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ON MAXWELL'S, KLEIN'S AND WIEGHARDT'S STRESS FUNCTIONS
FOR DISCONTINUOUS MEDIA

G. RIEDER (AACHEN)

When working on reciprocal diagrams, later named after Cremona, Maxwell noticed that the
statics of plane frames in the absence of external forces can be represented by a piecewise linear,
discontinuous stress function of Airy type. Klein and Wieghardt visualized this by the “stress
surface”, portraying Airy’s function degenerating into a piecewise plane “facet surface™. In 1920
Funk proposed its practical application in connection with Castigliano’s principle, Following
lines of analogy proposed by Kron, Kardestuncer and others, the static quantities defining each
“facet” prove to be analogous to the circular currents of electrical networks in the same sense as
displacement and rotation of a joint in a frame arc analogous to the potential of an electric network
node. Generalizations into space are discossed.

1. INTRODUCTION. .

This paper does not deal with anything new in particular apart from some sketchy
extensions in the concluding paragraph. The essence of the present work is due
to MAXWELL [20]; it was later reformulated and exposed in a very clear and per-
ceptible way by Kremw and WIEGHARDT [21] and applied to civil engineering by
Funk [24]. The strange thing is that seemingly nobody used it, not even Funk
himself who later published a standard work on variational methods [28]. It is
only recently that he died in Vienna. On the other hand, the numerical advantages
are apparent for frames that have fewer loops (meshes) the joints (nodes), and
simultaneous use of deformation and stress function methods allows boundmg for
approximations of hypercircle type for large systems [6-12].

Maxwell had started from Airy’s stress function and its boundary conditions [25].
Here we start from the theory of oriented graphs [1-5, 34], well known and extensive-
ly used for the calculation of ‘currents and voltages in electrical networks (see,
e.z., [13]). So we can establish. analogies  between the scalars of Ohm resistor net-
works and beams with a thin-walled cellular cross-section on the one hand, and the
motors [29, 30] of elastic frames on the other hand. This allows to transfer hyper-
circle methods from elastic siructures to electrical networks, and Prandil’s stress
function for thin-walled cross-sections arises from a direct analogy with circular
electric currents.

Reference should be made here to previous work on electro-mechanical analogies
and introduction of topological concepts into the theory of elastic structures, such
as in [1-5, 32] and the papers cited there, especially of G. Kron.
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2. BRANCH, NODE AND MESH METHODS IN ELECTRICITY

The topological concept usual in network analysis is sketched in its very simplest
form in Fig. 1; we consider the branch z (heavy line), mark a direction on it (arrow)
and note that, on the one hand, it connects two nodes k= (z) and &kt (z) and, on

‘the other hand, it scparates two meshes oriented by usually counterclockwise (cir-

cular arrows) m™ (z) amd m* (2), the 4 and — indices denoting coincidence or
anticoincidence with the orientation of the branch. The formulation indicates
duality betwen nodes and meshes with respect to the branches, and this duality
indeed shows itself very clearly in the different methods of solution.

This duality is only obscured slightly by the use of the total number K of nodes,

* but only the number M of independent meshes which, after Euler’s polyhedron
formula, for simply connected planar nets add up to the number Z of branches
plus one: -

2.1 K+M=Z+1.

By suitable conventions this relation can also be preserved for non-planar nets
of the KuraTowskr type. [33]. i
Some authors therefore consider only the number N=M—1 of indépendent
nodes (one node is considered as an “outer node”) [32]; another way of restoring
of meshes to L=M--1 by adding an “outer mesh” oriented clockwise after Fig. 2

Frs. 1. Branches, nodes and meshes. i, Fic. 2. The outer mesh.

in the simplest case, and containing, in general, all branches that have been passed
only once in going around the independent meshes, n the opposite direction.

“The unknowns are the branch currents or, connected to them by Ohm’s law,
the branch voltages. They are to be computed from prescribed inflows at the nodes
and circular electromotive forces (EMFs) around the meshes (Fig. 3). Kirchhoff’s
laws yield K node conditions for currents and M mesh conditions for voltages in
the “branch method” where the branch currents themselves serve as unknowns.
From Eq. (2.1) we see that the number of cquations exceeds the number of unknowns
by one; it can be shown that one node equation is supetfluous and will only be
non-contradictory to the others if the prescribed inflows sum up to zero, correspond-
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ing to the conservation of electric charge. Therefore, only K—1 of the K node
conditions are independent.

- A similar solvability condition would arise if we included the Kirchhoff voltage
condition for the outer mesh. In Fig. 4 it is shown how a circular EMF can be

“-- Frg. 3. Circular EMFE. Fic. 4. A single circular EMF in an elecirical network.

introduced into a single mesh of a complete net. We have to make some cut going
through from the mesh in question to the outer mesh and to introduce identical
EMFs into every branch passed on the way. For the rest the cut is arbitrary as
long as'it connécts the two meshes; it is even possible to distribute the circular EMF
on several cuts of the same sort. Now it is easily seen that the sum of circular EMFs
of a complete system of méshes will cancel, as in passing through all circuits, every
EMF is passed twice in opposite directions. And this is exactly the condition that
the Kirchhoff equation for outer mesh will not contradict the other mesh equations.

It is clear, after Eq. (2.1), that cither K or M or both of them are smaller than Z.
It would therefore save a lot of computatlonal labour if the number of unknowns
could bé reduced to K —1 resp M or to an even smallcr number if the problem posed
allows it.

Indeed, the “node method”_ allows the number of unknowns and equations to
be reduced to the number X of “{ree” nodes, for which this potential is not pre-
scribed, by ascribing to each node a potential —ﬂk, which means N=K—1 equations
at’ the most as, if for ‘o node the potential is ascrlbed it ‘must be fixed arbitrarily
for oné of them. Here voltage U, and current I, in-branch z take the form
(22) R o _Uz=uk'_" (z)f"uk_ (z)s Iz _E Uz .

