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TRANSIENT NONLINEAR RESPONSE OF IMPULSIVELY-LOADED
" CIRCULAR PLATES

M.T.E. TUOMALA and M.J. MIXKOLA (ESPOO)

The finite element procedure used in this study is based on the incremental Lagrangian approach.
Geometrical nonlinearity is included. The elastic viscoplastic material model is adopted in g form
‘suitable for large strains. Linear 2-noded and parabolic 3-noded isoparametric axisymmetric
shell clements are employed, Numerical time integration is carried out by the central difference
scheme. The agreement between computed and experimental results is at least satisfactory. The
discrepancies can be explained by combined effects of small inaccuracies of loading geometry,
constitutive parameters, boundary conditions, and numerical discretization and round-off ervors

1. INTRODUCTION

Research on the dynamic plastic response of structures has been widely reviewed
in Ref. [1]. Circular plates under impulsive loading have received considerable,
attention, see Ref: [2-18]. Experimental results have been reported in Ref. [7,9,
10, 14], and various analytical and numerical techniques have been applied, sce
Ref. [12, 13, 15, 16] —the mode approximation technique, Ref. [9] —the finite
difference method, and Ref. [17, 18] — the finite element method.

A comprehensive experimental investigation is described by Bopnsr and
Symonps [14]. Circular plates, made ‘of mild siec] and titanium, were clamped in
a manner intended to prevent displacements in the plané- of the plate as well
as transverse displacements and slopes. The transverse pulse loading on the plate
was applied by detonating a disk of explosive sheet separated from the plate by
a styrofoam buffer pad of the same radius and 1/4 in. thickness. Three loading
geometries were used, ¢/R=1, 1/2, and 1/3. a/R was the ratio of the loaded area
fadius to-the plate radius. The prlmary measurement in each test were the initial
impulse imparted to the specimen, the final mid-point deflection and the deflection
profile.  Approximate measurements were also made of deflection time history,
furnishing information about times of reaching peak or final deflection magmtudes

The purpose of this paper is to report on the ﬁmte element computations which
were made on some specimens tested by Bodner and Symonds. Besides the overall
performance of the finite element procedure, which was studied by comparison
of the computed and experimental results, the effects of strain hardening and
strain rate behaviour of the viscoplastic material model, the influence of the change
in loading geometry, and the effect of partlal ﬁxmg of the plate edge were mvestl-
gated

;o




132 M. T. E. TUOMALA AND M. J. MIKKOLA

The finite element procedure used in this study is based on the updated or in-
cremental Lagrangian approach. Geometrical nonlinearity is included: The elastic
viscoplastic material model is adopted in a form suitable for large strains. Linear
2-noded and parabolic 3-noded isoparametric axisymmetric shell elements are
employed. Numerical time integration is carried out by the central difference method.

2. EQUATIONS OF EQUILIBRIUM

Consider the motion of a body in a Cartesian coordinate system, In the Lagran; :
gian approach the principle of virtual work can be expressed in the form [19]

@1y [ S;; OF;; av+ f pii, Su; dV= f b; Su; dV + f t, 6u; dS,
v v ' v ¢

where ¥ and § are the volume and the surface of the body in the reference config-
uration, respectively, S;; is the 2nd Piola-Kirchhoff stress tensor, p the mass
density, u; and #, the displacement and acceleration vectors, respectively, b; the body
force per unit volume, #; the surface load, and F,; the Green-Lagrange strain tensor

(2.2) E,-j=(ui,j+uj’i+uk.i Mk,j)/z.

In the finite element method, the principle of virtual work (2.1} resuits in the
matrix equation (see e.g. [20])
(2.3) . R@Q+Mg=Q, .

where g is the vector of nodal displacements and

(2.4) . R= f BTSdV, Q= f NT bV + f NT S, M= f NT pNdV
v v S¢ LN

the vector of internal forces, the vector of external loads, and the mass matrix,
respectively. N is the matrix of shape functions in the definition of the displacement
field w=Ng, and the matrix B, dependent on the current configuration, is defined
by the strain variation

(2.5 0E=Bdq.

