intel(R)
Core(TM) i7 @ 2.80 GHz, 8.GB RAM.

It is observed in Table 3 that the proposed element requires more time than
the standard T6 one because of an extra task related to the double interpola-
tion procedure. But one does not need post-processing of any smoothing ope-
ration for this element.

Table 3. The computational time.

Time [s] 8× 4 12× 4 16× 4

T6 0.637751 0.643691 0.744800

This study 7.733863 13.414933 20.918070

3.2. An infinite plate with a central circular hole

An infinite plate with a central circular hole of radius r and subjected to
a unidirectional tensile loading q = 1, as depicted in [18], is studied. Only
one-quarter of the plate (L = 5, r = 1), shown in Fig. 7, is modeled due to
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Fig. 7. The quarter model of an infinite plate with a central circular hole.

the two-fold symmetry. The analytical solutions of the displacement and stress
fields of the infinite plate are given by [18] for plane stress condition as:

u =
q

4µ

[
rθ

[
(κ−1)

2
+ cos (2θ)

]
+
r2

rθ
[1 + (1 + κ) cos (2θ)]− r4

r3
θ

cos (2θ)

]
,(3.6)

v =
q

4µ

[
(1− κ)

r2

rθ
− rθ −

r4

r3
θ

]
sin (2θ) ,(3.7)

σxx = q

{
1− r2

r2
θ

[
3

2
cos (2θ) + cos (4θ)

]
+

3r4

2r4
θ

cos (4θ)

}
,(3.8)

σyy = −q
{
r2

r2
θ

[
1

2
cos (2θ)− cos (4θ)

]
+

3r4

2r4
θ

cos (4θ)

}
,(3.9)

τxy = −q
{
r2

r2
θ

[
1

2
sin (2θ) + sin (4θ)

]
− 3r4

2r4
θ

sin (4θ)

}
,(3.10)

µ =
E

2 (1 + ν)
, κ =

3− ν
1 + ν

,(3.11)

where rθ is the distance from the center of the circular hole to the point under
consideration, respectively.

Similar to the previous example, the meshes of 8× 8 and 16× 16 triangular
elements with six-node per element are depicted in Fig. 8. The obtained re-
sults of the proposed element are not surprising, and as expected, this element
outperforms the standard six-node triangular element when the comparisons
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a) b)

Fig. 8. The discretized mesh using six-node triangular elements: a) 8× 8, b) 16× 16.

between its results and analytical solutions are made and plotted in Figs. 9–11.
Again, Fig. 9 shows that this element provides much smoother stresses than the
standard finite element using the same mesh.

a) b)

c) d)

Fig. 9. The stress distribution obtained by the standard six-node triangular element T6 and
the proposed element: a) 8× 8, T6, b) 8× 8, paper, c) 16× 16, T6, d) 16× 16, paper.

In terms of the verification, Fig. 10 further compares the displacement dis-
tributions along the left and bottom boundaries of the quarter plate obtained
by the proposed element using a regular mesh of 8× 8 elements, and by the T6
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Fig. 10. The displacements along the boundary lines (8× 8).
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Fig. 11. The stress distributions along the boundary lines (8× 8).

element and analytical solutions. It is easy to see that the results obtained by
the proposed element completely approximate the analytical solutions and are
better than the results of the T6 element. This holds true when comparing the
stress distributions along the above boundaries, as shown in Fig. 11.
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4. Conclusions

A new numerical method based on a six-node triangular element was intro-
duced for structural analysis. In each case of the study with a different load or
geometric shape, the presented numerical results offered higher accuracy than
those of the standard element. Furthermore, he applicability of the presented el-
ement was clearly shown. Better numerical solutions and smoother distributions
of stresses, which are not achieved by the standard elements, will be provided
when using this element. The computational time was also studied to review
the pros and cons of the proposed element. In fact, this computational time
of the proposed six-node element was higher than that based on the standard
element because of the double interpolation procedure, but one does not need
post-processing of any smoothing operation.

Appendix

Let us consider a six-node triangular element presented in Fig. 1. The func-
tions Ai, Aj , Ak, Am, An, and Ap are given as:

Ai = 1− 3(r + s) + 4rs+ 2(r2 + s2), Aj = r(2r − 1), Ak = s(2s− 1),

Am = 4r(1− r − s), An = 4rs, Ap = 4s(1− r − s).

The derivatives of the above functions are:
∂

∂r

∂

∂s


[
Ai Aj Ak Am An Ap

]

=

[
−3 + 4r + 4s 4r − 1 0 4− 8r − 4s 4s −4s

−3 + 4s+ 4r 0 4s− 1 −4r 4r 4− 4r − 8s

]
.