This form ‘8f solution guarantees the vanishing of all circular EMFs; and the un-
knowh' potentials have now to be determined so as to comply with Kirchhoff’s
node conditions. Using the node-incidence matrix (£ZK), with element -1 for
the origin node and +1 for the end node of each branch and zeros for the rest,
we obtain for the mﬂows J, at the nodes k, col]ectmg them into a column matrix

(23) P - (tx/)xx (uk)K_(Jk)Ki
24 . (W)KK"(‘gZK)T(I/Rz)zz (é’ZK),
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where (1/R,)zz is the diagonal matrix of the conductivities 1/R.. The symmetry
of the matrix (2.4) is clearly apparent. In the sequel prescribed quantities will be
marked by a hook. If J,=J, is prescribed on every node, then the sum must comply
with the above condition of the disappearing sum, if the system (2.3) is to have
a solution, whilst, on the other hand, one #, may be prescribed at will. This means
K—1 equations for K-~ 1 unknown potentials. If, on the other hand, the inflows
J., are only prescribed on the K, nodes with numbers k,, and the potentials — Uy
on the K, remaining ones numbered k,, the system (2.3) reduces, after appropriate
reordering, to the general form

(2.5) . (f)x, K_,(ukJ)KJ_(JkJ’)KJ (J{)K, ,,(”)K ,

- where (#)g, &, and (A')g, g, are the corresponding quadratic respective rectangular
sections of the original matrix (2.4).

For non-disappearing circular EMTs, some distribution of currents complying

with Kirchhoff’s mesh conditions is constructed without regard to the node con-
ditions, be it by trial and error or systematically along a complete tree of a dual
net, which arises from the original net by interchanging nodes and meshes. Then,
after solving an equation of the type (2.5), another distribution of currents of the
form (2.2) is added to give the corect inflows and potentials at the nodes.-
. The “meésh method” on the other hand as the dual counterpart of the node
method reduces the number of unknowns and equations to the number M of
independent meshes by ascribing to each independent mesh m a circular current .
Here 7, and U, take the form

(2 6) . I "’tm (=3 Im (z): U _"R I

“This form of solution guarantees the vanishing of all inflows at the nodes, and the
unknown circular currents have now to be determined so as to comply with Kir-
chhoff’s mesh conditions with prescribed circular EMFs (Fig. 3)

) ) . {Znry " . )
(27) C i n W= 2 V= (m.'.’)+ Wiad»
' ¢=1

where (Zm) is the number of branches of the mesh m, whilst z* * (mg) are the suc-
cessive branch indices when going around the mesh, ‘and the marks + respectively
— on z denote whether orientation of branch and mesh do or do not coincide.
¥V, is the prescribed EMF in branch z, referred to the branch orientation, and Wind
allows for the inductive contribution of a time-dependent magnetic field. If the
circular current 7y, of the outer mesh is assumed to be zero, we obtain, after i in-
troducmg the mesh-incidence matrix (€ ZM), the matrix equatlon for the unknowns fu

(2.8) _ | o (e = —Wadss .
@9 (M =(EZMY (R),(6ZM),

where (R,)zz is the diagonal matrix of the Ohm resistapces R,.
The case of prescribed circular currents in meshes other than the outer one may
be omitted for lack of practical relevance, but non-disappearing inflow must.be
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considered. If non-zero inflows J,; are prescribed in some nodes &;, we construct,
by trial and error or using a complete tree, some distribution of currents complying
with Kirchhoff’s node conditions and then add, after solving an equation of the
type (2.8), currents of the type (2.6} to arrive at the correct circular EMFs. The
nodes k,, where the potentials —u, are prescribed, should be connected by zero-
-resistance “blind branches” with EMFs to a formal outer node; then, in the newly-
-formed meshes circular EMFs arise that can be included in the above treatment.
If it is necessary to fulfil the sum condition on inflows, a non-zerc inflow must
attributed to the outer node.

3. ELECTRICAL NETWORKS AND BEAWS WITH CELLULAR CROSS-SECTION

There is a one-to-one correspondence between branches of electrical networks
and the traces in the transverse plane of the single web plates of a beam with multiply
connected, thin-walled (“‘cellular’) cross-section (Figs. 5-8). Flow quantities of the

N /

¥i1G. 5. Forces and displacernents of a bearn  Fi, 6. Screw dislocation in a mesh of the beam’s
with cellular cross-section. cross-section. The cell corresponding to the mesh is
cut along its axis, rewelded in dislocated position
and allowed to relax. Then W is the relative dis-
placement of the edges of the cut.

electno net correspond to statical quanutles of the elastic beam, and voltages resp.
potentials to geometrlcal quantities.

So; if I, denotes, in the usual terminology of ‘elasticity and civil engmeenng,
the shear fiow in the web plate z, and, after appropriate sign convention, J, a uniform
distribution of forces along the (infinite straight) nodal line k (Fig. 5), then Kir-

chhoff’s node condition
{Zk>

(3 1) o . 2 +1, i(,‘ow,‘_o

descrxbes exactly the ethbrlum condltion for the nodal hne k.
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On the other hand, if UF denotes the elastic relative displacement of the nodal
line k* (z) with respect to k~ (z) along the beam’s axis, then, by appropriate sign
¢onvention, Kirchhoff’s mesh condition .

' (Zm)
(3.2) Y AUyt Wa=0

=1
describes exactly the compatibility condition for the mesh m where
{Zmy

(3 ’3) I/Vm 2 +V, zX(mi)

- is the negative Burgers vector of a screw dislocation {15] in this mesh (Fig. 6), and
¥, is the non-elastic (e.g. plastic) relative displacement of the nodal lines bounding
the web plate z. The analogy to Eq.(2.7) is obvious.

Fic. 7. Introducing a ‘dislocation into an - FiG. 8. Prandtl’s stfess function fof a beam with
elastic striiciure {(cross-section of a thin walled ™~ - celllar cross-section.”
bedam or plane framework).

Figure 7 shows how to introduce such a screw dislocation into a single mesh
of a complete cross-section. We have first to make a cut as in Fig 4; for simplicity
wé now cut very close to a sequence of branches (Web plates) connectmg the mesh'
in questlon with the outer mesh (Fig. 7). Both ends of the cut are now dlsplaced
by an equal amount with respect to one another and perpendiculaﬂy t0 the Cross-
-section plane as in Fig. 6, and refixed in the dislocated position. For a better under-
standing of the problem, one may stiffen the web plates on one edge .of the cutf to
complete rigidity and insert new rigid web plates on the other edge before cutting
and dislocating, In order to resoften them to their former elasticity, one must remove
them after refixing in the dislocated posmon The analogy to the mrcular EMF is
evident from comparison of: Figs. 4 and 7.~ ' .




