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'ON THE OPTIMIZATION OF ANNULAR PLATES RESTING"
'ON INCOMPRESSIBLE' LIQUID (*) :

B.D. GASANOVA and F.G. SHAMIEYV (BAKU)

The problem of minimization of weight is considered in the case ‘of annular sandwich plates,
statically indeterminate with respect to the support reactions and resting on an incompressible
liquid; the plates are subjected to axi-symmetric loads, uniformly distributed over the annufar
region. Under various boundary conditions the fields of deflection rates and limit moments are
calculated Which correspond to the opitmum design; morcover, the reactions: along the interior
contour and relations between the loads and the pressure exerted by the liquid on the plate are
derived. Numerical results are illustrated by graphs,

1. INTRODUCTION

The principles of the general theory of optimization of plastic structures have
been formulated in the papers [1, 2] containing the conditions of absolute minimum
of weight of sandwich plates and the relative minimum weight conditions of solid
structures. The conditions were then used to obtain the solutions to a number of
problems of optimum - design of plastic structures subject to undirectional loads
(cf., ‘e.g. |3]). In the papers [4, 5] circular plates were considered, loaded by two

" systems of loads acting in opposite directions. Paper [6] presents an analysis of circular
plates resting on incompressible liguids and acted upon by a centrally applied,
uniformly distributed load, : :

In this paper we shall consider the problem of optimization of annular sandwwh
plates, statically indeterminate’ with respect to the support reactions, resting upon
an incompressible liquid and subject to axi-symmetric load uniformly distributed
within an annular region, under various boundary conditions.

In the case of analogous plates acted upon by uniformly distributed load over
the entire surface, the corresponding problems of minimum of weight has been
discussed in [7-10], and the problem of load carrying capacity — in [11},

:-..:2. FORMUDATION. OF THE PROBLEM AND PRINCIPAL RELATIONS. :
" Let us consider an annular’ plate subject to various boundary conditions and
resting on an incompressible fiquid (Figs. la-d). In the cylindrical system of co-
ordinates r, ¢, z the z-axis is directed downwards. Let 4 and B denote the respective

(*¥) Paper presented at the XIX Polish Sotid Mechanics Conference held at Ruc:1anc~l’1ask1
in September 1977,
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inside and outside radii of the plate, p~the transversal load acting in the direction
of z and uniformly distributed over the angular region A4 <r < C, g-the unknown
pressure exerted by the liquid on the plate (in the case of perfectly plastic plates
assumed constant 12) to be determined from the solution,

Let us consider the model of a sandwich plate consisting of two equal girder
thin sheets. of variable thickness & separated. by a core made of a soft material of
the thickness H3>h, capable of transmitting shearing stresses only.

The material of the girder sheets is assumed to be homogeneous, perfectly plastic
and obeys both the Tresca yield law and the associated flow law.
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The problem of optlmlzatlon of the plate is now reduced to the determmatmn
of the variable thickness 4 corresponding to the minimum weight COl’ldltl()n ie.
satisfying the cond1t101_1

en . fhrd,;mm

Denoting by M, and M, the radial and tangential bendmg moments respectwely,
the - equation ‘of equlhbrlum of the plate assumes the form

_[204—(p—g)(r*— 49,  A<r<C,

(22) 2[(er) Mw] l2QA p(C2 A2)+q(r _Az) C<f{B

Here O denoie the unknown interior-suppott reactlon forces referred to a- unit
length, to be determined later. Primes denote differentiation with respect to r.
The Tresca yield conditions is represented in-the plane of ‘M,, M, by the hexagon
ABCDEF (Fig. 2), where Mo=0 Hh — the total plastic bending moment, and
—yield Hmit at pure tension or compressmn _
The Drucker Shield optimization criterion has the form [2}
D Mix+M, A

(2.3) W ———F——h =const;
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Here D is the rate of dissipation referred to a unit area of the middle surface of the
plate, xand A — the respective radlal and tangentral curvature rates whlch may be
expressed in terms of the rate of deflection W as foHows .