In the total Lagrangian approach, a fixed reference configuration, usually the
initial configuration, is used. In the updated or incremental Lagrangian approach,
the current configuration is chosen as the reference configuration. A mixed approach
is obtained by changing the reference configuration after a certain number of time
or load steps. ‘

3. CONSTITUTIVE EQUATIONS

It is assumed that the sirain rate can be decomposed into elastic and viscoplastic
parts : '

-

@0 D;=D+D2.
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The Jaumann rate of Euler stress

(32 Tiy= Tis= Wo Tey= Wi T

and the elastic part of strain rate are related by Hooke’s law (see [22])
(3.3)  Ty=(E/ V) (G 61 0u1 82+ 81y Gua V(1 —29)] DE=Cy0 D%,
T J is the material rate of Euler stress and W;; the spin {ensor _

(3.4 We=(00,/dy;— dv,fép.)[2,

v is the velocity and y the spatial Cartesian coordinate system. The viscoplastic
" part of strain rate obeys the associated flow rule of viscoplasticity [21]

, o
'(3.5) D=L P E) 5

where y is a viscosity coefficient, F=/flo,—1, & an appropriately chosen function
(the power function @ (F)=sign (I} |F|? was used), and the notation { > means
that (x)=x when x>0 and {x)=0 when x<0. The Huber-Mises yield condition

(3.6) ’ : f—o,=0
i s expressed in terrﬂs of Euler stress
3.7 ‘ f=]/m? Tiy=T,—8; Tuf3.
On the basis of Egs. (3.1} and (3.3) the Jaumann rate of Euler stress is
(3.8 T15=Cipa Du—D2)
~with _ : .
39 - Diy=3y{® (I Tu/2f.

In the step-by-step solution, the increment of the 2nd Piola—Kirchhoff siress
48 is needed. The general transformation rule between the Piola-Kirchhoff stress
and the Cauchy stress is

(3.10) S=JG~1 T (G,

where G is the deformation gradient and J the Jacobian of the deformatlon gradient.
Differentiation with respect to time yields

(3.11) 8=JG~' (T—LT-TIT+#LT) (G- VT,

where L=GG* is the velocity gradient. Observmg that L=D+W and Eq. (3 2,
one obtams

(3.12) §=JG-1 (T *— DT—TDT +1rDT) (G~ 17,

In the incremental Lagrangian formulation, the stress qilantities S and T coincide -
at the beginning of the step, and G=1 and J=1. The formula (3.12) yields thus

(3'13) Sij=ijkI (Dkl'_D;:f)_Tik 'DJR—Tkj -Dik+Dkk Ti,i’
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where the relationship (3.8) has been taken into account. The increment of Sy is
approximately

(3.14) - AS”--S,j At

and the new value of stress Sy A+ At)=8;; (1)+ 4S;,. The Euler stress in the new
reference configuration at the instant f+4r is found through transformation:
{3.15) T=j-1 G§ (t+dt) ar,

where G is the deformation gradlent correspondlng to the dlsplacement increments

du, Gyy=8é(y,+ 4u;)[0p;, and J the Jacobian of this deformation gradient.
~ The true yield stress o, is a function of the logarithmic plastic strain

(3.16) o i= [ V2D D3 di.

The relationship g,=0, (&¥) can be found from uniaxial iensile test, in which case

T

the tensile stress o equals cr,, and D74 equals &,

4, SOLUTION TECHNIQUE

The spatially discretized equatlon (z 3) is a set of ordinary dlﬂ‘exentlal equatlons
with respect to time. Various time integration algorithms for the solution of this
equation have been used and their merits discussed in papers on structural dynamics.’
In this study the central difference method (CD) was employed. In the CD scheme
the solution g, at time ¢,,, is computed from the formula

(41) QM+1—h2 MFl (Qn 'R)I)+2qrt~%l—13
where h=t,,,—1, is the step length. The strain increment is
(4.2) AE=B, (qyr1—gu)=Dp hr.

The stress increment 45 can be computed in accordance with the formulae (3.13)
and (3.14). After the necessary transformations for the new reference configuration,
the next time step can be taken. The initial condition for go=(g;~g_,)/2} has
to be used to climinate ¢, in the first step. Computing effort is much reduced
when the diagonal mass matrix is employed. The CD scheme is accurate and simple.
As an explicit difference method, its step length is limited by the largest natural
frequency of the finite element mesh,

5. ISOPARAMETRIC AXISYMMETRIC SHELL ELEMENT

The geometry of the axisymmetric element is defined in a Cartesian coordinate
system, where x is the radial direction and y IS the rotation axis, by the transfor-
matlon 18]

n n 1 L.
x (&, m)= 2 LAGERS Z ?k,. N, (&) cos o,

G

(= ZN(é)ymZ kN @sinay,
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in which x;, }; are the nodal point coordinates, #; the shell thickness, £, ne(—1, 1)
are curvilinear coordinates such that £ is along the shell midsurface and the #-axis
is along the surface {=0, o, is the angle between the x- and #-axes at nodal point
i, N; (&) are shape functions (Fig. 1). The displacement increments are

