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EFFECT OF PLASTIC CRUSHING OF THE CAR BODY ON OPTIMIZATION
OF RHEOLOGICAL PROPERTIES OF SAFETY BELTS (*)

A. TROINACKI and M. ZYCZKOWSKI (KRAKOW)

~The highly idealized problem of optimization of rheological properties of safety belts was
formulated and solved by W. NacrBar and J. B. ScrrPmOLDER {2]. In the present paper optimi-
zation is considered taking a more realistic descriptio n of an impact, The effect of plastic crushing
of the front end of the car body is studied. The perturbation method is applied to obtain an
effective solution, with the small parameter proportional to. the length of the deformed front end
of the vehicle. Two cases of total and partial crushing of the elements in the front of the passenger
are distinguished under the assumption of constant average plastic resistance of the car body.
Optimum viscoelastic properties of the safety belt are determined which maximize the initial “safe”
speed of the vehicle before an impact.

1. INTRODUCTION

Most problems of optimizition in theology consist in evaluating optimal shapes
of the structures, Ref. [4]. However, in some cases the rheological properties of
the material may also be subject to optimization — problems of this type belong
partly to optimal structural design and partly to materials science. Such a situation
is encountered mainly in dynamic problems: for example, the problem of optimal
rheological properties of safety belts was formulated by W. NAcuear and J, B.
ScurpMOLDER [2]. In the present paper we extend their COHSIdeI‘aUOHS assammg
a more realistic description of the crushing of the car body.

W. Nachbar and J. B. Schipmélder assumed the maximal permissible speed
of the vehicle before an irapact, ¥, as the objective function, The following con-
straints were assumed.: 1) the maximum displacement x (¢) of the human body after
an tmpact is equal or less than a prescribed critical displacement D, 2) the force
P (1) exerted by the belt on the body during the motion following an impact does
not exceed a prescribed maximum value P,,,. Simple, two-elements Maxwell and
_Kelvin—Voigt'viscoelastic models for the seat belt material were studied with the
primary intent to establish qualitative effects of introducing viscosity in a simple
but optimal way. It was found that a certain opiimal value of the viscosity coefficient
existed for which the initial speed ¥, reached a maximum.

In that highly idealized problem the vehicle was assumed to stop abruptly after
n impact. The effect of plastic crushing of the front part of the car body was neglec-
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ted. Under real crash conditions the attachments of the belt are subjected to a
retarded motion in the first period and then in the second period they are suddenly
brought to rest. _ .

In the present paper the equations of motion for both these periods are derived.
Considerations of plastic deformation of the car body make the basic equations
rather complex so it is necessary to use an approximate method to obtain an effec-
tive solution. The perturbation method is applied with the small parameter pro-
portional to the length of the deformed front part of the car body.

2. PERFECTLY RIGID CRASH

W. Nachbar and J. B. Schipmélder considered the problem under the following
assumptions which are introduced also in-the preseni paper:

a) The passenger and the belt are represented by a point mass m attached to
two strips of length /, which are attached io the vehicle at the other ends. - '

- b) Effects of gravity and of energy (dissipation other than material viscosity
are neglected. _ o

¢} The change of the initial angle § is small (the small strain assumption).

d) The vehicle and mass m undergo straight-line motions along the same straight
line. For time #<0 the vehicle moves with the constant speed V.

However the fifth assumption-—standstill of the vehicle starting abruptly at
t=0-—will be replaced by the assumption_of plastic crushing deformations during
the first period. '

Fig. 1

* The geometry of the belt is shown in Fig. la, and the linearization of the geo-
metry in Fig. 1b. The criterion of the same displacements of belts a) and b) under
the same loadings is used in Ref. [2] to determine the auxiliary length L=1/2 sin? f,
with the assumptions of small strain, a linear constitutive relation. and a shallow.
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ness condition. Viscoelastic properties of the seat-belt material are introduced by -
means of the viscosity coefficient C and of the spring constant E. The basic equa-
tions are placed in a convenient nondimensional form for each model by a par-
ticular choice of the characteristic time T, K=]/mL/EM,K A, where A is a cross-
-sectional area of the seat belt, and the dimensionless parameters.

Ty Eny "
2Cy X oT B

@1 - Y=

The indices M or K refer either to the Maxwell model or to the Kelvin-Voigt
model, respectively. The parameters yy x are introduced in such a manner that
7e=0 and yg=0 lead to ideal elasticity. A nondimensional time 7, load p, velocity
o and strain ¢ are defined: '

r P _Vlwx %
TM,I( y P EM’,K‘A s 7’__" T N S—L .