@4) o =W, A=W fr

Due to incompressibility of the liquid, the additional condition
(25) .. .- f W.' dl 0

is satisfied in the process of bendmg of the plate Thus in order to determme h
satisfying Fas. (2.1), the equilibrium‘condifions (2.2) and Egs. (2.3), (2.4) and (2.5)
must be solved, the Tresca vield condition-and:the associated flow law being ful-
filled. ‘
The optimal design [13} is known to y1e1d ‘the p]astrc regimes A, C, D and F.
Taking this into account, from the. equations of equilibrium (2.2) we obtain for the

states A and D M M = :tMo, the upper p]us 51gn referrmg to A and mmus —
to D

S '(r) O, A<r<C, |
(26) CLToTroavT er- ._:E{FZ"'Q” C<K<B, o

- For the- plastlc states F and C(M = 0 M = d:Mo, the plus srgn referrmg to F)
we obtam S T iy e

o 2(.'MU) _ i{F +;1: “pr, ’éifiﬁ

where O .

G8) T T Ea PO (p gy AT A Fi__pcz s
From the optmnzatlon condltlon (2 3) and Eq (2 4) it follows that ;

&2 N ~

‘for the states A and .D (the mmus s1gn to be referred to A) and _ ,L}
. 10) W'= 1o

for states F and C (the mlnus 51gn for., be referred to: F), & denotmg an additional
constant, St E5 N

3. -Emmir‘ss e

i 1 . G
3.1. Annular plates clamped at the contours.

Under the loadmg angd supportmg condltrons assumed m the region adjacent
to the interior contour, the plate will be deflected downwards and in the remaining
region — upwards (due to 1ncompre_s_s_1b_‘11rty,_._gf the fluid). The axial symmetry

Rozprawy Inzynlerskie — 13
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conditions will be preserved. Tt is easily seen that in the case of a clamped
plate (Fig. la) there exist the regions A<r< R, Ri<r<R, R, r< Ry,
R,<r<R,, R,<r<Rs; and R, <r< B characterized by the tespective
plastic states D, F, 4, C,D and F. Such a plastic state is shown schematically
in Fig. 3a.

Hence, in order to determine the deflection rates, after solving the system ‘of six
differential equations of the type (2.9) and (2.10), we must determine 12 integration
constants and five unknown radii of the plastic regions. To this end the following
boundary and continuity conditions for W and W' are used

W= W"_='O at r=A-,
W=w'=0 at r=Bh,
[Wl=[W'}=0 at r=R,,
(i=1,2, ..., 5).

(3.1)

Here [W] and [W'] denote the jumps of W and W'. Since W'=0 at r=R, and
r=R,, Bgs. (3.1) yield 16 conditions, and for the determination of the 17th unknown
the additional condition (2.5) may be used.

In order to determine the thickness of the plate, seven differential equatlons
of the type (2.6) and (2.7) must be solved; seven integration constants will . then
appear and, in addition, the liquid pressure and the support reaction at the internal
contour will also be unknown. To determine the unknowns, let us apply the followmg
continuity conditions for M,: '

(3.2) [M,]=0 at r=R, and r=C (i=1,2,.,5.

Since the radial bending moment changes its sign in passing through r=R,,r=R;
and r= Rs, we obtain '
3.3 M =0 at r= R, r=R3 and r=R5,‘ T

and Egs. (3.2) yield the 9 necessary conditions.

Before detenmnmg W and My=0, Hh let us introduce the dimensionless quan-
tities .