ON MAXWELL'S, KLEIN'S AND WIEGHARDI'S STRESS FUNCTIONS 9

The role of Ohm’s resisiance of a branch is, in the analogy, being assumed by
the elastic compliance of a web plate. If the web plate is plane, has the thlckness Ay,
the width /., and its material has the shear modulus G, then

L

(3.4) R, ::E?I .

It is easy to see now that the negative potential #, of a node in the electrical
network corresponds to the longitudinal displacement in the elastic analogy (Fig. 5).
Equation (2.3), therefore, formulates the problem for a cellular beam without dis-
locations, or for the dislocation-free part of its elastic state after the “deformation
method”.

For the ”equi]ibrium method” or “force method™ we may, in analogy to circular
currents, introduce circular shear flows [35, 36]. But it is easier to perceive the
connection to the usual form of the thick-walled cross-section theory [37, 381 if #,
i1s considered following Fig. 8 as a function. of position in the cross-section plane,
constant in the area enclosed by each mesh and discontinuous on every stressed
branch. It turns out then to be Prandtl’s stress function in its general form.

The analogy, of course, may be used to model the shear flows in a cellular beam
by the currents of an electric network. But it is to be noted that the analogy rests
on the hypothesis that the web plates are deformed by shear only and remain plane.
This will not, in general, be possible without drilling torques on the (far away)
ends of the beam. So, for example, a screw dislocation i in a one-cell cross-section
will, within the limits of the linear theory, never produce stresses by itself as, in three-
-dimensional space, the thin walls can relax by bending (paper model).

The most important applications of this theory are heither real force distribution
on nodal lines nor real screw dislocations in meshes, but the calculation of secondary
stress systems to primary stresses in three dimensions which either would correspond
to systems of screw dislocations if the nodal lines were kept straight and parallel
and not bént to screw-shape (de St. Venant’s torsion), or could not be maintained
without forces en hodal lines (warping of 'cross-section'by secondary stresses in
bending with shear force).

Without going into details of derivation [26], we state that for de St. Venant’
torsion the slresses are the same as if there were a screw dislocation of a negative
Borgers vector in every mesh m enclosing the area I,

(35) R . s W= —2F, 82,

where £ is the drilling angle per unit length. For a homogeneous beam material,
Prandil’s stress function is often reduced, by division with GQ to a function ¥
with purely geometrical meaning.

From Bredt’s formulae it is well known that the dnllmg torque transmitted by
a single circular shear flow is the product of the shear flow with the double cross-
-sectional area enclosed. In our interpretation this is proportional to the volume
bounded by the stép function of Fig. 8. Thus, the proportionality of the torque
transmitted with the volume of PrandtlP’s stress hill, well-known from thick-walled
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or full cross-sections, does also apply for thin-walled ones. Only Prandtl’s stress
hill is no more the smooth surface of a soap film, but a landscape of plane plateaus
separated by vertical cliffs. -

We omit here the more complicated case of bending with shear force and refer
the reader to [26]. But it should be remarked that there are two definitions  of the
“center of shear” in literature, both limited to the case of a homogeneous beam
material or, at least, the constant Poisson’s ratio over the whole_ cross-section.
One definition starts from the disappearing of local torsion on the cross-section
barycenter [38, 39] and the other one from the postulate of orthogonality, in a sense
to. be defined in the next section, of torsional and shear force stresses [40, 41]. We
propose to call the first one, with [38, 39], “flexure center” and the second  one
" “torsion center”. In general, the two definitions do not coincide, except for symmetric
and — within the order of wall thickness — open thin-walled cross-sections. They
differ also for the closed thin-walled cross-sections treated here, such that in the
principal axes system of the cross-section ' '

(3.6) f Y¥ds, |

Y o (m +1)
where .#, is the geometric moment of inertia with respect to the y-axis, m Poisson’s
number and the integral represents the moment of the reduced Prandtl stress hill
with respect to the x-axis, parallel to which the resuliant shear foree acts.
Before generallzmg this picture to the plane framework, we shall, in the next
section, discuss the dual variational principles of elasticity which lend themselves
very well to combination with simultaneous application of node and mesh methods.

4. ON THE HYPERCIRCLE METHOD

Already MAXWELL [14], knew that for a network without circular. EMFs “the
heat... generated when Ohm’s law is fulfilled is mechanically equivalent... fo the sum
of the quantities of electricity supplied at the different external electrodes, each multi-
plied by the potential at which it is supplied”. Now, if there are inflows and circular
currents at the same time, we have, by the Ii’néarity of Ohlim’s law, a linear super-
position of a system of cutrents or “state” /" caused by the inflows alone, and another
state £’ caused by the circular EMFs alone. The electric power, in symbolic form,
may then be wr;tten

@n (o S +f”} {f f}+{f” 2 f}

The last term, the double “interaction power”, may then be written as the sum of
mﬁows of ", each multiplied with the potentlal of £ at the same node. But as,
by deﬁmtlon ‘each inflow of f " 'dlsappears the whole 1nteract10n power of a curl-
-free” . state f'.and. a source-free” state f ”_ will dxsappear In the language of
functional analysis, [’ and [ are orthogona] A
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For two arbitrary states f and f, the interaction power
rS Z -
(4.2) A= R
z=1

exhibits all properties of a scalar product defining a Hilbert space 3. By the ortho-
gonality of all states £ to all states f ", the Hilbert space # is divided into two
orthogonal subspaces o and ', This is the basis of Prager’s and Synge’s hyper-
circle method [5-10). In elasticity, the states /' correspond to states without disloca-
tions and prescribed non-zero displacements (pure load stress states), whilst the
states £’ are pure self stress states, that is, states of stresses without external forces,
except on points where displacements are prescribed. The scalar product is the
elastic interaction energy per unit length of the beam,

