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This paper is concerned with systems consisting of components colliding with each other.
In particular, a high velocity adiabatic impact cutoff machine is investigated. For general
understanding of the impact dynamics (affected by a large number of parameters), the mech-
anisms are modelled in a simplified and accurate manner. Two simple models are developed:
the energy-balance model and the spring-mass model. The energy-balance model is based on
the principle of total energy conservation. It provides only the punch minimum kinetic energy
required for efficient cutting. Concerning the spring-mass model, the different components are
represented by rigid masses and their deformations are modelled by springs (linear or non-
linear in the case of contact stiffness). The resulting non-linear equations are solved using
the Newmark numerical technique. The impact force, velocity, displacement and acceleration
histories are calculated what makes possible a fine description of the cutoff cycle steps. The
two models are helpful for both the design and tuning of the mechanisms involving impacts
between their components.
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1. Introduction

A wide variety of engineering applications concern components colliding with
each other. This is particularly the case in mechanisms including clearances or
gaps. In most cases the principle of operation is based on repeated impacts: im-
pact hammers, high velocity adiabatic impact cutoff, blanking or powder com-
paction machines, impact-forming machines, etc. On the other hand, impacts
may be unwanted because they may prove to be harmful to the reliability of the
equipment: rotors with bearing clearance, gears, wheel-rail interaction of high-
speed trains, etc. The theoretical models presented in this paper are concerned
with high-velocity adiabatic impact cutoff machines. Although similar to con-
ventional presses, high-velocity adiabatic impact presses use high-speed punch
motion to carry out the cutting operation. The tool velocity is generally between
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10 m/s to almost 100 m/s, whereas in the case of conventional presses, the ve-
locity is about 0.3 m/s and a static approach is satisfactory. When sufficient
kinetic energy is imparted to the cutting tool, the material being cut cannot
dissipate heat fast enough. The temperature increases adiabatically due to the
extremely short time and energy concentration in the local area identified as the
“adiabatic zone” [2–4, 7, 10, 11, 14]. The material softens instantly (adiabatic
softening) and the moving die separates the material into two parts. The main
benefits of adiabatic cutting are high quality end cuts, tight length or volume
tolerances, square ends and high production rates. However, the key factor in the
success of this technology depends both on creating sufficient energy to reliably
reproduce the adiabatic softening phenomenon and on controlling the required
energy. The former is a matter of technology, but the latter is associated with
complex dynamic phenomena and is of interest for researchers [8]. The process
exhibits a cutting tool thrusted by a ram. A clearance allows the tool to accel-
erate and reach the required velocity before hitting the material. The adiabatic
softening completes the cut-off and a die base is needed to stop the tool. This
process involves a large number of impacts between the various components of
the machine.

Each machine component can be modelled as a nearly rigid body. The phe-
nomena linked to two colliding bodies have been widely studied in the litera-
ture [13]. Impact initiates when two bodies move close to each other with relative
velocity. The incidence occurs when a single contact point appears on the surface
of each body. After incidence, the contact pressure in the small contact area pre-
vents the interpenetration of the bodies. During the impact, the pressure in the
contact area produces local deformations and indentations, and has a resultant
action that acts on the colliding bodies in opposite directions. Initially, the force
increases with increasing indentation and it reduces the relative velocity at which
the bodies move close to each other. After a time, the work done by the contact
force is sufficient to bring the relative velocity to zero. Subsequently, the elastic
energy stored during compression drives the two bodies apart until finally they
separate with a acertain relative velocity. As regards the impact between solid
bodies, the contact force which acts during the collision, is the result of local
deformations that are required for the surfaces of the two bodies to conform
in the contact area. The local deformations can be elastic or plastic and vary
according to the relative incident velocity and to the hardness of the colliding
bodies. In addition to local deformations, there are also global deformations of
the bodies. These global deformations mainly depend on the impact velocity,
the mass ratio, the boundary conditions and the geometry of the bodies. The
physical process during impact is strongly non-linear and discontinuous. A fine
numerical analysis of the system is an alternative to tackle the problem (i.e.
the finite – elements model). But, it is difficult to understand the phenomena
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and to identify the leading parameters, which are required for the fine tuning
of the machine. Some simplified models are available in the literature to study
impact dynamics. Generally, the models are classified according to the dynamic
response of the structure: impact on a half-space, quasi-static approach and com-
plete models [13]. With the first two approaches, energy balance models can be
used to predict the maximum contact force and the contact duration [1, 12].
However, the energy balance model is restricted to two free bodies with no ex-
ternal forces. It is not suitable to multi-body impact, and to the impact with an
external force applied to the bodies.