Mr . Mq, Mo'
mr=4“},§?s =4~ gzs Mo 4;@3
W F - F. -
W=4‘—_2—, Fl '_Lz: 2= 22 s Q=—Q_,
(3.4) a3 pB pB pB
o 4 foi _Roa "
C .B E a= B > c= B 2 P! -—. .B L p
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From Egs. (2.9), (2.10) and (3.1}, (3.4) we obtain
izua2<1+21n£),
S -
20E@pa=8)-2p4 Pz]'—a2(1+21n71)+3pf,
-—éz+2(pzlni;{'azlhi)'—;dz{-g( 24 pD)—dpy p
(3.5) w= 2 p. 01 BRI St 1025

p
2[‘5(5“2;04)"{']942.111;%'I]+3Pi+l’5 (4-3ps),

.¢2+2[piln—”§- —1]+p5 @—3ps),

—2(¢-1)%,

The values of py, pa, ..., p5s are determined from the relations

=p13p—2p3), P§=Ps(3ﬂs"’2p4)s P4 ps(3ps—2),

' £1 Pa
3.6 2 11y e e + L2 ]
(3.6) 2[ In-—~ pzlnp p4l 1

Pa

195

ag-—é“{pl E

p1\<~6\<~p2’

ngf‘-{ Pas

pasi<spy,

P4$5$P5 H

ps<é<l,

=3(p1+p3—pi— Pt pd)+A4(~ plpz+p3p4 ps)—a,

and from Eq. (2, 5) we obtain the additional condition

(3.6 27(pt— p3+P5)+P2 P4_16(P1p2-P3 P4+Ps)=

=6(a® pi— p1 pi+p3 p)+3a* +2.

i
Pa ._,-—-""'_/
a8 | ?
=
26 L~ e

F AA | 04 y

3]
=)
N

o

sl /o

¢
Fia. 3. Fia, 4.

2 4 of 08 10

The dependence of g, (i=1,2, ..., 5) on a is shown in Fig. 4. From the associated
flow law it follows that for the regime 4 x>0, 1= 0w <0, w' < 0) and for the

regime D k<0, A<0{w" 20, w = Q).
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1t is seen from Eq. (3.5) that these conditions are satisfied. From the regime F
the condition 0 < —A<x, and for C the condition 0 < A< —x is also satisfied
what is @vident from Eaq. (3.5) if py = p2/2, p3 = p4/2 and ps = 1/2. On the basis
of Eq. (3.6) these inequalities are also found to be satisfied. In this manner the
kinematically possible deflection: rate field (3.5) satisfies the assoctated flow Iaw.
In determining the thickness k the solution will be found to depend on the value
of the radius C. Let us consider the partlcular cases

1) Assume that < e< py. Then

(lmic)ifz+2(Filﬁ%+czjﬁ%)f'cz+fcpf,- aé{,"é;c,
1/ :
v k(Pf_éz)‘i'zF_zIH'%l';' : CQ'ESPU
2607 K@= pD+3F ¢l O p<ELp,
(3‘7) Mo = 9 : f : : : : o
k(é —-p3)+2F21n7)w 4 L pasésps,
2039 [k (p3~ 63)+3F2(p3 @], _ Pa<EL P,
k(p—E)+2F;In —’{5 o nsess,
| 2(35)-1{k(£3—p5)+3ﬁz(é Pl peséslL

The continuity conditions of m, at &= pz and &= p,,, yield the followmg relatlons
to be used for determmmg k and’ 0 -

28 {IZaQ —A k=6(c*-a%),
(3:8) 1200 —B, k=6{c*—a%), -
Here o
Y 6a2 P Gr—r)—2p]
1= E
pim pz((l+ln§—)
. el 2
(39) : ~ - ; 2 2
TP . Gp2—r)—2p}
r Co A 1422
! ! ; R Pa—pa\1tin Pl
! : B ’ ‘ . .
From Eqs (3.8) it is seen that '
(3.10) s o k=0,. 0= %
and hence we finally obtain
BT RN R N SR S 2+~'- 2 2 ln _..__I), asésc, T b IR R i,

| 0 i . Csf{l-
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2) If we assume that p; < ¢ < p,, then

P o
(—k) (= p2)+2F, In—, a<é<ps,

g
203871 [(L—k) (B3 —EN+3F E~p)s  pisése,
2(35)“1[kéz'+3F1(a,E p;)+c (2c=3+(1—k) pi], c<E<ps.