The essence of the method may be visualized by the symbolic representation of
Fig. 9 which depicts the states of an electric network or an elastic structure into

Trace of hypemrcle

4:/"'" N, ( Thates ‘circle)
. s e Castrgliana -Menabrea
\ l // / i .
\ I V4 '
\ Fﬁ* < /T/Z(F“'*F"
\ s ”{/
5\/, 'E !
12 o\“’/ ! -
-/ } ! !‘g / \\0/ / |- -7
- 'm ! / / -1
‘.\. 5 ///./. T
\ {,/_’.- - !
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Fic. 9. Symbolic representation of the hypercircle method,

a multi- or infinite-dimensional Euclidean space and projects it onto a two-
-dimensional plane. The axes x|, x,, ... are all orthogonal to each other, and ‘the
hatched lines are parallel to some line in the subspace #°' spanned by them. The
corresponding assértion applies to the axes x|, X, ..., spanning the subspace #'’
and the dot-hatched lines. Hence, any hatched line is perpendlcular to any dot—
-hatched line. :
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Now, let £ be the unknown state, complying — in the elastic {electric) case —
with all geometric and static (voltage and inflow) conditions. Then we construct:
(see Sect. 2) two states £~ and f 7, the first of which fulfills all geometric (voltage
and potential) conditions, that is for networks, all mesh conditions, and the second.
one all static (inflow) conditions, that is for networks all node conditions. Con-

.Sequently,
(43) C fr—feH', [fE-—feH".

The dlsplacement or deformation method (node method of Sec. 2) then depicts.
ltse]f on the fat hatched line; by solving Eq. (2.3}, the unknown state f sought for
is reached in one step. Correspondingly, the stress function or force method (mesh
method of 2; solution of Eq. (2.8)) depicts itself on the fat dot-hatched line. And the
hypercircle method makes use of the fact that the points depicting £, f ~ and f~
form a rectangular triangle with. its vertex in f. This means that in approaching /'~
on any of the hatched lines through f~, that is, in adding an arbltrary load stress
state g’ with a multiplier y’ such that the distance ||/ ~+y'g’—f "l becomes
a minimum, one gets nearer to f, too. The same applies for approaching /'~ on one
of the dot-hatched lines through £, or minimizing the distance |[[f~ +y" g’ —f ~lli
with respect to »"’. Replacing the single load stress state g’ (self stress state g'’)
by a system of load stress states (self stress states) we arrive at the Ritz method,
applied on the Green-Thomson principle of virtual work (Castigliano-Menabrea
principle). The node method (the use of displacements -resp. potentials) eases the
construction of states g’, whilst the mesh method (the use of circular currents resp.
Prandtl’s stress function) helps in constructing states g’

Finally, [/ ~~f *|il gives an upper bound to [ f~=/Il| and {||/~ —f]ll, and
half of it is the exact value of | (f~+f~)—f|l. This last result is visualized
by the Thales’ circle over £~ f®. Of course, the union of all these Thales’ circules
is a multi- or infinite-dimensional structure, called’ hyper(:lrcle and gives its name
to the method. For its application to obtain global and pointwise bounds in the
potential theory, elasticity and discrete elastic structures, the reader is referred to
[7-12, 42]; for electrical networks we cite again Maxwell {14]: “In any system of
conductors in which there are no internal electromotive forces the heat generated
by eurrents distributed in accordance with Ohnt's law is less than:if the currents had
been distributed in any other manner consistent With:the -actual conditions of supply
and outflow of the current”. This is exactly analogous to the Castigliano-Menabrea
principle applied to a beam with cellular cross-section.

_ 5 PLANE ELASTIC FRAMES

©“The layman is struck by rhe szmzlarzty of an elastic structure, such as a brzdge-
-rietwork: or the girders of a skyscraper, to an electrical network. ...Any layman would
assume ‘that the concepts of combinatorial topology are surely being applied equally
and in a parallel manner to the study of both electrical and mechanical structures.
How wrong the layman is!” These lines of G. Krown [3] where written before-the
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papers [1,4,5,32] had appeared. But some of the difficulties he mentions still
-exist and block the way for wide-spread practical applications of the existing ana-
logies.

First, Kron rightly points out that in going from electrical networks to elastic
frameworks the scalars have to be replaced by motors, but for a monography on
motor calculus he only cites Study’s original book of 1903. Really, if the author
is to cite recent literature on this subject, he can only mention [29] and [30], the
first of which is mainly interested in differential forms describing a Cosserat con-
tinnum, and the second, whilst giving an elementary exposition from the standpoint
.of mechanics, offers language difficultics to any reader who does not understand
Russian. Here we profit of the still comparatively simple structure of motors in
the plane case.

Another difficulty arises in finding the analogue of the electric current. Section 3
suggests that it sould be a static quantity, probably of motor character. “An attempt
to define the admittance matrix ... for an isolated beam with two end-points, brings
into sharp focus the utter lack of a topological viewpoints in the theory of elastic
structures. The author was unable to find an expression in the literature for a beam
accessible from both of its and-points (Kron lc.)”. Kron then solves this difficulty
by grounding his electric beam model in the middle, obtaining a 1212 matrix
characterizing the beam,

The present author prefers another way which allows him to dispose with
grounding or anything like that, and to describe static and geometric quantities
by motors related to the beam independent of its support. As a motor in the plane
‘has only three components, the elastic properties of one beam are described by
a 3% 3 matrix; in space a 6 x 6 matrix would have to be expected. It is shown that
by this representation the development of a mesh method, not yet common in
structural mechanics, becomes obvious and, finally, we are led back to the idea
of an Airy stress function for discontin-
uous systems already developed by
MAXWELL [20-24]. a €l ' )

'We consider a straight beam loaded  py @ N €)>
only at the ends by an equilibrium
system of forces and torques. Any such Fie. 10. Elementary equilibrium systems on a
system can be composed of three ele- straight beam.
mentary component equilibrium sub-
systems, one representing the longitndinal force I, one the shear force Q and one
the mean bending moment M (Fig. 10). It is to be noted that Q also includes the
linearly variable bending moment associated with the shear force and necessary for
pointwise equilibrium.