In order to enable the design and fine tuning of the high velocity adiabatic
impact cutoff machines, appropriate models need to be developed. The objective
of this article is to study two models available to analyze the multi-impact dy-
namics: the energy balance model and the spring-mass model. Section 2 presents
the analytical and numerical aspects of the spring-mass model developed for the
purpose of the study. An example of a high velocity adiabatic impact cutoff ma-
chine is presented in Sec. 3. Sections 3.2 and 3.3 deal with the spring-mass and
the energy-balance model results respectively. The two analyses are compared
with each other and the relevances of each model are discussed.

2. Spring-mass model

2.1. Equations of motion

A general spring-mass model with n degrees of freedom is considered as shown
in Fig. 1. The springs are non-linear and the behaviour law is written as:

(2.1) P = k · xp

where P is the spring force, k is the contact stiffness parameter and p depends
on the non-linear effect.

Considering a particular mass “i”, the equation of motion is defined as the
non-linear differential equation (Fig. 2):

(2.2)

mi · ẍi + λ1 · ki · |xi − xi−1|pi + ci · (ẋi − ẋi−1)
+λ2 · ki+1 · |xi − xi+1|pi+1 + ci+1 · (ẋi − ẋi+1) = Fi

where
λ1 = 1 for xi > xi−1 else − 1
λ2 = 1 for xi > xi+1 else − 1,

which may be expressed as

(2.3) [m] · [ẍ] + [c] · [ẋ] + [P (x)] = [F ]
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for the complete system, where the mass matrix [m] and the viscous damping
matrix [c] are given by:

[m] =




m1 0 . . . 0

0 m2
...

...
. . .

0 . . . mn




,

[c] =




c1 + c2 −c2 0 . . . 0

−c2 c2 + c3 −c3
...

0 −c3
. . .

...
0 . . . 0 −cn cn + cn+1




.

(2.4)

[P (x)] is the non-linear forces vector and it is given by:

(2.5) [P (x)] =




k1 · xp1
1 + k1 · (x1 − x2)p2

k2 · (x2 − x1)p2 + k3 · (x2 − x3)p3

...
kn · (xn − xn−1)pn + kn+1 · xpn+1

n


 .

Fig. 1. Non-linear spring-mass system with n degrees of freedom.

Fig. 2. Notation for the mass “i”.
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The velocity vector [ẋ], acceleration vector [ẍ] and external forces vector [F ]
are defined as:

(2.6) [ẋ] =




ẋ1(t)
ẋ2(t)
...

ẋn(t)


 , [ẍ] =




ẍ1(t)
ẍ2(t)
...

ẍn(t)


 , [F ] =




F1(t)
F2(t)
...

Fn(t)


 .