In the region p, < &<1 the correspondmg expressmns of Egs. (3.7) are valid. To-
determine k& and Q0 we have now the equation

,_ llZaQ—AL.k:C’l,

(3.12) my=

(3.13) - : _
12a0 —~B; k=6 (c>*~a?).
Here : _
- ° o 223+ p2—3¢? :
(3.14) o (i) 4L P)

14+In ——)
P Pz( 22

In particular, when c=p; all the formulae of Sections 1 and 2 coincide.
3 I p, << pa, then

Y - Vo
(3.15) rn0=(k—1)52+2(F1 1n-~p~;~+c""ln-i—3 —kpi+c?, pa<ié<e.

Regarding m, in the regions ¢ <& < py and c< <1, the values of m, will
be the same as those calculated for the regions asé<c and P <¢<1in the
preceding section. -

For the evaluation of k and J wé us¢ the conditions

: l 1200~ Ay k=Cy,

(3.16) v
12a0 — B, k=6 (c*—a?),
Here "
2 2 p
_ pz(pz—~3c)+2p1-66 pzln——
3.1 ——6a2+ '

— 1+In _) L
At ¢=p, all the formulae derived in Sections 2 and 3 coincide. .
4) Let us assume - p3 <¢.< pg.: Then
2 <o
(l_k)(pa §)+2F1 In '};" ‘ Pz{:f‘éﬂa;
3.0 -

318) g =
G18) o=} 5 31 [(1—k) (& = p)+3F, (ps—E], pe<i<e;

20387 [~kE+3F i (ps— O+ BE~20-(1—k) p3],  ese<psn
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In the regions a < ¢ < p, and p, < &< 1 the corresponding formulae derived
in the preceding section will hold true. In order to determine k and J we obtain

‘12aQ+(1—k)A1$0,

(3.19) -
12a0— B, k=Cs.
Here
21 ps (P2 32 +2c3
(3.20) : Cy=6(¢*—a*)+ Lps (s o ] .
Pa

If ¢=p,, all the formulae of Sections 3 and 4 coincide.
5) If it is assumed that py < c< ps, then

¢
(3.2D) m0=(1——k)<‘j"‘+2(_F_11n~%5—+c21n—5;—)+kp§—cz, pasé<e.

Tn the regions a < €< p, and ¢ < < 1 the formulae derived in the preceding
section for the regions a< ¢ < ¢ and p, < ¢ <1 hold true.
The formulae needed for the determination of & and ¢ have the form

l 1260 +(1—k) 4, =0,

(3.22) i
12aQ-Bl k=C4-’
with
' 2 2 3 2 Ps
. ‘ pa (pi—3c y+2p;—6¢ p4}n_,.é_

Ps
P

4

In particular, for ¢=p, all the formulae of Sections 4 and 5 coincide.
6) Finally, if we assume that ps < <1, then

{(1 (&2 p2y+2F In l;s » pa=E=ps,
2, 0= i Lo -
(3.24) m iz(sc)- [(15k)(pg—53)+3F1‘(§—ps)], ) - pssése,,

2681 [ke343F, (¢ po)+¢* Qe—30)+(1~K) pf], e<E<T.

Regarding m, in the region a < €< p¢, thc expressmns denved in the precedmg
section are valid. ‘ :
For the determination of & and § we: us¢ the. equations -+

1240 + (1~ ) 4,=0,

(3.25)
12aQ+(1 k) B, =0,

whence

(.26) k=1, =0
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In this. manner we finaily obtain .
_}0, a<i<e,
Moo=V 231 B3 ~3c2 E+2¢%],  e<éEI.

In'a similar way the solution may be obtained is the case of the load p acting
in the region ¢ <& <1. Then the ‘equilibrium equation (2.2) is replaced with

' . 204+q(r* --Az) A<r<C,

2y =Me] = {ZQA—p (2~ CH4q(2—4Y), C<r<B.
The region adjacent to the interior contour will now be deflected upwards, and the
remaining region — downwards, and it is easily seen that in the regions a< {< py,
Ppr<ES pa p2SES pay P3SES puy pasE<ps, ps<ES ] of the plate, the
plastic states 4, C, D, F, 4 and C will appear.

