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MONISOTHERMAL POISEUILLE FLOW OF A NEWTONIAN FLUIDr
WITH TEMPERATURE DEPENDENT VISCOSITY

Z NOWAK and K. RUP (ERAKOW)

In the present paper an attempt is made to apply the method of Vujanovid to the nonisothermak
flow of a Newtonian fluid in a circular pipe. Tt is assumed that the dynamic viscosity of the fluid
varies with temperature in a prescribed mannet, By using the concept of “penetration depth” the
problem under consideration is solved in two stages. Both the temperature and velocity distribu~
tions are determined approximately. The results obtained are compared with the numerical solution,
given recenily in [4],
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Thermal diffusivity,
constant specifying the dependence of dynamic viscosity on temperature,
constanit pressure heat capacity,
friction factor,

Nusselt number,

hydrostatic fhuid pressure,

radial coordinate,

radius of the pipe,

Reynolds number,

dimensionless surface areq,
dimensionless temperature,
temperature,

local fhaid velocity,

average fluid velocity,
dimensionless fluid velocity,
length coordinate,

dimensionless length coordinate,
analogue of Gauss® constraint,
dummy variable of integration,
coeficient of heat transfer,
dimensionless penetration depth,
dumimy variable of integration,
dimensionless length coordinate,
thermal conductivity,

dynamic viscosity of the fluid,
fluid density.

Other symbols are defined as they appear in the text,
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f. INTRODUCTION

In the case of nonisothermal Poiseuille fiow of a Newtonian fluid with fully-de-
veloped velocity distribution but undeveloped temperature ficlds, there arises a con-
siderable difficulty in the analytical treatment of basic differential equations (linear
momentum and energy principles) governing the problem under consideration
when the temperature dependence of physical fluid properties must be taken into
account. This concerns especially the dynamic viscosity of the fluid (and someti-
mes also the thermal conductivity) because of its strong dependence on temperature.

When both the dynamic viscosity and thermal conductivity are assumed to
be independent of ternperature, an exact analytical solution of the problem has
been obtained by SELIERS, TRIBUS and Kiemy) [L]. Also numerical solutions of
the problem discussed have been found by Kays [2] as well as by GricuLL and
Tratz [3]. In the case when only the dynamic viscosity of the fluid varies with
temperature in a prescribed manner, a numerical solution of the Poiseuille flow '
has been recently presented by KRISBNAN and Sastrr [4].

In the present paper an attempt is made to solve the nonisothermal Poiseuille
flow of a Newtonian fluid with varying dynamic viscosity by using a certain ap-
proximative analytical method introduced recently by vuianovié [5,61. This anthor
presented a variational method which formally is similar to the Gauss® principle
of least constraint [5]. We shall call this Toethod ““the method of Vujanovic”.

For the sake of clarity of subsequent considerations the basic concept of the
method mentioned above will be briefly presented now. ' ‘

Suppose that in some problem of transport phenomiena in continuous medivm
we have succeeded in reducing the linear momentum and energy equations to one
differential equation which may be written in the form

1. ¥—7=0,

where X and ¥ are spatial temporal parts respectively. Then the analogue of Gauss’
constraint proposed by Vuranovit and BAZLIC [6] becomes

(1.2) Z== f (X— ¥y dv,
v

where ¥ is the volume engaged in the process being investigated. :
Consider, for example, the nonlinear differential equation of heat conduction [6]

ar
(1.3) div [A {T) grad T1—p ¢, (7 %?:O.
Hgncc

X=div [A(T) grad T,

. o
9 Y=pop (T) "_31—1
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and ¥ in Eq. (1.2) is the volume of the region in which the process of heat conduc-
tion takes place. _

The foltowing two variational rules for minimizing the quantity (1.2) are pos-
sible [5, 6]:

(1.5) SX#£0, §¥=0,
or '
(1.6) SX=0, §Y£0,

In each particular case, [Eq. (1.5) or Eq. (1.6)], we must be able to identify the
characteristic complex of parameters which represent X or ¥ and minimization
of Z should be performed with respect to one of these parameters.