2.2. Numerical integration

The Newmark numerical technique [9] is used to calculate the displacement
vector [x] from Eq. (2.3). First, the time duration of impact T is subdivided into
q equal steps 4t, so that 4t = T/q. Considering that the displacement vector
(xi), the velocity vector (ẋi) and the acceleration vector (ẍi) are known for time
step (ti = i ·4t), the method uses an approximation to calculate the value of the
three vectors at the time step ti+1. The non-linear equations of motion have to
be linearized in order to suit the method. Assuming that the solution is known
at time step ti, the equation at time step ti+1 is given by:

(2.7) [m] · [ẍi+1] + [c] · [ẋi+1] + [P (xi+1)] = [Fi+1]

[P (xi+1)] is expressed as:

(2.8) [P (xi+1)] = [P (xi)] + [Ki] · [4xi]

where [4xi] = [xi+1]−[xi] and [Ki] is the stiffness tangent matrix at time step ti.
Equation (2.7) and Eq. (2.8) give:

(2.9) [m] · [ẍi+1] + [c] · [ẋi+1] + [Ki] · [xi+1] = [F i+1]

with

(2.10) [F i+1] = [Fi+1]− [P (xi)] + [Ki] · [xi].

Since the right-hand side of Eq. (2.10) is completely known, this equation can
be solved for xi+1, using the Newmark method. The xi+1 found is only an ap-
proximate vector, due to the linearization process used in Eq. (2.10). To improve
the accuracy of the solution and to avoid the development of numerical instabil-
ities, an iterative process can be used within the current time step (e.g. Newton
Raphson).

For the linearization approximation of Eq. (2.10), the tangent matrix stiffness
is calculated. This is obtained by differentiating the vector of non-linear forces
[P (x)] with respect to the displacement vector [x], i.e.:

(2.11) [K] =
∂

∂[x]
[P (x)].
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From Eq. (2.5), one obtains:

(2.12) [K] =




(
p1 k1 xp1−1

1

+ p2 k1 (x1 − x2)p2−1

) ( −p2 k1 (x1 − x2)p2−1
)

( −p2 k1 (x1 − x2)p2−1
) (

p2 k2 (x2 − x1)p2−1

+ p3 k3 (x2 − x3)p3−1

)

...

0 . . .

. . . 0

...

. . .

(
pn kn (xn − xn−1)pn−1

+ pn+1 kn+1 xpn
n

)




.

3. Modelling of a simplified cutting machine

3.1. The model

Figure 3 (left) shows the simplified adiabatic cutting machine to be modelled
(i.e. only the main parts of the actual machine are taken into account). The
metal sheet lies on the cutting-off die which is assumed to be linked to the iner-
tia reference frame, i.e. the suspension is not considered. The punch is moved by
a hydraulic actuator (cylinder is not represented). Figure 4 a shows the cylinder
force. The force is initially zero. It becomes constant for 0.1 s (37 000 N) and
eventually returns to zero. A Haversine function is used to represent the smooth
transitions between zero and 37 000 N. The transition duration is 2 ms. After
the cutting phase, the punch is stopped by the die base. The spring-mass model
associated is shown in Fig. 3 (right). The punch and the die base are represented
by two rigid masses m1 and m2 respectively. The two masses are connected
through a Hertzian spring that represents the contact load-deformation char-
acteristics and the initial gap (K12) [15], and the die base is attached to the
reference frame through a linear spring (K22). The metal sheet is represented
by the relationship between the force and the displacement [5, 6] including the
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material’s properties, the thickness and the cutting perimeter of the sheet. This
relationship and the initial gap are represented by the non-linear stiffness K11,
given in Fig. 4 b (with no gap). The initial gap of spring K11 is one of the tuning
parameters of the machine. The distance between the punch and the metal sheet
enables the punch to reach the required cutting velocity. The initial gap of spring
K12 is the sum of the initial gap of spring K11, of the metal sheet thickness and
of a supplementary gap to assure that the metal sheet is completely cut before
the punch impacts the die base. Numerical values of mass and stiffness are given
in Table 1.

The numerical integration is performed as presented in Sec. 2.2, with a time
step of 10−5 s and a time duration of 0.2 s. Four different initial gaps between
the punch and the metal sheet are tested : no gap, 9 mm, 10 mm and 43 mm.