Au (&, n)=2ZN, (&) du; +']E B N; (©) (—sin &) Az,
(5.2)- )
4v (&, ﬂszNt (9 A'Ui‘i'ffz?hi N; (&) cos w; Ao,

U -
¥ Vi :

Gauss points

X, U

ot

. Fig. 1, Coordinate system for the isoparametric axisymuetric shell element.

where Au;. Az, are the nodal point displacement increments and Agp, the nodal
point rotation increment. The displacement increments are transformed to a local
%, 7 coordinate system, where X is tangent and 7 normal to the midsurface. (Fig. 1).
The strains are in the local coordinate system :

Ao= Ad <+ (47 222 +(45 222,
(5.3) _ Ay;&=dﬁ,;+ A‘ﬂﬁ*l‘ 4i - Aﬁ,;, .
Atg= Adujx+(du/x)*/2. -

The strain variation d4e=Bdg produces the matrix B. The stress increments are
also evaluated in the local frame. The new nodal point ¢coordinates are x; (f+ Af)=
=x; () + du; etc.

A lincar Lagrangian shape function N; (&) leads toa 6 degree of freedom -
element while a parabolic shape function gives 9 degrees of freedom. The integration
in the & variable is carried out by a one point Gaussian for the linear and by a two
point Gaussian rule for the parabolic element. Simpson’s rule is adopted for the
thickness direction.

i

6. NUMERICAL EXAMPLES

Data of the test plaies of Bodner and Symonds [14] is given in Table 1 below. '
The materials were hot rolled mild steel (ASTM A415) and 99.2%; pure titanium
(Ti-50A), which are both strongly strain-rate sensitive materials. For mode approx-
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imation calculations Bodner and Symonds assumed that the results of uplamal
stress tests can be expressed by the equation

6.1 - - oloe=1+(E/&) 7,
Table 1.
steel titanium
Mass density p [Ibs%fin*] . 0.73%10-3 0423x10-3
Plate radius R [in] ) 1.25 1.25
Plate thickness (average) H [in] 0.076 0.092
Strain-rate constant o, [psi} h 32400 36400 at eP=1%
' 38500 at eP=2%,
Strain-rate constant zo {1/s] 40 120
Strain-rate constant p ; 5 9
Modulus of elasticity E [psi] .. 30 x 10° 17 %108
Tangent modulus E; [psi] 8.33 x10¢ 1.410%
Initial yield stress o,, [psi] 35000 . 40000

where @ and & are the tensile (compressive) stress and the strain rate, respectively, -
and 0y, &, and p are material constants. The parameter &, corresponds to the -
viscosity coefficient y in Eq. (3.5) and p is the exponent of the yield function F..
Two strain hardemng models were used in the finite element computations: cne
elastic, ideally plastic, and the other elastic, hnearly hardening (bilinear). The
moduli £ and £ are shown in Table 1 where the initial yield stress g, of the bili-
- near relationship

(62} ~ g =ay0+E &r, =ET E/(E""-ET)

is also given. The shape of the load pulse was assumed to be tnangular with the
rise time of 5 ps and the total duration of 10 ps.

The final central deflections from 24 computer runs are shown in Figs. 2-5,
Finite element solutions were computed for steel specimens No. 46, 57, 59 with
ratio @/R=1, and No. 64, 65 with a/R=1/2, and for titanium specimens No. 79,
94 with a/R=1, and No. 71, 74, 77 with a/R=1/2. Ten linear isoparametric shell
elements were employed. Numerical time integration was performed using the
central difference scheme with time step 4¢=0.25 ps. As a rule, the finite element
results -agree satisfactorily with the experimental and theoretical values by the
node approximation method. Inclusion of the strain-hardening effect does not
consistently improve the agreement. To investigate the influence of loading geometry,
the case o/R=0.5 was also computed using the value ¢/R=0.6. For titapium plate
this gave a closer fit with the experimental values, In Fig. 6 the form of the perma-
nent deflection of the titanium plate specimen No. 74 is depicted. The computed

result of a strain hardemng model with a/R=0.6 is falrly close to the measured
form
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+ In Fig. 7 the convergence of the central deflection vs time for steel plate spec-
imen No. 57 is illustrated. In the case of 10 parabolic isoparametric elements the
time step 4r=0.25pus was used, while for 10 linear isoparametric elements the
time step was Ar=2.5ps and for 20 linear isoparametric elements Az=1.25ps.
The conformity of the computed curves is very good.