In the papers [5, 6] minimization of Z has been performed:

a) in the case of Eq. (1.5) with respect to the so-called “spatial complex’ which
does not enclose the derivate of adjustable parameter in the trial solution,

b) in the case of Eq. (1.6) with respect to so-called “temporal complex> which
must enclose the derivate of adjustable parameter in the trial solution for teinper-
ature distribution. It should be noted here that the choice of the parameters men-
tioned above is intuitive (by holding the rules of Eq. (1.5) or Eq. (1.6)) but in prac-
tical use this procedure-is rather simple. '

The resulis achived in the present paper have been compared to the numerical
solution given recently by KrisHnan and Sasti [4].

The temperature dependence of dynamic viscosity of the fluid is assumed sim-
Hlarly to the one which was applied in [4]. Such a dependence on temperature
holds for the majority of liquids, especiaily for mineral oils.- :

2. FORMULATION OF THE PROBLEM

The problem of nonisothermal flow of a Newtonian fluid in a circular pipe
with constant temperature £, along the pipe wall (boundary conditions of the first
kind) will be solved in this paper under the following simplifying assumptions:

1) the flow of the fluid is steady, laminar and shows axial symmetry,

2) the velocity profile in the enirance cross section is fully developed and pa-
rabolic; :

3) fluid temperature is constant over the whole entrance cross section:

4) there are no internal energy sources, also viscous dissipation is disregarded
(because of small fluid velocity); o

5) body forces can be neglected as small in comparison with-surface (pressure)
and friction forces;

6) the influence of heat conduction in flow direction is disregarded as negii-
gibly small in comparison with heat conduction normal to the flow direction;

7) the fluid pressure is constant over the whole eritrance cross section of the
pipe; ' '
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R) the temperature dependence of dynamic viscosity of the fluid in a prescribed
manner is considered. :

Under these assumptions the linear momentum and energy equations govern-
ing the flow under consideration will reduce considerably and can be written
in the form [9, 10],

1 @ oU dp

@ Tl 0% | T
‘ ot ;'a d ( 6;)

22 Ua™7 o\ ar)

The system of two nonlinear differential equations (2.1) and (2.2) together with
prescribed dependence of the dynamic viscosity on temperature as.well as the fol-
lowing boundary conditions of the first kind

2 | 0 o 0
(2.3) r=re=>t=t;, r=U=-=9
(2.4) t (0, r)y=tlo;

ouU
(25) r==fy= U=0, l"=0=:-—ér—=0

determine completely the temperature distribution in the fluid as well as the veloc-
ity field coupled with it. In Eq. (2.4) #, depotes the temperature in the entrance
cross section of the pipe.

In order to simplify the subsequent considerations, the system of equations
(2.1) and (2.2) will be first of all reduced to one nonlinear differential equation..
Since the dynamic viscosity depends on unknown temperature distribution, the
integration of Eq. (2.1) together with the boundary conditions (2.5) has been carried
out as follows:

1 dp s z
2 ;:’;f 1’10

r

dz.

(2.6) U=

After applying the equation of continuity as well as the relation (2.6), the aver- -
age fluid velocity becomes

_ m_'}-_ ﬁ Ty rs z
@.7) o= 0 [r I dz] dr.

By combining Eqs. (2.6) and (2.7), the dimensionless local velocify of the flaid -
can be written in the form ' '

r

Fa z R
f 3] dz
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To generalize our subsequent considerations, the following dimensionless quan-
tities are now introduced:

cf”“ X a
) Ur,’
(2.9
-
y=l-—

5

which bring the origin of the coordinate system down to the pipe wall.
After substituting Eqs. (2.8) and (2.9) as well as the dimensionless temperature

t—ty

= rs""'to

(2.10)

into Eq. (2.2), one obtains

v 1__,1
=

@1 ;

ar 1 9 [( oT
(21— o 1-y
I =n P

l-y—é}-.

The "dependence of dynamic viscosity on temperature we assume, according
to [4], as follows:
/3 1

(2.12) “;1—;-= 1TbT

In the expression (2.12) the value of the constant & depends on the kind of the
finid and on the temperature interval being considered. After substitution of {2.12)
into (2.11) one obtains finally the following dimensionless form of energy equation:

[ 4= @+om) or 1 a8 or
o oA LAY ]
4f(I—y)[f(1—-1;)_(1+bT)dr;]dy o 1=y 24
G 0

By taking into account the dimensionless terms introduced above the boundary
conditions (2.3) and (2.4) become '

(2.14) £>0, y=0=T=1;

(2.15) dy
${<0, 0y<l=T=0.