In conclusion, the solution may be obtained correspondmg to the case of the
ioad p acting within an arbitrary annular region ¢<¢<d, with ¢c>a and d< 1.

(3.27)

3.2. Annular plates clamped at the interior contour and simply supported at the
exterior contour

For such plates the boundary conditions are
w=w'=0 at &=aqa,
(3.28) w=0 | ¢=1,
. me=0 = &=
It is easily demonstrated that the plastic states (shown schematically in Fig. 3b)
differ from the case discussed in Section 1 by the absence of the plastic regime F
corfesponding to the region ps<<&<1

Pi ‘adjacent to the exterior contour, Hence,
w s ,______._—-——-‘7 in the annular regions a< &< p,, p1 <
“""'T/% ' LK P, P2SEK pyy p3SES Poy Pas
oe £ 1 the plastic regimes D, F, A, C, D
i will be formed. Except for the third

06 b | pd expression (3.6) obtained from the condi-
y * tion: of continuity of w’ at £=p;,all the

a4 PT/ _ formulae derived in Section 3.1 remain
// ' |- walid in this case if &=:ps is replaced

| with the dimensionless radius of the

o az a4 a5 04 'Eﬂ - interior contour, i.e. £=1. The dependence

FIG. 5. of p; (i=1, ..., 4) is shown in Fig. 5,

3.3. Anmular plates simply supported at the interior contour and clamped at the
exterior contour

For such plates the boundary conditions are
w=0 -at F=q, .
G2) . w=w=0 E=1,
' '  om=0  ¢=a
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The plastic region adjacent to the inside contour and corresponding to the plastic
regime D will now be absent from the plate. Such a state is schematically shown
in Fig. 3c. Thus the plastic regimes F, 4, C, D and F occur in the plate in the respective
regions a << pr, PL<ES pr, P2 S ES Py, pa<E< pys and pa< &1 Except
for the first expression (3.6) obtained from the condition of continuity of w’ at
&=py, all the formulae derived in Section 3.1 remain valid in the case considered,
provided p,, pa, p3, ps and ps are replaced with a, pi, P2s P3, and pg.

From the associated flow Jaw for the reginie F in the region a < & < p, it follows
that ‘@ > P12 and thus the solu‘uons obtamed w1ll be vahd for narrow annular
pIateS ,. : AR A REEEREE .

If a< p, /2, the plastic regime D occurs in" the plate similarly to the situation
encountered m plates clamped at mtenor contours near that edge Let this region
be a< &< po. In the tegions po < €< py, SES Py, pr<ES Py, paSE< pa
and p, < &< 1 the previously mentioned regimes F, 4, C, D, F will be preserved.

" On using the boundary conditions - (3.29) and the correspondmg continuity
conditions we obtain

fz—az(l—Zlné) SO asi< pg,
- p . .
2[—6(6—2;)1)4—&2-ln¢]+3p§—a2—4ﬂo £ Posé<py,

. | : , 5 , i N et . - . -.
(3.30)  w= —< +2 P1ln“p_+a 111"_ +3(ps+ p})—at—dpypy  pi<E<py;
2[5(6—'2'93)+p§ ln'—"— “1]+3p§+p4 {4-3p,) pr<é<ps,

P L .

éz+2(psln?--l)+p4(4 3pa) S CpaE€ py,

=2@-17 o pesésl.