The Jacobian matrix and its inverse are described as:

J =

[
−3 + 4r + 4s 4r − 1 0 4− 8r − 4s 4s −4s

−3 + 4s+ 4r 0 4s− 1 −4r 4r 4− 4r − 8s

]


xi yi

xj yj

xk yk

xm ym

xn yn

xp yp


,
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J−1 =
1

detJ

[
J1 J2

J3 J4

]
,

J1 = (−3 + 4r + 4s) yi + (4s− 1) yk − 4rym + 4ryn + (4− 4r − 8s) yp,

J2 = − (−3 + 4r + 4s)xi − (4s− 1)xk + 4rxm − 4rxn − (4− 4r − 8s)xp,

J3 = − (−3 + 4r + 4s) yi − (4r − 1) yj − (4− 8r − 4s) ym + 4syp − 4syn,

J4 = (−3 + 4r + 4s)xi + (4r − 1)xj + (4− 8r − 4s)xm + 4sxn − 4sxp.

The derivatives of the geometric interpolation functions can be expressed as:

∂Ξi
∂Ai

= 1+2AiAj +2AiAk+2AiAm+2AiAn+2AiAp−A2
j −A2

k−A2
m−A2

n−A2
p,

∂Ξi
∂Aj

= A2
i − 2AiAj ,

∂Ξi
∂Ak

= A2
i − 2AiAk,

∂Ξi
∂Am

= A2
i − 2AiAm,

∂Ξi
∂An

= A2
i − 2AiAn,

∂Ξi
∂Ap

= A2
i − 2AiAp,

∂Ξix
∂Ai

= − (xi − xj) (2AiAj + 0.5AjAk + 0.5AjAm + 0.5AjAn + 0.5AjAp)

− (xi − xk) (2AiAk + 0.5AkAj + 0.5AkAm + 0.5AkAn + 0.5AkAp)

− (xi − xm) (2AiAm + 0.5AmAj + 0.5AmAk + 0.5AmAn + 0.5AmAp)

− (xi − xn) (2AiAn + 0.5AnAj + 0.5AnAk + 0.5AnAm + 0.5AnAp)

− (xi − xp) (2AiAp + 0.5ApAj + 0.5ApAk + 0.5ApAm + 0.5ApAn),

∂Ξix
∂Aj

= − (xi − xj)
(
A2
i + 0.5AiAk + 0.5AiAm + 0.5AiAn + 0.5AiAp

)
− (xi − xk) (0.5AiAk)− (xi − xm) (0.5AiAm)− (xi − xn) (0.5AiAn)

− (xi − xp) (0.5AiAp),

∂Ξix
∂Ak

= − (xi − xj) (0.5AiAj)

− (xi − xk)
(
A2
i + 0.5AiAj + 0.5AiAm + 0.5AiAn + 0.5AiAp

)
− (xi − xm) (0.5AiAm)− (xi − xn) (0.5AiAn)− (xi − xp) (0.5AiAp),
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∂Ξix
∂Am

= − (xi − xj) (0.5AiAj)− (xi − xk) (0.5AiAk)

− (xi − xm)
(
A2
i + 0.5AiAj + 0.5AiAk + 0.5AiAn + 0.5AiAp

)
− (xi − xn) (0.5AiAn)− (xi − xp) (0.5AiAp),

∂Ξix
∂An

= − (xi − xj) (0.5AiAj)− (xi − xk) (0.5AiAk)− (xi − xm) (0.5AiAm)

− (xi − xn)
(
A2
i + 0.5AiAj + 0.5AiAk + 0.5AiAm + 0.5AiAp

)
− (xi − xp) (0.5AiAp),

∂Ξix
∂Ap

= − (xi − xj) (0.5AiAj)− (xi − xk) (0.5AiAk)

− (xi − xm) (0.5AiAm)− (xi − xn) (0.5AiAn)

− (xi − xp)
(
A2
i + 0.5AiAj + 0.5AiAk + 0.5AiAm + 0.5AiAn

)
,

∂Ξiy
∂Ai

= − (yi − yj) (2AiAj + 0.5AjAk + 0.5AjAm + 0.5AjAn + 0.5AjAp)

− (yi − yk) (2AiAk + 0.5AkAj + 0.5AkAm + 0.5AkAn + 0.5AkAp)

− (yi − ym) (2AiAm + 0.5AmAj + 0.5AmAk + 0.5AmAn + 0.5AmAp)

− (yi − yn) (2AiAn + 0.5AnAj + 0.5AnAk + 0.5AnAm + 0.5AnAp)

− (yi − yp) (2AiAp + 0.5ApAj + 0.5ApAk + 0.5ApAm + 0.5ApAn),

∂Ξiy
∂Aj

= − (yi − yj)
(
A2
i + 0.5AiAk + 0.5AiAm + 0.5AiAn + 0.5AiAp

)
− (yi − yk) (0.5AiAk)− (yi − ym) (0.5AiAm)− (yi − yn) (0.5AiAn)

− (yi − yp) (0.5AiAp),

∂Ξiy
∂Ak

= − (yi − yj) (0.5AiAj)