L <~ oy

Of the deformation of the beam, only the relative displacements and rotation
of both ends are of interest. Following Kron’s remark, we have to find a representa-
tion which does not depend on fixing one end or any other point of the beam. This
is no problem for the relative rotation @ (Fig. 11). It is also no problem for the
longitudinal relative displacement U, in the beam’s coordinete system x (), y (z);
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only for the transverse relative displacement do we have to find a quantity into
which the absolute rotation of either end does not enter. This condition is fulfifled
by the directed length U, depicted in Fig. 10 and illustrated by two rigid levers
attached tangentially to the ends of the beam. This mechanism also exhibits a pal-
pable way of applying the load corresponding to the shear force @ in Fig. 10 (*).

ylz)

F1G. 11, Deformation of a beam (0 <0).

Hooke’s law for a straight beam, connecting the “cinemate” % with the “dyname”
2, takes the form o _— '
| Cg—ew, w=9P, ¢=9,

. L U, S11 52 Sia
(SI) IR i P= Q s Y = Uy 3 &= Szz S23 »
: D AMYS . /3 L O

Where the coeﬂicrents S, ; of the elastlc comphanee matrix & can be computed by
the Well-known methods of elementary struetural mechanics. Generally, & and %
are symmetnc and posmve matrices except that in specral cases, as for hinged frame-
works, the elastic stiffness matrix @ may be positive semr—deﬁmte so that certain
components of the dyname 2 must be excluded. Also, _an "inextensible or otherWISe
rigid beam may have a semi-definite 5. Therefore, 1f appropnate preeautlons are

taken for these special cases, the elastle interaction energy of the states f and f

o5 . r.gﬂ Zﬁyﬁ

has, like Eqg. (4 2), all properties of a scalar product for a physwally reahstlc frame
For stralght beams, by symmetry . . .

6y  85,=55,=0.

But otherwise Eg. (5. 1) apphes also to curved beams The only dlfferenee is that L
and Q are no more the real longitudinal and shear forces all along the beam, but
only fictive quantities along a straight line connecting the ends, and M is no longer
the arithmetic mean of the bending moment along the beam, but just the mean of
its value at both ends. So # has a real meaning only for the ends of the beam, and
the same applies to %. But this is enough for framework analysis.

‘(*) For genealizations see Dadex 1930 [60-62],
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If forces are distributed along the beam, we calculate the dynames (forces and
torques) that would act on the ends if it were'rigidiy fixed there, so that the relative
cinemates cancel. If the beam is then inserted into the framework, it deforms as
if the opposite dynames would act on both end nodes of it.

We can thus limit ourselves now to elastic frameworks, where external forces
act only on the nodes. It these external forces are the only case of the stresses, we
can speak, as in Sections 3, 4, of load stress states. Self-stress states, arising without
action of external forces, are caused by Volterra distortions {dislocations and dis-
clinations) or node cinemates prescribed by rigid supports. The latter-can be reduced
formally to Volterra distortions after connecting all supports by rigid beams joined
together in a formal outer node. And the analogue to Kirchhoff’s mesh condition
will be obtained by generalization of Eq. (3.2).

To describe a Volterra distortion, we can make recourse to Fig. 7. We have
only to replace the word “web plate” in the text by “beam”, and to generalize the
relative displacement of the edges of the cut to a general rigid movement, aiso to
be described by a cineniate, that is, mathematically, a motor. Being limited to the
plane, the cinemate reduces to one relative rotation (wedge disclination) and. two
relative translations (edge dislocations).” An alternative way to.introduce Volterra
distortions is to replace the cuts by plastic or other non-elastic relative displacements
analogously to Eq. (3.3). The only difference is that we now have to replace the
simple addition of scalars by the superposition of cinemates according to the rules
of the cinematics of rigid bodies.. Tt will be described later in more detail, ..

To sum up, out basic problem is again, as in Sect. 3, the calculation of stress
resultants in an elastic network underthe ‘action of dynames at the nodes and of
Volterra distortions in the meshes, The oﬂly difference is that addition has to be
replac'ed'by superposition after the Tules of statics and cinematics or, what means
the same, to be understood in the sense of moter calculus. In analogy to Sect 2,
we establish now the appropriate node and mesh methods.

As forces are assumed to act on the nodes, the node method is here clearly
identical with the displacement or deformation method which is firmly established
in the practical computation of structures, so that we have only to describe some
differences -in formulation. We write the dyname acting on the node k and the
cinemate describing its movement in the form of block matrices, marked by square
brackets in contrast to ordinary matrices with scalar elements (round brackets).

(5.4) | . E{z’;k] , [‘;’; ]

Here the vectors K; and u, mean the force resp. the absolute displacement of the
node; for practical calculation, they have to be represented by 2 x 1 column matrices
with their Cartesian components, referred to some coordinate system associated
to the node. The scalars .#; and ¢, are the torque resp the absolute rotation of
the node. :
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For calculation of the deformation cinemate %, of the beam z in Eq. (5.1) this
has to be transformed into the coordinate system of the beam by the transformation
block matrix

+i; 0
(55) [yzk}i: +j:‘q:%!z -
o 1

Here i, and j, are the unit vectors of the beam coordinate system of Fig. 11; the
symbol T (“transpose™) means that, if writing them put in node coordinates, we
have to use the form of a 12 row matrix (transpose of a column), so that matrix
multiplication always gives the scalar product of the vectors. This also implies that
in transposing the block matrix the sub-matrices must be transposed simultaneously.
1, is the length of beam z, and the use of + or — sign depends on whether k=k* (z)
or k=k~ (z). Now, Eq. (2.2} is replaced by

u+ ;-
5.6 uza[y‘z_i_z [ fe (Z)]_ yz_ _[k (Z):I.
(5.6 1+ ()] Pt 17 24~ ] Do
To arrive at a system of equations analogous to Eq. (2.3), we have to replace in
Eq. (2.4) the node-incidence matrix by a block matrix arising from the substitution

(57 1= £ [T als

and the diagonal matrix of conductivities by a diagonal block matrix where the
stiffness matrices of the beams take their place
(5.8) 7—1-::16
. . N _Rz 7 -
The analogue to Kirchhoff’s node condition is, apparéntly; the equilibrium
condition for nodes, as in Section 3, and, therefore, on the right side of the eql_l_ati(')ns
we have to replace the inflows by the dynames acting on the nodes -

K,
(5.9) | Jkﬁ[ﬂk] }

And the solvability condition is here the condition of overall equilibrium. -

Some complications may arise when establishing the analogue to Eq. (2.5) as
there may be not only nodes with a completely rigid support, but also fixed hinges
or supports with sidesway etc. That the stiffness matrices % also may be incomplete
has already been remarked; extreme cases are inextensible beams, on the one hand,
and the bars of a hinged framework, on the other hand. As the deformation method
is a firmly established and widely used method, we can leave out details and refer
to [26].