Fig. 3. The model (left: the simplified machine, right: the spring-mass model).

Fig. 4. Force applied to the punch (a); relationship between the force
and the displacement (b).
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Table 1. Numerical data of the two-degrees-of-freedom model.

Mass Stiffness
m1 40 kg K11 initial gap – 4 values tested: 0, 9, 10 & 43 mm

& cutting force-displacement relationship (Fig. 4 b)

m2 100 kg K12 initial gap = initial gap of K11 + metal sheet
thickness (2.8 mm) + supplementary gap (0.2 mm)
& contact law : P = 1013 · x2,2 (x is the indentation)

K22 2.108 N/m

3.2. The spring-mass model

Figures 5, 6 and 7 show the punch and the die base displacement, velocity
and acceleration history respectively, for the four initial gaps (0, 9, 10 & 43 mm).
On a single plot, Fig. 8 shows the punch displacement relative to the metal sheet
(synthesis of the above results). Figure 9 shows the force history between the
punch and the metal sheet.

Fig. 5. The displacement history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).
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Fig. 6. The velocity history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).

Fig. 7. The acceleration history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).
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Fig. 8. The displacement relative to the metal sheet
(no gap – gap 9 mm – gap 10 mm – gap 43 mm).

Fig. 9. The force history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).

The results with no gap are typical of a system with one degree of freedom
with Heaviside excitation (the punch is the mass and the metal sheet is the
spring). The displacements are very small: between −0.204 mm and 0.164 mm
within the range 0− 0.1 s. This means that the metal sheet is slightly indented.
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After 0.1 s (i.e. no more ram force), the response oscillates between −0.065 mm
and 0.052 mm, corresponding to the free vibrations of a one-degree-of-freedom
system. With an indentation below 0.320 mm, the relationship between the
force and the displacement is linear (Fig. 4 b). The corresponding stiffness is
K11 = 4.58.108 N/m. The eigenfrequency of the one-degree-of-freedom system
can be expressed as:

(3.1) f =
1
2π

√
K11

m1

leading to the value of 538 Hz. In Fig. 5, the 53.5 oscillations within the range
0−0.1 s lead to the same eigenfrequency value. The velocity of the punch is also
limited to very small values (less than 0.25 m/s), so as the acceleration (less than
900 m/s2). Both results show that the dynamic effects are insignificant in the
no-gap case. Furthermore, there is no loss of contact as shown by the harmonic
behaviour of the acceleration. As the metal sheet is not cut, the die base remains
at rest. Note that the model does not take into account the effect of repeated
damage on the metal sheet, whereas the actual cutting process can lead to final
cutting. Anyway, the adiabatic cutting process is efficient only if the first impact
leads to complete cutting. If not, the quality of the surface condition is of no
interest. The present model is not devised to take these effects into account.

With a gap of 9 mm, the metal sheet is not cut either. Figure 5 shows a maxi-
mum displacement of 11.5 mm. The indentation of the metal sheet is then 2.5 mm
(lower than the thickness 2.8 mm, Fig. 8). In comparison with the case with no
gap the mechanisms are different. The amplitude of the velocity and acceleration
are higher: the maximum velocity is 4.09 m/s, and the maximum acceleration is
4426 m/s2. Consequently, in Fig. 6 and 7 one can observe successive rebounds
of the punch on the metal sheet.

The metal sheet is cut with an initial gap of 10 mm, as shown in Fig. 5. During
the first impact, the displacement reached the value of 13.4 mm, corresponding
to an “indentation” of 3.4 mm – larger than the thickness: 2.8 mm (Fig. 8). After
the cutoff, the punch is stopped by the die base, and several punch impacts
on the die base are observed until the external force returns to zero (0.1 s).
Then, the punch has a uniform movement and the die base oscillates such as
a one-degree-of-freedom system. Hence, the minimum velocity for the cutoff is
4.32 m/s. With a gap of 43 mm, the cutoff is similar to the latter case, with
higher values for the displacement, velocity and acceleration.