− (yi − yk)
(
A2
i + 0.5AiAj + 0.5AiAm + 0.5AiAn + 0.5AiAp

)
− (yi − ym) (0.5AiAm)− (yi − yn) (0.5AiAn)− (yi − yp) (0.5AiAp),

∂Ξiy
∂Am

= − (yi − yj) (0.5AiAj)− (yi − yk) (0.5AiAk)

− (yi − ym)
(
A2
i + 0.5AiAj + 0.5AiAk + 0.5AiAn + 0.5AiAp

)
− (yi − yn) (0.5AiAn)− (yi − yp) (0.5AiAp),
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∂Ξiy
∂An

= − (yi − yj) (0.5AiAj)− (yi − yk) (0.5AiAk)− (yi − ym) (0.5AiAm)

− (yi − yn)
(
A2
i + 0.5AiAj + 0.5AiAk + 0.5AiAm + 0.5AiAp

)
− (yi − yp) (0.5AiAp),

∂Ξiy
∂Ap

= − (yi − yj) (0.5AiAj)− (yi − yk) (0.5AiAk)

− (yi − ym) (0.5AiAm)− (yi − yn) (0.5AiAn)

− (yi − yp)
(
A2
i + 0.5AiAj + 0.5AiAk + 0.5AiAm + 0.5AiAn

)
.

Now, we prove the condition: Ξi (xl) = δil. When l ≡ i, then r = 0, s = 0
and Ai = 1, Aj = Ak = Am = An = Ap = 0, substituting them into above
equations we obtain Ξi (xi) = 1. Similarly, when l ≡ j, l ≡ k, l ≡ m, l ≡ n
or l ≡ p we obtain Ξi (xj) = 0, Ξi (xk) = 0, Ξi (xm) = 0, Ξi (xn) = 0, and
Ξi (xp) = 0, respectively.

Next, we prove the conditions: Ξi,x (xl) = 0 and Ξi,y (xl) = 0. When l ≡ i,
then r = 0, s = 0, and Ai = 1, Aj = Ak = Am = An = Ap = 0. Substituting
them into the above equations we have

∂

∂r
∂

∂s

[ Ai Aj Ak Am An Ap
]

=

[
−3 −1 0 4 0 0

−3 0 −1 0 0 4

]
,

J−1 =
1

detJ

[
−3yi − yk + 4yp 3xi + xk − 4xp

3yi + yj − 4ym −3xi − xj + 4xm

]
,


∂

∂x

∂

∂y


[
Ai Aj Ak Am An Ap

]
= J−1


∂

∂r

∂

∂s


[
Ai Aj Ak Am An Ap

]

=
1

detJ

[
−3yi − yk + 4yp 3xi + xk − 4xp

3yi + yj − 4ym −3xi − xj + 4xm

][
−3 −1 0 4 0 0

−3 0 −1 0 0 4

]

=
1

detJ
X,

∂Ξ

∂Ai
=

∂Ξ

∂Aj
=

∂Ξ

∂Ak
=

∂Ξ

∂Am
=

∂Ξ

∂An
=

∂Ξ

∂Ap
= 1,
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where

X=



9yi+3yk−12yp−9xi−3xk+12xp −9yi−3yj+12ym+9xi+3xj−12xm

3yi+yk−4yp −3yi−yj+4ym

−3xi−xk+4xp 3xi+xj−4xm

−12yi−4yk+16yp 12yi+4yj−16ym

0 0
12xi+4xk−16xp −12xi−4xj+16xm



T

.

Then, we finally obtain Ξi,x (xl) = 0, Ξi,y (xl) = 0 as:

Ξi,x (xi) =
∂Ξi
∂x

=

[
∂Ξi
∂Ai

∂Ξi
∂Aj

∂Ξi
∂Ak

∂Ξi
∂Am

∂Ξi
∂An

∂Ξi
∂Ap

]

×
{
∂Ai
∂x

∂Aj
∂x

∂Ak
∂x

∂Am
∂x

∂An
∂x

∂Ap
∂x

}T

=
[

1 1 1 1 1 1
] 1

detJ



9yi + 3yk − 12yp − 9xi − 3xk + 12xp

3yi + yk − 4yp

−3xi − xk + 4xp

−12yi − 4yk + 16yp

0
12xi + 4xk − 16xp


= 0,

Ξi,y (xi) =
∂Ξi
∂y

=

[
∂Ξi
∂Ai

∂Ξi
∂Aj

∂Ξi
∂Ak

∂Ξi
∂Am

∂Ξi
∂An

∂Ξi
∂Ap

]

×
{
∂Ai
∂y

∂Aj
∂y

∂Ak
∂y

∂Am
∂y

∂An
∂y

∂Ap
∂y

}T

=
[

1 1 1 1 1 1
] 1

detJ



−9yi − 3yj + 12ym + 9xi + 3xj − 12xm

−3yi − yj + 4ym

3xi + xj − 4xm

12yi + 4yj − 16ym

0
−12xi − 4xj + 16xm


= 0.

Other cases can be proved similarly.
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