218 7. NOWAK AND K, RUP

3. METHOD OF SOLUTION

Equation (2.13) together with boundary conditions (2.14) and (2.15) will be
solved by using the concept of “penetration depth” [6, 9, 10]. After introducing
this concept, following additional boundary conditions must be, apart from (2.14),
and (2.15), fullfilled,

y=48({)=T=0,

3.1 , or
y=20 (é)::v—ta;: 0.

The penetration depth J is a function of only independent variable & which
in the case being investigated here is the dimensionless length coordinate in flow
direction. ‘

After introducing the concept of penetration depth the equation (2.13), together
with boundary conditions (2.14), (2.15) and (3.1), must be solved in two stages
following each other. The first stage describes the undeveloped heat transfer process
which lasts as long as the penetration depth reaches the value 6=1. The second
siage describes the developed heat transfer process and then the concept of pene-
tration depth loses its physical meaning. 7

As mentioned in Sect. 1, for solving the equation (2.13), the method of Vujanovid
will be applied. According to the spirit of this method, the trial solution for fem-
petature distribution is assumed intuitively. Let

T=go+q; y+a: 3> for 0<y<d,

(3.2}
T=0 ) for d<y<l.

This trial solution must satisfy the conditions (2.14) and (3.1) (characteristic feature
of each interior analytical method) from which the adjustable parameters go, 1
and g, can be determined. One obtains finally,

: 2 1
(3.3) go=1, @~ "5, 4T
Hence, the trial solution (3.2) becomes
(-3 o oo
T= 1--—) for O<y<é,
(3.4) d d
T=0 . for dgyp<l.

Substitution of Eq. (3.4) into Eg. (2.13) yields
(3.5 L : [ By ( b b) 2
.5 1 i (1+b)y Y 1+ +2"gy+’

— o — Z2__ 583
5 gy b8 (0-155+68—8) ©

+1b(2+1)3 15 4]2 sy P12 &2-'67'-.
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According to the spirit of the method being applied (as discussed in Sect 13,
the quantity (1.2) becomes
1 1 (1 by |
(3.6) stf [, 03 0 158 (1+8) y == Fo+24 )2+
DY (20~ 1564662 -5
1 b 1 1 &
F= e (2F )3 — +x

AN PRFR
2
2 5 R dd 1 2 5—2 4
Ke— — e e —
s¢ that
1 1 b
3.7 X_l i : (1+b)y:§ 1+b+2§ yi+
— 1% 2 _ %3
2 30ch(Z() 156 4- 6% — 3%)
_4_1(5(24_1)31,54]2($ zdé
— — —_— )Y JE— ¥17 — —
3p 517 T s s
1 2
(3.8) Y—-T:}— -57(1+5~2y).

From the discussion performed in Section I (sce the rules (1.5) and (L.6) it fol-
lows directly that in the case of Eq. (1.5) the complex X is the only to be varied
whereas in the case of Eq. (1.10) it is the complex ¥ which is the only to be varied.
This reasoning eliminates the basic difficulty which arises when both the unknown
parameter & and its derivate d5/d¢ appear simultaneously. The point of this dif-
ficulty is that we must be able to chose the suitable quantity with respect to which
the minimization of Z should be performed,

Since the solution of the problem being discussed is extremely laborious, our
next discussion will be-limited to the case (1.5).

For the special case of nonisothermal flow in a circular pipe, as being investi-
gated in this paper, the quantity Z can be wriiten in the form

s 1 : 1 b
(3.9 Z=f . (I+b)y——2— L+b+25 |+
* |5t 55 6920156+ 652 —6%)

g b(2+1’ L 15 4]¥
3oV T EY
2

dé 12 2 (1—y) dy.
y=y") = "gg“f“:;;g(lw—b) mA-ndy
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After identifying in Eq. (3.9) the characteristic complex as

0 2 dé
(3.10) W= 3 Egv

the integration of Eq. (3.9) is carried out following by minimization of the result
obtained with respect to (3.10), ie.