The same cannot be said of the force method. At present, it has the state of an
art, depending on the skill of working with the hatchet on a statically indeterminate
system until it becomes statically determinate, but not of an algorithm fitted to
stand the “never-ending race between the large-scale problems to be solved, and the



ON MAXWELL'S, KLEIN'S AND WIEGHARDT'S STRESS FUNCTIONS 17

size of the available computer” (Kron l.c.). The mesh method for electrical nefworks
allows for such algorithms, and we bave to find now the analogue for the plane
frame. ‘

Tt seems natural to replace the scalar 7, in Eq. {2.6) by a motor describing a static
quantity, that is, a dyname referring to the mesh . Indeed, if we replace in Eq. (2.6)
i,, by another scalar f;, (x, y), and I, by the bending moment M, (x;) in the beam z,
then the resulting torque on any node is zero. This follows from Eq. (2.6), for if
we go around a node we find that every f,(x, ») occurs twice and with opposite
sigh on a closed circuit such that the sum cancels. The only difference is that we
now have to contract the circuit on the node to get the value at the end, as afier
Fig. 10, the bending moment is in general variable along the beam, and the shear
forces can also contribute to the torque on the node. But the connection between
the bending moment and the shearing forces is correctly represented if f, (x, »)
is taken to be linear and the shearing force as its derivative along the beam.

The longitudinal force, on the other hand, has to fulfil, together with the shear
force, the equilibrium condition for forces. Therefore, it is obvious to replace the
scalars in Eq. (2.6) by vectors representing on the left side the resultant of shear
and longitudinal force, and on the right side forces refetred to a mesh. To comply
with the connection between the shearing force and the linear function

(5.10) S D) =fut B (x—X,),

we take this vector to be —kxf,, that is, the gradient of f,, (x, ) rotated by right
angle clockwise, as k means the unit vector of the z-direction perpendicular to the
plane of the frame and right-handed with respect to x and y (Fig. 12). x is the position
vector and x,, some fixed reference vector in the plane of the frame. If we specialize
' . _ . 9 o

(511) ] X=Xk (m0)» Jo=lus X=Xy,

where k (m, 0) is a fixed reference node of the mesh m, and introduce for trans-
formation from the mesh system into the beam gystem the new transformation
block matrix

0 ir 0
(5.12) [Ral=i: o O}
—kxx)t 1
where _ '
9 0 0
(5.13) X, =3 (Xg @ty t Xe 2 y)

is the position vector of the mid-point of the beam with respect to the reference
node, then, wsing the notation (5.1), Eq. (2.6) may be replaced by

0 —k}(fmi-(z) o -—kam—(,)
(5.14) P,=[Rom+ (z)] 0 — [Fam (2) 0 . .
. m¥ (z) fm_ (=)

The eclastic relative cinemate %y of the beam then follows by the notation'(S.l).

Rozprawy Inzynierskie — 2
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This is an elementary derivation, using only elements of structural analysis.
Maxwell [20] obtained the same relations starting from the boundary conditions
on Airy’s stress fonction, summarized, for example, in [25]. Indeed, Eq. (5.10)
is nothing else than the zero stress Airy
stress function of a. hole, producing no
stresses. It is micely illustrated by Klein’s
and Wicghartd’s “facet surface” [21], of
which Fig. 12 shows two facets. It is
clearly a geperalization of Fig. 8.

The laws of statics make it easy to
* generalize the model to frameworks w1th
~curved beams. -
Tt remains t¢ find the anaiogue to Eq.
: {2.7) resp. Eq. (3.3) and the mesh condition
(3.2), that means, the computation of the negative Burgers vectors and rotation
discontinuity of a Volterra distortion and its insertion into the compatibility conditio
-of a mesh. To this end we make a cut.as in Fig..7 and compute the contribution
of elastic relative displacements of the single beams corresponding to electric (Ohm)
voltages caused by currents in electric networks, starting: from the reference node
i (m0). With the notation (5.1)-(4.12) we have for an arbitrary node k(m() of the
mesh m
L. 0

- k)™ k (m 0) )
(5 15) [ = k pe Xk (mé) 2' + ‘sz' (mg 2 —m U, (,,.c)

(Pk(mt) cpk(m()) ] =1 s ==

FIG 12 F‘qcct surface 16 of a. plane frame }
in pIane defor mation

This can be 'proved— easily for the coniributions of Ufz and UE w1t11 the help of
Fig. 11, if all ®F, for simplicity, are kept zero. To prove it for the contribution of
®F, we assume, on the contrary, all U, and {7, to be zero. This means that the real
mesh of elastic beams is replaced by a sequence of rigid levers with hinges in the
‘mid-points of the original beams. Now thc COHtI‘lbutiOD of ®f,; to the dlsplacemcnt
of thée node k (m{) is apparerntly -

(5.16) 4 (qu (mc)) Wy oy = R (Xk (mt) Xz (mc)) @ (mZ)
which, on summation, gives Eq. (5.15).