2.2 . T=

The material constants C and E should maximize V, under the constraints

(2.3) : . -sup x (t}=D, O oo;
@24 Sup P ()=Ppux, 0100,

After some calculations and elimination of E in Ref, [2] the relations for the ,,cri-
terion gquantity” (dimensionless objective function) defined

. 5 K_ DP max
2. ) - me; 9

were eventually obtained. As we can see from the definition of criterion quantity
K (Eq. (2.5)), the maximization of ¥, is equivalent in this case to the minimization
of D under fixed P, and V, or to the mini_mization of P, under fixed D and V. .

" 3. CRASH ANALYSIS ALLOWING FOR PLASTIC DEFORMATION OF THE CAR BODY

The possibility of plastic deformation of the front part of the car body during
a crash imposes a change of the fifth assumption to the problem. In the present
paper we shall assume that in the first period when plastic crushing occurs, the
_attachments of the belt are subjected to a retarded motion. In the second period
after an impact the attachments are instantaneously stopped. For simplicity we
shall also assume perfectly plastic idealization of the car body and a constant
deceleration of the attachments

(.1
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where P=const is an average plastic carrying capacity of the deformed front part
of the car body and m, denotes the mass of the vehicle. The motion of the beli
attachments in both periods is described by the relations

. at?
(3.2 1st period X, (B)=VFyt— 3 0<ie®;

(3.3) 2nd peried X, (f)=S=counst, =%,

where 7*-is the end of the first crash period Vand § is a full displacement of the.
attachments in the 1st period, equal to the total length of plastic deformation of
the car body. In Fig. 2 the speed of the belt attachments

A}

(.4) YV, (X)=VVi-22%,

is plotted against the displacement X,. In comparison with the present more &dcquate
conditions of a crash including plastic deformation of the car body, W. Nachbar -
and J. B, Schipmdlder considered the problem with the 1st period reduced to Zero

a b -, hard" Erant C- soft” Front

[ Vo h W
v, A 7st pertad v, st period

I
;
Znd period | 2nd period [ 2nd period
|
QL"." O
N 55 x 0 $=8 X

Fig. 2 .

(Fig. 2a), The maximum difference in curves in Figs. 2b and 2c is in the values of
the boundary speed ¥ at time #*, This difference is related to the construction para-
meters of the front part of the car body, such as plastic carrying capacity P and total.
length 8. For a “hard” and long front the velocity of attachments decreases from,
V, to zero (Fig, 2b) even though not the entire front part of the car body of length
S, is deformed. In the opposite case for a “soft” and short front the plastic:
crushing ends before the speed of attachments reaches zero (Fig. 2c) and at the
boundary time we have ¥, (1*)>0. Of course, a sharp distinction between “hard”
and “soft” car bodies is impossible because it depends on the initial velocity Ve
of the vehicle, too. In the present paper we shall consider the latter of thesé\two'.
cases —a “soft” front-— as a more general case. o
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An appropriate model of the seat belt is shown in Fig. 3a and the linearization
of the geometry in Fig. 3b. A change of the assumption with regard to Ref. [2]
involves a new expression for strain in the auxiliary belt of length L.

. . "‘*Xb
(3.5 e(t)=x—(n-im(—0w.

XV

=0 =t*

t=t*

Fig. 3
The assumptions a)-d) and other relations remain the same as before.

*3.1. First crash period (0<1<1%)
"~ Let us introduce a new noudimensional parameter

alZ k
= —,

IJ

“connected with a constant deceleration « of the attachments due to plastic crushing
‘of the car body.

The motion of mass m is described by a differential equation

d* x

5= <It*,
m-z P, Osi<t

isplacement relation (3.5) and the definition of stress o (£)=P (2)/4, constitute
e following two systems of dimensionless algebraic and differential equations;
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Maxwell (0gr<T)

dpy (7a )
"“'%EAL“"‘—% (a0 D =290 p1 (Yaa» T) =0 +uiT,
(3.8) ' dv; (Yars 7) = —py ( )
dT _ .pi ?Mn Th

&1 (> =01 (Va5 D+ 270 [Ro—24 (?’M, 7)1,

with the initial conditions: 71 (e =10, 7 (yae, =12,
Kelvin-Voigt (0<%

P1 e T)=31 (v, 7) +2?x [21 (7gs T)—vo +url,

dvy (e T)