3Z (W)

(3.11) 7

=0.

After carrying out all these operations, We obtain finally

3.12 l ( Vol S e
G.12) A 05 840 " 1008 0T 1440
E+—~—b5(20 1554652 — 3% '
3 2 ) 2 2(1 1 5 62
<55 4 bF, b Fa| W—207\ 15~ 549% o +bF; }=0.

Substitution of Eq. (3.10) into Eq. (3.12) yields the following differential equation:
&% 1 1 5 1
(3.13) 1 : - — =i 0t é’

1 05 "84 %1008 0 1440
-2—+§~6b5(20—155+652—53)

d5 1 1 5

from which the penetration depth §==0 (&) can be found. In Eq. (3.13) we have

A 14 - 37 163 o4 157 5 1 5

(.19 1="3780 15120 41580 2376

i s e 65 1259 5s 1915 5 593 5

(3.15) 2T 4048 498960 © 2594592 3648640 © ’
2 17 1

(3.16) Fy= e b e 82

45 1260 560
Integration of Eq. (3.13) with the boundary condition
(3.17) | £=0=0=0 |
yields

' 1 1 5 1
2 . 2 3 2
s 9 (10_5 79008 & " 10 0 +bF +b Fz)
¢18) &=

1 11 1
R O — 25— — 2
[2+30 b8 (20— 156+ 6% 5)](12 53955670 +bF3)

dé.
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Analytical integration of Eq. (3.18) can be carried out only then when the value
of the parameter » equals 0 (i.c. in the case of Poiseuille flow of the fluid with
constant physical properties). In that case one obtains

84 10

TV lslios Yy Tl -y/3)
Wl EY arc tg 10 —4— EN arc tg 3/

Since for 550 the analytical calculation of the integral (3.18) is extremely labo-
Tious, numerical integration of this function by means of the Simpson rule and
for two values of b (i.e. b=9 znd b= —0.9) has been carried out by using the Polish
computer ODRA 1204. It is interesting to note here that in the case being discus-
sed the positive value of the parameter b indicates the warming up of the fluid from
the pipe wall, whereas the negative value of b—the cooling down of the fluid from
the pipe wall. ' ,

. As mentioned above, for the second stage of solution the concept of penetra-
tion depth loses its physical meaning. In that case the trial solution for temperature
distribution is assumed, similarly as for the first stage, in the form

3.19 154+553+255’+715+51 1 15-!-.162’
G = gt g O g gt | 1= ok o+

(3.20) T=go+q, y+q, 3% for O<p<l.

The adjustable parameters 9o, 41 and ¢, can easily be calculated from the boundary
conditions (2.14). One finally obtains

(3.21) TE»=1+q,(1-p)’—q, O<p<l,

where ¢,=gq, (£).
Substitution of Eq. (3.21) into Eq. (2.13) yields

2 1 1 i
[E———1 ap— 132 ¥ S S |
b= |
3 q2 X . V dqz
x(y*—2y) ? —4g,=0.

By comparing Bq. (3.22) to Eq. (1.1), we conclude that

2 1 1 dq;
R B 2 [C R A P b |
(3.24) ' C X=dg,.

Equation (3.22) will now be solved by using the method of Vujanovit again.
According to this method the quantity Z becomes

1
(3.25) Z= [ (X-Yp 22 (1-y) dy,
] ) : .
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where X and ¥ are defined by Egs. (3.23) and (3.24), respectively. After identifying
the characteristic complex W as .
- aq,

(3.26) W=

{he integration o_ Eq. (3.25) has been carried out. After minimization of the result
obtained with respect to W, the following differential equation is found:

3.27 2 (1+1b Ly e Lt 167522)
(3.27) 1 o 0l b T T M 0 9 f”

dq, i 1 1
X?E_=q2(§ bg> ‘gb——?;)-
Equation (3.27) can be solved analytically for each value of the parameter b
which—as already mentioned carlier— specifies the dependence of dynamic vis-
cosity on temperature, _
If the solution obtained for the first stage is to be consistent with the one for
the second stage, the boundary condition when solving Eq. (3.27) must be as fol_lows:

(3.28) . E=E&i=14, (©=1,

where &, denotes that value of the dimensionless coordinate ¢ in the first stage
for which ¢ (£0)=1. ' ‘
The suitable value of the adjustable parameter 4 in Eq. (3.27) results from com-
parison of the fluid temperature at the end of the first stage with that at the begin-
ning of the second stage. Integration of Eq. (3.27) under fulfillment of the condi-
tion (3.28) vields

; 146
3 3123 ‘*’2_3('“{')
(3.29) é-l§1=_§61n“12]_‘77“%“m TR b +
S(57)
8 {1+b
1095 QZ—E(T)-
T30 Y
55

After determining the trial solutions for tempcrature distributions both in the

first stage and the second one, We can easily calculate the Nusselt number which

characterizes the heat transfer process considered in this paper. Relating the co-
efficient of héat transfer to initial temperature difference, the Nusselt number can
be written in the form [9, 10] | "

ar

(3.30) Nu=—-2——| .
. 6y y=0
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Substitution of Eq. (3.4) into Eq. (3.30) yields for the first stage

-4
331 Nu= g
@30 T
After introducing Eq. (3.21) into Eq. (3.30), we obtain for the second stage
(3.32) Nu=4g, (£}.

The approximate temperature distributions determined for the first stage as
well as for the second one are coupled with corresponding velocity distributions
which will be calculated now.

Substitution of Egs. (2.9), (2.10) and (2.12) into Eq. (2.8) yields the dimensioniess
fluid velocity ' :

Ja—p a+om)

6[31 <

(3.33) . . .
4[(1-y) {f (A=) (1+5T) dv} dy

Similarly to the temperature distribution for the first stage, also the velocity distri-
bution is determined by two different functions. These are

U 1 [ L b) ;
(3.34) 71 1 (I-{-b)y“? 1+ 4-23 y ‘+
%-I-E 56 (20— 156 +65%— 6%

2
+ 1 51 +o) 1 5 .
and
lb& —ibézq- oy

U 370 T YT

{3.33) 20T — for Jd=sy<l.
5-#;{; b3 (201554662 — 5%)
For the first stage the dimensionless local velocity of the fluid at the pipe axis
will be '
1 bS5 "1

(336) E“D-T e =

11 :
. R — 2__ 83
5 Fag b0 (20~ 155+ 662~ 6%) |

For the second stage one obtains, respectively,

1 ' 1
— e 432 3_ 2 4
U ( 23’)(1+b)"f‘592(y ¥ 4y)

(3.37) - 1
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so that

1
(3.38) o e

i
1+b_’”§"bql

In the case of nonisothermal Poiseuille flow of the fluid with the dynamic vis-
cosity depending on temperature, the friction factor f can be calculated from the
following relation [9, 101:

4r, dp

(3.39) S

After substituting Eq. (2.7) into Eq. (3.39) and some rearrangement, we obtain
for the first stage
8 1
I Ree 1 1

— . 2.8
T Thd 20 1564682~ 3%)

(3.40)

For the second stage the friction factor will be, respectively,

64 1

3.4(1) f=

Tn the expression (3.40) and (3.41) the Reynolds number Re, has been calculated
for those values of physical fluid properties which are valid in temperature fo.

4. TLLUSTRATION OF THE RESULTS

Tn order to illustrate the results achieved in this paper some numerical examples
have been carried out. The results evaluated are presented in the form of graphs.
For both the first stage of solution and the second one two different values of b
have been assumed, i.e. =9 {(warming up of the finid from the pipe wall) and b=
— —0.9 (cooling down of the fluid from the pipe wall). On the basis of the relations
(3.36) and (3.38), curves of fluid velocity are plotted in Fig. 1. For the sake of com-
parison on the same figure, the results computed by means of numerical analysis
[4] arc also presented.

The curves of the friction factor in the flow direction and for the first siage
of solution are plotted in Fig. 2. Similarly as for velocity curves, two different val-
ues of b (b=9 and b= —0.9) have been assumed. To compare with, on the same
figure the corresponding curves for b=0 are also plotted.