For a full circuit the first term, dlsappears and if the second term is not 7ero,
it is the Burgers vector and the rotation discontinuity (or, as the author proposes
to call it, the “Burgers cinemate”) of a Volterra distortion o

_"_"Wm <mZy 0.
(.17 [ ]= D) T U o
T N * ‘

whete {(mZ) isthe number of branches formmg the mesh: If the ‘Burgers cinemate
is prescribed, we mark it by a hook and ﬁnd as the mesh conchtlon for a frame the
compatibility condmon : T g

(518) R g Z i.[@f’"’}.r%ii(mcﬁ [‘i’ ] =0. e

=1t L R
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The negative Burgers cinemate can be composed from the non-elastic (e.g. ptastic)
deformation cinemates %, of the single branches

. W]ll mzy 0
(519) . I:‘I’ ]= 2 [%zm] Vzm meys
. ] =1

which constitutes the analogy to Eq. (2.7) resp. Eq. (3.3). .
To establish the mesh equations for the frame analogous to Eq. (2.8) we have
first to replace the mesh-incidence matrix by a block matrix in substituting

G200 sle i)

‘and the diagonal matrix of Ohm resistances by a diagonal block matrix where the
compliance mairices by the beams take their place

(5.21) ' ' R=%
As unknowns we substitute for the circular currents the mesh dynames of Eq. (5.14)
-k X fm
(5.22) Iy =
.fm

and on the right side the negative Burgers cinemates (5.19) show up instead of the
circular voltages

(5.23) . Wﬁl‘y]
Henceforth we have a solution method complete]y analogous to the mesh method
in electricity. ‘

Of course, self-stress ploblems for frames are rather rare in applications. But
as source or inflow problems in electricity could be solved by the meésh method with
circular currents, so can load stress problems for frames bé solved by the mesh method
with mesh dynames. We have only to construct some stress state complymg with

the given loads without regard to the compatibility conditions. :

This is exactly the same as the usual force method does in computing a pre-
liminary solution for a statically determinate basic system, and if such a preliminary
solution is at hand, it may be used also here. But we are 1o longer tied to constructing
a statically determinate system first, as any statically admissible system of stress
resultants will do. And for the second part of the calculation, it is o longer necessary
to construct that usually rather involved set of substitute equilibrium systems
replacing each structural member removed, since, by Eq. (5.14), thése systems are
generated automatically. So we have a force method which also for complicated
and highly statically mdetermmate systems is not more involved than the deformation
method:

MaxweLL [20] and in his succession KLEIN and..WrBdHARDT [21] laid special
ephasis on the special case of the hinged framework. Here stiffness and compliance
matrices (5.1) degenerate to a single scalar and, as the beams transmit only;a longi-
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tudinal force and no shear force and bending moment any more, the facet surface
becomes continuous with breaks (sharp bends) over the beams [21]. It is interesting
to note that Maxwell developed from this model not a method of computation,
but the graphical construction which later was made famous by Cremona.

The facet surface now depends only on its value over the nodes; there are its
peaks and minimum corners, between which straight ridges span the inclined plane
surfaces [21], and the mesh dyname of mesh m is determined by three of its nodes.
From this intuitive graphic model, Klein and Wieghardt conclude that the number
of statical indeterminacies, equal to the number of possible non-zero-stress Volterra
distortions, is the same as the number of nodes of the facet surface that can be moved
up and down independently of the neighbouring nodes. Applying this to a purely
triangular framework, they find that it is as often statically indeterminate as the
number of its inner points indicates. The “simple rosette™, for example; with K—1
topologically radial beams {, circumferential beams {+71, meshes { and boundary
nodes {, and one inner node K has exactly one self-stress state, and, if we put the
stress function value on the boundary to zero, this self-stress state is uniquely de-
termined by the value f of this function in the inner node K (Fig. 13).

A detailed analysis shows [26], that of the Burgers vector in each mesh, only
its component along the circumferential beam

5249 Wie=—Wyrig,y

enters into the self-stress state. The connection between the static quantity fK and
the geometric quantities K is established by the equation

m@ T
(.25) ) =
¢
(=1 t=1 .
‘where the coefficients </, are calculated from the length /; of the radial beams {

and the longitudinal elastic compliances Sy and S;,, after

2cos B - 2cos vy,

(5‘26) ‘ML': ll,' ¢ l¢+1 C-{-.l _h—cs’;*‘%"
Any self-stress state of a triangular hinged framework can be composed of the self-
stress states of simple rosettes.

2+1/2 e Gepe

Fia. 13, The simple rosette hinged framework,  FiG, 14. Hinged framework with a quandrangle.
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As far as not completely triangular hinged frameworks are concerned, we con-
sider only the example of IFig. 14. It is evident that for fixed boundary nodes of the
Klein-Wieghardt facet surface cannot move independently and therefore the frame-
work has only one self-stress state.

6. GENERALIZATIONS

We have considered in the preceding paragraph a plane frame deformed only
by stretching and bending {displacement and rotation) of the beams in its plane.
To encompass all possible deformations, we have to add to the plane case, in the
terminology of MiLng-TroMSON [43], the antiplane case, that is, a plane frame with
beams deformed by torsion and bending (displacement and rotation) perpendicular
to its plane. This is the mode of deformation characteristic of a “slab” as opposed
to the strictly plane “slice” [44].

Without going into detail, we only give a rough sketch of the appropriate stress
function method, starting from the stress functions of a slab introduced by MINDLIN
[44], and to which Schaefer, by a simple change of indices, gave a very vivid visualiza-
tion, completing WIEGHARDT’S slice-slab-analogy [45] by its dual counterpart and
aiding effectively the discussion of their properties in multiply-connected plates [46].

In Schaefer’s representation, the vectorial two-component siress function of
a stress-free region (zero stress function) and especially a hole in a plane slab is
modelled geometrically by the movement of a rigid plane facet in its plane, described
by two components of the plane movement of a translation point and the small
angle of rotation. Indeed, if the component of the linear Schaefer type stress function
vector normal to a beam adjacent to the mesh, where the stress function is defined,
is interpreted as the contribution from this mesh to the bending moment in the
beam’s tangent plane perpendicular to the plane of the frame or, what means the
same, about its normal in this plane, then its derivative in tangential direction gives
correctly the appropriate shear force normal to the plane of the frame. There still
remains to interpret the longitudinal component of the Schaefer stress function
vector of the mesh as its contribution to the drilling moment of the beam. This
completes our model of Fig. 12 to a general rigid movement of each facet in space [46].