The values Pos P1s Pas P3s p4 are. determlned from the relations
» a, =Po (2P1—3_P0), Pl Pz (3,02"'2;03) , Pi=pa(3p—2),
' Po =, P2 Pa
(3.3 2(a21n——+ 2t 21,1,“_.;_1),,
o a pl_'pi’ Ps P
=3(=pa—pi+ P34 Pa— P+ 4(po pr=p2 P3+ pa)s

the first expression being derived from the flow law.
Another condition is found from Eq (2 5)

(3.32) 9(—a*+p5—pi-pD- 191+P3+2 8(!’1.01 P2P3)+6(a P0+P Pz)-

Figure 6 shown the relations between p; (i=0, .', 4) and a defined by Eqgs. (3.30)
and (3.31). S
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" It is easily seen that while in the case of plates clamped at interior contours the
condition w' =0 is satisfied at {=a for any a, the same condition in plates simply
supported at that contour is satisfied :

only if a=0. g

In the particular case of a=p,/2 the B 4
solutions concerning narrow and wide l I % 7
plates are identical. o S— / /

The value of m, is calculated by ~ - Pz / ///
means of the formulae derived in Sect.. @ 08 e
3.1. It is easily verified, however, that ' y d
m,=0 does not hold 'true at the 'interior =~ 04 f—ii i //
contour. To fulfill this condition it is =~ "~ |~ | e
assumed [9] that the annular zone of ‘an g, N :
infinitesimal width adjacent to the interior = -
contour is characterized by ‘the plastic
regime ED of the yield hexagon, and that . ¢ 0z 04 as o8 ®
in the limit of that width approaching o - -Fie: 6. '

zero the regime is transformed to D. The
infinitesimal width of the annular zone is denotcd by (p --q). If the assumptlon
is made that

a) pt<e< po, then the equilibrium equations yield

m=2 (30 [3(Fi~2) E-a—(1-0) (@ ~a®)  a<i<p?,

_. c
|[(1—k) (5”(1?1 ln—pi+c2 In —)—c2+kp§, pr<ié<e,
(3 33) e f Po
0=

lk(pﬂ 52)4-21«"2 in 2% e<ES po.

tf

Here

’ . | H’l . . 3 . V * E
(3.34) Tﬁo=“oﬁ3_:[12(11*—a)]"l{6F—1[p*(l—in—);—)—a]—-

(1]
—6p* ¢ In T4 (1-K) (2 + ) +3p* (¢ — kg }

and A is the constant width of the annular zone.
b) If pa<€c< pe,s then

m, =‘z(35)-1[3 (F\— ) (zf—a)'—a—k) (&3 —a%), a<é<p*,

(3.35) :

) : moﬁ(l k) (62 P0)+2F1 ln é prsé<p,
Hete'

. | . | N e
(336) T g = [;2(p*ma)}'1 {6F1 [p*(lwln p—)-—-a]-l—

+(1—k) (Qa®+ p*3 —3p* pﬁ)}.
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In the remaining region p, < &< 1 the value of m, is determined on the basis
of the formulae of Section 3.1 in which p, should be replaced with po. Similar
changes should be done in determining & and Q.

3.4. Annular plates simply supporied at the contours

In this case the boundary conditions are
w=0 at ¢=a and ¢&=1,

3.37 :
G370 m,=0 E=a - - €=1.

Plastic states of such p]ates differ from those deﬁned in the precedmg section by the
absence of the Tegion characterized by the regime F adjacent to the interior contour.
Such a state is schematically shown in Fig. 3d. Thus the formulae of the preceding
section remain true provided &= p, is replaced with the dimensionless radius =1
of the exterior contour. It follows that in the case of wide plates, the plastic regimes

(o, 1, P2, Pa
10
L1 7]
Pr L v
_/ / A
a8 7
o5 FT—] / APt -
- A k4
P / 1
e k P
s e
ng .
Po yd P N
az s : A~ 7
/
) a2 {/ i t O
: : ) -
o =t 14’/—'4\&:&:;
0 02 od 06 o8 70 0z 64 b5 0F a8 10
a C
Fia. 7. ' " Fie. 8.
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ooz
by . c=08
oot
]
M i
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3 p N 0055
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SN 500~ >0
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D, F, A, C, D occur within the regions a< &< po, po S p, pLSEL po, ;2 €

€ € € py and p, < € < 1. In the case of narrow plates the region a < {p, dissappears
and in the corresponding formulae it should be assumed that py=a.