It is interesting to note that if the value of the dimensionless length coordinate &
- measured .in the flow direction increases to infinity, the product f. Reo tends to
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a constant value which is characteristic of isothermal Poiseuille flow {assuming
that this constant is calculated for those values for physical fluid properties which
correspond to the temperature ¢, of the pipe wall),

L

20
14 ] (T
D RS
i e I~ ]
Lo it 17 b=
Tt 29 ~
1.2 Loery HI- o H
\’ \
1o i - b2 s
=
/"9
ol
L& | [+
a8 _ L 5
»«”J
= e
a8 —
7
— 2
2 -3 2
0 0 w” £

Fio. 1. Curves of dimensionless local fluid velocity along the flow axis; 7 — numerical solution
presented in {4}, 2 — analytical solution obtained in the present paper.

o Lt
i
) b=0.9
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//
] . .
170 / .. - [N S R S
* _
&0 —
b=
20 4
B S § ) ]
]
‘a 0.02 0.04 .06 298 - o10 o2 a6 &

Fi1e. 2. Curves of the product fRe, along the flow axis.

5. CONCLUSIONS

In conclusion of the present paper the following remarks would be of interest:

1) The method of Vujanovi¢ applied to nonisothermal Poiseville flow of a New-
tonian fluid made it possible to achieve the approximative results which point out
a high degree of accuracy in comparison with the numerical solution given recently
m [4]. It should be noted here that the boundary value problem as discussed in
this paper is of a strong nonlinearity.
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2) From Fig. 1 it follows directly that the dimensionless local fluid velecity
at the pipe axis increases in comparison with isothermal fiow if the fluid is cooling
down from the pipe wall. It decreases in the case of warming up, respectively.

3) The greatest deviation of the corresponding velocity values is observed in
the case of cooling down of the fluid and amounts to ~40%.

4) If the values of the dimensionless length coordinate & increase to infinity,
the values of fluid velocity tend to a constant value which is characteristic for
isothermal Poisseuille flow.

5) The dependence of the dynamic viscosity on temperature exerts a remark-
able influence on the values of the product /. Reo, especially at the beginning of
the first stage (see Fig. 2). '
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STRESZCZENIE

 NIEIZOTERMICZNY PRZEPLYW POISEUILLE'A DLA CIECZY NEWTONOWSKIE]
7 LEPKOSCIA ZALEZNA OD TEMPERATURY

W pracy podjeto probg zastosowania «metody Vujanovita» do badania nieizotermicznego
preeplyw cieczy newtonowskiej w prostoosiowej rurze kotowe]. Zalozono, 76 dynamiczny wspol-
czynnik Jepkosci cieczy zmienia sig z temperatura w okreslony sposob, Wykorzystujac pojecie
,,termiczne] warstwy przyécienne]”’ rozwigzano omawiany pro]:ilem w dwoch fazach. Znaleziono
przyblizote rozklady temperatury i predkoéci. Otrzymane wyniki poréwnano z rozwiazaniami
numeryczoymi, przedstawionymi niedawno w pracy {4].
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Pezsmme

HEM3OTEPMHUYECKOE TEUEHUE TIVA3IELLILA 1A HBKYTOHOBCIKOM
KUIKOCTH C BAKOCTRIO SABUCARIEN OF TEMIIEPATYPLI

B pabore opemupwwats momertia nIpuMeneRHs , MerTons Byamoswda® mns mecmemopamus
HEMIOTCPMITIECKOTO TEUCHES HEIOTOHOBCKON MmukocTd B npAMooceBoil xpyrosol Tpybe. Ilpen-
HUIOHERO, 9TO IHHAMEYECKHE x0ad@uument BasxocTH KUOKOCTH MEHAETCH © TeMmepaTypoi
onpeenernnend o6pason. Wcnonssys nowsrme »TEPMUYECKOI'0 NOTPAHRYHOTO cnox™, obcyxma-
eMad mpoBiema pemmena B pyx dazax. Haviiers! wpubmnicernsre pacupenenems TeMICPATYPHI
H CKOpocTH. lloNywermunie pe3yNhTaTH cpaBHeHtl o YHCHCHABIME DEIEEHIME, OpelcTaBIeHHLIME
HelaBHO B paBore [4).
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