The model of rigid movement of a model sutface facet works even for spatial
frameworks [59-61]. In [48-50] it was shown that in space the general zero stress
function tensor of the Beltrami type can be written as the deformator of an arbitrary
vector field in space. The components of this vector, in their turn, represent siress
functions of a “‘crust shell” [50] replacing the boundary of the three-dimensional
body in the same way as a closed beam can replace the boundary of a plane plate
for static considerations. Indeed, three-component stress functions of this type are
well known in the shell theory, underlying only certain restrictions by the symmetry
of stresses in real shells [51, 53]. But these restrictions must not apply for the fictive
crust shell which might be imagined to be a curved two-dimensional Cosserat con-
tinuum [48, 53], and the number of stress functions increases to five, including two
normal derivatives of the vector field.
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Here it is essential that the zero stress functions of the crust shell again are
modelled by the rigid movement of a model surface congruent to the boundary
of the body résp. the crust shell [48]. If, then, surfaces are spanned between the beams
of a spatial framework, dividing in their ture the space between the beams into cells,
then the cells are free of stresses if in each of them a vector A, is defined generating
for each cell ¢ a zero stress function tensor Def A.. The surface between two cells
is also free of stresses if the discontinuity of the vector field A and its first normal
derivatives correspond to a rigid movement of the surface. Thus stresses can only
occur in the beams where the surfaces intersect, and the siress resultants in the beams
follow, after [54], by summing all discontinuities in going round a béam once and
taking the limit on contracting the circuit ‘on the beam.

We shall not dwell on the topological questions arising for the beams of a three-
-dimensional framework but only mention that for the stress function field they
play the same role as dislocations and disclinations do for the deformation field
of an elastic body [15, 54] or vortex lines for a velocity field [57] or electric currents
in a magnetic field [14]. Indeed, the lines of discontinuity of pseudo stress function
fields treated in {54] may be considered as very special cases of beams whose stress
resultants are derived from piecewise differentiable and one-valued zero stress
functions in space of the same type as can be used for spatial frameworks.

The duality relations between static and geometric quantities in point structures
connected by beams on the one hand and rigid-plated structures connected by springs
on the other would be in interesting field of research; such dualities in special cases
were already noted by Saurr [58]. Sauer also considered the passage to the limiting
continnum for spatial structures, as WisGHARDT [21] did for plane structures. Here,
also, generalizations are still possible, for example, on the lines proposed by Mr-
NAGAWA and others [3]. ' '

In connection with Sect. 4, there might be also applications for the numerical
treatment of big matrices if they may be regarded as generated from a real or fictive
elastic network after, say, the node method. If one succeeds in constructing the.
corresponding matrix of the mesh method, it might be used for bounding in appro-
ximate calculations. Matrices derived after the Ritz method, e.g., in finite elements,
are of this type even if the structures connecting the nodes might be more complicated
than real beams. But it is to be kept in mind that this would be 2 bounding not for
the real problem, as in Sect. 4, but bounds for a positive matrix within matrix cal-
culus. Experience shows that this is also sometimes useful for big matrices treated
by slowly convergent approximations.
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STRESZCZENIE

O FUNKCII NAPREZEN MAXWELLA, KLEINA I WEIGHARDTA
UKLADOW NIECIAGELYCH

Rozwazajac plany sit i przemieszczeni, nazwane pdZniej planami Cremony, Maxwell zauwazyl,
ze staftyka plaskich kratownic przy braku sil zewnetrznych moze by¢ przedstawiona w postaci
odcinkowo-liniowej niecigglej funkcji naprezen typu funkcji Airy’ego. Funkcje te Klein i Wieghardt:
przedstawili w postaci «powierzchni naprezef» degenerujacej sic do «powierzchni plytkowej».
W roku 1920 Funk zaproponowat aby zasiosowaé praktycznie te koncepcje razem z zasada Casti-
gliano. Opierajac si¢ na analogii elektrycznej podanej przez Krona, Kardestuncera i innych wy-
kazano, ze wielkodci statyczne opisujace kazda z «plytek» odpowiadaja pradom kolowym w sie-
ciach elektrycznych w podobny sposob, jak przemieszczenia i obroty wezlow kratownic odpowia-
daja potencjalom. Przedyskutowano uogélnienie dla ukladéw przestrzennych.

PeswmMe

0 OVHKIINHI HATIPSDKEHI MAKCBEJINA, KJIEIHA Ui BUTAPATA TUCKPETHBIX
CHCTEM

PaccMaTpepas ONMAHLI CAN ¥ DepeMemIeHUl, HasBaHHble H03xe maaHavu Kpemona, Makcpems
3aMETHH, YTO CTATHRKA INMOCKEX depM, IPH OTCYTCTBHE BHEIIHWX CHII, MOKET OHITH LPCACTABIICHA,
B BH/IG KyCOUHO-IHHGHHOH paspeiBHOR (yHEKIEE IRANPMEERyE THRa dyHxmwn Dpr. D1H yEKIHE
Kneln @ BErapar HpencTrapuiy B BEAC ,,TOBCPXHOCTH HATPHKEHEH”, BRIPOXKEaIomelica B ,,INTaCTAH~
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HATYH) HOBepPXHOCTR”, B 192C roay dyHK Mpermoxan OPEMEHATE OPAKTHYECKA 31y=;coﬂ'uen_1{mo'
COBMECTHO ¢ npwHmunom Kacrmmpawo. ONEpasck Ha 3MEKTDMYECKYIO ABRANOTHIO, IPHBEJEHHYIO
Kporom, KapraecTyduepoM M APYEHMN, TOKA3AHO, 9TO CTATUYCCKUES BENMYWHE], ONHCHIBAIOIIHE
KAXKAYX H3 ,,IIaCTHHOR”, OTBEYAIOT KPYTOEBIM TOKAM B SMCKTPAYCCKHX HEMAX AHATIOIMYMBIM

oBpazoM, Kax mepeMeIIeHHES If Bpallenus Y3108 (GepM OTBeYarT HoTeHmHataM. OOCyxaeEo 0606-
IHEHEE I NIPOCTPAHCTDEHEBIX CHCTEM,
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