A special program written in ALGOL was prepared to evaluate po, p1, P2, P3

' on a BESM-6 computer. The results of

me b computations of p,— p; as functions of &
opl e are shown in Fig. 7. It is seen from the
graphs that 2=0.2121 constitutes the limit-
ing value between the narrow and wide
o e 7 . . plates.
05 0539 : - ‘Figure & illustrates the dependence of
ot 107|028 k and 0 on ¢ for narrow plates ¢=0.5
L 09 10054 o (continuous line) and for wide plates 2=0.1
o5 | I .\ (dasbed lin¢). The deflection rates w as
\\ =05 Lo .. functions of ¢ in the two cases of plates
e | ﬂi AN I N are shown in Fig. 9, while the dependence
o N0 N S——===\ . of thickness upon & for various cin narrow
ot ozf, 0 050, oa - & and wide plates is illustrated by Figs. 10
Fig. 11, and 11.

The problem considered here originated
during the author’s second stay at the Institute of Fundamental Technological
Research of the Polish Academy of Sciences in Warsaw. The. author is grateful to
Professors 7., Mraz and A. SawczUK for advice in the research. Both authors
thank N. V. Banicauk, M. I Rerrman and G. 8. SHAPIRO for discussing the results
n the USSR Academy of Sciences Institute for Problems of Mechanics.
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“STRESZCZENIE

O OPTYMALIZACII PLYT PIERSCIENIOWYCH
“ SPOCZYWAJACYCH NA CIECZY NIESCISLIWE]

~Rozpatrzono zagadnienie minimalizacji cigzaru uwarstwionych plyt piericieniowych, statycznie
mewyznaczalnych wrzgledem reakcii podporowych, spoczywajacych na cieczy nicécisliwel i pod-
dauych dzjataniu osiowo-symetryczriego obeigzenia rownomiernie roziozonego na obszarze plericie-
niowym. Przy roznych warunkach brzegowych okresla si¢ pole predkodci ugieé oraz momenty gra-
niczne odpowiadajace projektowi optymalnemu, jak rowniez reakcje na konturze wewnegfrznym
plvty oraz zaleinojci migdzy obcigzeniem a. ciSnieniem wywieranym na plytg przez ciecz Wyniki
obliczen numerycznych przedstawiono w pos@aqi wykresow. ' E

"PGBPOMC

OB OHTHMHBAHI/T[/I KONBIEBBIX IIJ'[ACTPII-IOI{ HE)KA]J.II/IX HA HECKUMAEMO
HUOKOCTH L

Paccma'rpusaercs{ 3a7ATA MAHHMEIALEE BECA CTATHMECKH Heoupc,t(cnmmx Ho OTHONICHHIO
OTOPHBIX. Peaxifmil KPYFIAIX KONBIEBRIX CHOMCTRIX YIACTHAROK, JeXAINY HA ReCHHMAeMON MHg-
KOCTH H HAXOOANEXCS 00J AeHCTBEEM OCECHMMETPHMHOHN, PABHOMEPHO DACHPEReAcHHOH B KOJTb-
meBoi ofnacty Harpysiu. TIpE pasnwvHeiX CPAHATHAX YCHOBUAX ONPEIENMIOTCS IOl CKOPOCTel
IpoTHOOE H NPEJEALHEIX MOMEHTOR, COOTBETCTBYIOLIWE ONTAMANFHOMY IPOCSKTY, OIHOPHAST PeAKUHA
HA BHYTPCHHEM KOHTYPE, 4 TAKKe BIAMMONCHCTBHE MEH/LY HPATOKCHHON HATDY3KOll H NABACHAEM
KUNKOCTH Ha TUICTHAKY, Pe3ynbTaTh MHCISERFIX pacqeron ITIJ]IBOI(HTCH B BHIE rpadmkon
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