B9 _ dr =~ (x> T) = 25k [0 (PK, 1) —vg+ut],
dey (v, 1) '
_'_1""'1*1“_1(—“=91 (yx, T)— oo Furt,

with the initial conditions: v, (yg, 0)=v,, & (7x, 0)=0. After integrating Egs.
" (3.8) and (3.9) with the appropriate initial conditions, the resulting equations for
‘stress, velocxty and strain in the 1st penod are given in the Appendlx

3.2. Second crash period (¢ 1)

The attachments of the belt are brought to rest and therefore the same equa-
tions as in Ref. [2] can be used to determine the motion of the mass m. The initial
conditions result from Eqs. (I) and (II) for the Ist period in order to obtain the
continuity of speed v and strain ¢ at the boundary time 7*. Solution of the appro-
priate equations is given in the Appendix for the 2nd period.

3.3 Optimization

Consideration of plastic crushing of the car body complicates the resulting
equations (I)-(IV). It is no longer possible to derive the exact algebraic solution-
such as in Ref. [2]. The perturbation method is applied to obtain an effective solution.
The small parameter is defined as

8

(3.10) v=

and is proportional to the length of the deformed front part S of the car body.
The smallest positive 7 for which p; (¥ 7) and & (7m x> 7) would reach

a maximum in the. lst period are, respectively
Maxwell

wEe . ° ' F
(3.11a) T =

. ]/1 — ’
(3.12a) Ta=}6,
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Keivin-Voigt .

1
(3.13a) : Ty = === [m—arc cos (1-2y2)],
Vi-y2
7
3.143) ) Tsl=_To

The functions p, (y, x, 7) and &, (ym. x> 7), valid in the 2nd period, reach the
(maximum at times '

- Maxwell
1 J
(3.11b) Tpy="F1 arccos yp +—w+...,
L Vi v '
1 - J :
(3.12b) Tpp === (R —aTC COS yp) +—w+. .
]/l—yir : Ty
Kelvin-Voigt
3.13b) | Y 3 4y3 ‘+ o
. : Tp2 ™ —5==— ATC COS - =yt
( A P2 ]/I—-}"% \ 7k )’K) Vo vt
: 1 s o ’
(3.14b) Tpp = — - aEC €OS Yp T—w+...,
R/ %o
where J=D/L. : ' R

Now we have to compare the values of Tpis Ta1s Tpa» Tez fOI' both models with
the value of the boundary time t*=uv,/u (1- V1 —20ufvl y) in order to evaluate the
true maxima and to select the proper relations from Egs. (3.11a, b)-(3.14a, b) to
the further analysis, At the present stage of considerations such comparison cannot
be made generally because the times for which stress and strain reach a' maximum
are functions of y,,, ¥, and vy Which are to be determind in the process of opti-
mization. However, it turns out that in most practical cases stress and displacement

reach their maximum in the 2nd period which involves the inequalitics for both
(models: -

(3.15) _ T2 T¥, T2t
(3.16) - L Y A

The inequalities (3.15) shall be proved in further analysis while the inequalities
(3.16) are ‘always true. The latter conclusion results from the comparison of the
right-band sides of Egs. (3.11b)~(3.14b) with the expression for the boundary time
7* expanded into a power series with respect (o w '

Mo
= v+...
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Further considerations will be presented for the Maxwell model only.
The maximum of stress and strain in the 2nd period may be calculated as

3

Par
(3.18) Prax=%0 €XP —-V——arc COS Yar 1- o w3t
195
P 33“
(3.19) Emux =00 CAp | ——=—==(m—arccos i) | {1 — — v +... |+ 2y v0.
]/1__ 2 6v;

_ In the expansions (3.18) and (3.19) only the first term at > is retained. The appro-
pridte accuracy requires refaining terms at y only, Ref. [5], in Eqgs. (3.11b)-(3.14b).

‘With a partial transformation back to dimensional quantities the constraints (2.3)

and (2.4} become '

3 20 Pma‘ _ VO ( 'yM ) (1 a,D3 1 . . )
(3.20) m T, P~ 1/1“?’3, arc cos yu} |1— Ve T2 74 I
(3.21) D 7V [ { 8 )]
_ e T—arc co
o ]/1_ 14

'(1 DL ) 2y V.
X @OTT;VI-%...-F?M 0
The expansion of the characteristic time Ty, into a generalized power series is applied
to eliminate E (hidden in Ty} between Eqgs. (3.20) and (3.21)

(3.22) =Ty 4T, w+ T ¥ +T3 w3+

Ta

Substituting Eq. (3.22) into Eq (3.20) we obtain a set of equations determmmg T;.
For the few first terms we have

Pmax . a;DS
: L Tl =0) ’ T2 =0$

T0= T3=—6._V,’;“Tg.
o .