Focusing only on the results for the initial gap of 43 mm, the cutting work
can be divided into 4 steps as shown in Fig. 10.

• Step #1 is the acceleration of the punch. The leading parameters of this
step are the cylinder force, the initial gap and the mass of the punch (m1)
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(Fig. 10 – 1). After 10 ms of free run, the punch impacts the metal sheet
(Fig. 10 – 2 start).

• Step #2 is the cutting of the metal sheet, both influenced by the cylinder
force (which is still active) and by the initial velocity (8.93 m/s). The
duration of cutting is 0.33 ms (whereas it is about 3 ms with a conventional
press). At the end of step #2 (Fig. 10 – 2 end), the punch velocity is
still high: (7.9 m/s). During this step, the maximum acceleration of the
punch is 4424 m/s2, equal to the difference between the acceleration of the
punch (37000/40 = 925 m/s2) and the resistance force of the metal sheet
(Fig. 4 b).

• Step #3 starts just after cutting as the punch impacts the die base (Fig. 10 –
3). Oscillations of the punch are due to successive rebounds on the die base
under the action of the cylinder. These successive shocks induce free oscil-
lations of the die base (behaving as a one-degree-of-freedom system). As
the velocity of the punch is still high, the accelerations of the punch can
reach very high values (73000 m/s2); this result is of importance for the
actual machine parts design). Step #3 lasts until the cylinder stops acting
on the punch.

• In step #4, the free oscillations of the die base have to be treated by specific
dampers. The uniform movement of the punch has to be clamped for the
next cutting (Fig. 10 – 4). This step is of no interest for the present study
and the results are not discussed in this paper.

Fig. 10. The 4 steps of cutting.
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It is clear from Fig. 8 that the minimum initial gap required for the cutting
is 10 mm. In the no-gap case, step #1 is not possible and therefore there is no
kinetic energy stored before contact for the cutting. The force of the punch on
the metal sheet reaches the maximum value of 72 800 N (Fig. 9), which is higher
than the force produced by the rams (37 000 N) due to dynamic effects, but less
than the maximum force required for cutting (Fig. 4 b). The maximum forces
for the three different gaps: 9 mm, 10 mm, 43 mm are approximately the same:
214 000 N. This is higher than the maximum force from the cutting relationship
between the force and the displacement: 189 00 N (Fig. 4 b). Yet, with a 9 mm
gap, the kinetic energy stored during step #1 is not sufficient and therefore
step #2 is not fully completed.

Table 2. Results for the four gaps (spring-mass model).

before cutting
(step #1)

during cutting
(step #2)Gap

(mm)
Cutting?

Velocity
(m/s)

Kinetic energy
(J)

duration
(ms)

Max acceleration
(m/s2)

0 no 0 0 – 896 (oscillations)
9 no 4.09 335 – 4426 (rebounds)
10 yes 4.32 373 1.07 8043
43 yes 8.93 1594 0.33 69800

Table 2 shows a synthesis of the main data required to analyze the cutting:
velocity before impact and the corresponding kinetic energy, cutting duration
and maximum acceleration of the punch. The data will be compared to the
results from the energy-balance model as follows.

3.3. The energy-balance model

The force of the cylinder acting on the punch is 37 000 N. In the case of
a static process (conventional press), the force required for cutting of the metal
sheet is at least 1.89 105 N (see relationship between the force and the displace-
ment in Fig. 4 b). It is then the kinetic energy stored by the punch during the
step #1 that controls the cutting.

The energy-balance model is based on the principle of conservation of total
energy of the punch-metal sheet system. Assuming that the structure behaves

quasi-statically, the kinetic energy of the impacting punch (Ecin =
1
2
.m1.v

2
1 at

the end of step #1) is equated to the energy required for the metal sheet cutting
(Ecut – step #2):

(3.2) Ecin = Ecut.
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The constant force of the ram on the punch, essential during the step #1,
is neglected during impact (step #2). Moreover, the energy losses from friction
between parts, material damping and vibrations are neglected.