The effect of the strain-rate dependency was investigated by comparing two
viscoplasticity functions. The power function £ 7=40s~"{g/o,—1)° corresponds -
to Manjoine’s test results for steel. The expression & P=2XB, (o/o,~1)* was adapted
to the test result by Clark and Duwez. The values of the constants B, can be found
in Ref. [21] p. 287, the formula (2.92b), Table 2, line 2. The more complex expression

.
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Fic. 6. Final deflection profile of titanium plate specimen No. 74, a/R=0.5.
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.

provides_closer agreement with the expenmental deflection of steel plate specimen
No. 46 (Fig. 8). _

BoDNER - and SymonDs [14] remarked that the clamping mechanism did not
fully prevent inward displacements at the largest load magnitudes. The inward
displacements at the plate edge were generally less than 1/16 in (1.6 mm). Compu-
tationally, the elfect of inward in-plane displacements was studied by modifying
the boundary conditions. One solution was computed by assuming compleiely
rigid clamping at the boundary. For the other solution, clamping against rotation
at the plate edge was assumed but the clamping against in-plane displacement
was at a distance 0.5 R from the edge. The in-plane movement was assumed to take
place without friction. This boundary condition was considered to simulate the
partial failure of the fixing observed at tests. The results in Fig. 9 indicate that
the effect of inward displacement, although in the right direction, dees not wholly
explain the discrepancy between numerical and experimental results.

7. CONCLUSIONS

The comparisons between computed and experimental results indicate that
the numerical procedure is capable to predict the behavionr of plates subjected
to impulsive loadings. The discrepancies between computed and test results can
be due to the combined effects of small inaccuracies of loading geometry, consti-
tutive parameters, boundary conditions, and numerical discretization and round-
-off ‘errors.
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STRESZCZENIE

NIELINIOWA ANALIZA NUMERYCZNA IMPULSOWO, OBCIAZONEJ PLEYTY KOLOWET

Zast( sowana w pracy metoda elementéw skoficzonych oparta jest na preyrostowym podeijéciu
Lagrange’a. Uwzglgdnione sa geometryczne nieliniowodci. Przyjeto rownania konstytutywne dla
materialu sprezysto-lepkoplastycznego dla duzych odksztalcen. Zastosowano rzometryczny liniowy
element powlokowy 7z dwoma wezlami oraz paraboliczny z trzema weztami, Calkowanie wzgledem
czasu przeprowadzon: jest za pomocg schematu réZnicowego centralnego, Zgodnos$é uzyskanych
wynikéw z rezulfatarni eksperymeniu jest co najmuniej zadowalajaca. Zaobserwowane réznice
moga by¢ wyjasnions przez Mezne efekfy niedoktadnodei w warunkach obcigzenia, warunkach
brzegowych, parametrach konstytutywnych oraz w bledach zaokraglen i dyskretyzacii,

"PeziomMme

* HEMWHEMHBIA YMCIEHHLI AHAHI/IB KPYTOBOW TUIMTHI HATPYKEHHOM
I/IMHYJII:CHHM OBPA3OM

IIpumerernrit 2 paGore METON KOHEUHBIX IMEMEH10T -ONAPASTCH HA XOIXOL Jlarpanma
B OPUPOCTaX. VUTEHLl TeOoMETPHYECKHE HEIWHEHHGCTH, FIPHHATH OHpPeRCISIONHS YDaBHCHASA
JUIS YNPYTO-BASKOIITACTHIECKOTO MATepHana uia Sonbamx medopmamii, TipumMenerst MIOMETPH-
VeCKMH JMMEMEHT © TpeMs yiiams. VIEie€TDHPOBAHAC TI0 BPEMCHA OPOBCLCHO TPH IOMOIOM pas-
HOCTHOH UeHTpamsHOH ciemer, COBIajeHNEe TONYHCHHBIX PE3YIBTATOB ¢ DO3yALTATAME 9KCIC-
pEMenTa 110 xpalizedl Mepe ynoBneTBOpHTERIbLRO. HabmrogaeMuie pasHALEl MOTYT GBITE BRIACHCHEY
COBMECTHEIME J(PdhekTaMA HETOUHDCTEH B YCIOBHEX HATPYKCHEA B FPAHMYHEIX YCIOBASK B Onpé-
AeNTIONINK MapaMerpax a 1aKe B OmEGKAX -OKPYLIcHHH H IUCKPeTHIALHE,
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