The required cutting energy (step #2) is the integral of the product of the
force acting on the metal sheet (Fcut) and the deformation (x):

(3.3) Ecut =

e∫

0

Fcut.dx,

where e is the thickness of the metal sheet, and Fcut is derived from the rela-
tionship between the force and the displacement (Fig. 4 b). For the present case,
Ecut = 436 J.

During step #1, Newton’s second law of motion applied to the punch led to:

(3.4) F = m1.γ1,

where F is the ram’s force that can be considered constant, and γ1 is the punch
acceleration. From Eq. (3.4) the punch acceleration is constant and equal to
925 m/s2. As the initial velocity and displacement are zero, one can obtain the
velocity and displacement functions:

v1 = γ1 · t,(3.5)

x1 =
1
2
· γ1 · t2.(3.6)

From Eq. (3.6), equating the displacement to the initial gap, one can solve
the time of impact and consequently, the velocity and the kinetic energy before
impact. The results (Table 3) agree with the spring-mass model (Table 2 – note
that only the acceleration step #1 is concerned). Comparing the kinetic energy
before impact and the result of Eq. (3.3): Ecut = 436 J, the energy-balance model
does not predict complete cutoff with a 10 mm gap.

Table 3. Results for the four gaps (energy-balance model).

Gap Acceleration Time of impact Impact velocity Kinetic energy
(mm) (m/s2) (ms) (m/s) (J)

0 925 0 0 0
9 925 4.41 4.08 333

10 925 4.65 4.30 370
43 925 9.64 8.92 1591

Equating the minimum kinetic energy with the cutting energy from Eq. (3.3),
the minimum impact velocity for cutting is:

(3.7) v1 =
√

2.Ecut

m1
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which gives a velocity of 4.67 m/s. With Eqs. (3.4), (3.5) and (3.6), the minimum
gap (xgap) is:

(3.8) xgap =
Ecut

F

which gives a minimum gap of 11.8 mm. The minimum gap calculated by means
of the energy-balance model agrees reasonably well with the results from the
spring-mass model (minimum gap between 9 to 10 mm – Table 2).

4. Conclusions

This paper has presented two simple models, the energy-balance model and
the spring-mass model, to describe the dynamics of mechanisms involving clear-
ances or gap and featuring repeated impacts. Both models are applied to a high
velocity adiabatic impact cutoff machine. The energy-balance model is based
on the principle of total energy conservation: the impacting component kinetic
energy is equated to the impacted component deformation energy. The spring-
mass model uses the assumption that the components are rigid enough to be
modelled by masses, and that the masses are connected by linear or non-linear
springs. Both models include contact stiffness between the components by the
use of non-linear springs.

The energy-balance model is able to predict the minimum kinetic energy
required for the metal sheet cutoff. The model is simple for use, and the results
provided are useful for tuning of one essential parameter of the machine: the
value of the initial gap between the punch and the metal sheet. However, the
model is limited to systems with only two components.

The development of the spring-mass model is more complex, and particu-
larly a numerical integration of displacements is needed (Newmark numerical
technique). Unlike the energy-balance model, it can be applied to systems with
more than two components. The minimum kinetic energy calculated with the
energy-balance model agrees reasonably well with the spring-mass model predic-
tion. Moreover, the spring-mass model predicts the displacement, the velocity,
the acceleration and the contact force history for each mass. Accurate analysis
of the cutoff process shows that the kinetic energy of the punch before impact is
the leading parameter, and that the force of the ram has a small influence during
the cutoff. This fact can explain accurately why the energy-balance is efficient.

The two models presented in this paper can be applied to other vibratory
machinery and equipment, featuring multi-degree-of-freedom oscillators with col-
liding components.
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