' ™
mV, exp ( ———me
vV

11—y
Substitution of the series (3.22) into Eq. (3.21) results in

K+ ( ﬂ"J’M )
(3.4 —m
o P ]/1 —_ 7’;;
(3.23) K+— _
6 [exp( I arc cos ¥, )]
: Y M
]/1 —
where a=a/d.,, is a ratio of the deceleration of the attachments and a maxlmum

prescribed deceleration g,,,=Puss/m Which can be exerted on a human body,
and K, stands for the first approximation obtained in Ref, [2], namely

- Maxwell :

. ] Ty

(3.29 Ko=2yy exp ( 2 arc cos yM) +exp (-———Mm;),
. N Vi Vi-n

arc cos yM)

2 K? l,U'3+V...=K0 y
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Kelvin-Voigt
‘ Y& ‘ '
(3.25) Ky=exp { — —]71::_2— [arc cos yg +arc cos Byg— 4y§)]} .
- ?K

The perturbation method (w=S/D} is used again to calculate X from Eq. (3.23).
Eventually, the criterion quautities K for both models are

. Maxwell
. .
¥n XD [— ;/—1——1“—2 (m—arc cos yM)]
o —
(326)  K=Ko— — " — K3+ ...,
‘ . exp { fﬁ arc cos yM)
Kelvip-Yoigt

. o ¥
(3.27) K=K,— 5 e {—]/I——K—y_z_ [arc cos yx—arc cos (3yxm4y;)]} K P+, -
. —rK .

Applying the optimization condition to Egs. (3.25) and (3.27) we obtain
(328) yMopt=FM (V’)’
(3.29) Y o =Fx (),

where the functions ¥y, and Fy may be defined and realized numerically only. For
several values of « the relations (3.28) and (3.29) are plotted in Fig. 4. The criterion

M opt » 3'!{0,03‘
10

0.75 _\ —\ <

Maxwell model — Jagpt = Frr{¥)

05 :
Kelvin-Vaigl model— ¥yont =Fr (W)
R o S \ TP
a=2 \a=15 =1
251 : '
o 2z 05 075 10 14

Fig 4.




124 A, TROINACKI AND M. ZYCZKOWSKI

10
K &=2 Purely
elastic mode(
078 .
Maxwell
. \ model
2T
-1 =1 ’
ceeth & Kelvin-Voigt
- ‘ : fmodet
05 - e —/\D
a=2 oe="15/ o=t
\\ Constant foree
|
625 -

o a 025 05 o5 w111

Fig. 5

quantities K versus the smail parameter y (including the purely elastic model and
constant force model) are shown in Fig, 5.

The resulting diagram in Fig. 4 may be used for detailed calculations of yu ope
and y go,e for particular values of o and y. Optimum values of spring constants
" Eppopts Egopr can be obtained using Eqs. (3.18) or (3.19) (for the Maxwell model)
whereas optimum values of the wscosny coeflicients Cy oprs Crope from the substi-
tuting relations (2. 1)

4. PURELY ELASTIC MATERIAL

This model is considered in ordér to determine the effects of introducing visco-
sity into the seat belt material in connection W1th the more adequate conditions
of an impact. The optimization in this case can be found by applying 7, K=0 to
the solution for either the Maxwell or the Kelvin-Voigt models, Eqs (3.26) or
(3.27). The result is

“.1) K—-—Kb ‘"';Kgi,ll +..

where accordmg to Ref. [2], KG-—I
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5. CONSTANT FORCE MODELW(P {(O)="Ppa)

After some simple rearrangements we obiain

¢¢n K=Kq~

3

I+y’

where Ko=0.5, In this case the inequality «>1 must be satisfied; it results from
the strain relation (3.5) for the Ist period g;=(0—1) &pay t3/2L. If 2.<1 the mass
mis decelel ated with the force P < P,,,., which does not coincide with the assumption,

6. LIMITATION OF THE VALIDITY OF SOLUTION

The st crash period when the attachments of the belt move may continue at
most to the time £, ="V,/a at which the velocity V,=0. The distance covered
during that time equals S,,,=X, (&5 )= V3f2a and for a particular value of a

- depends on the initial speed V, of the vehicle. As a conclusion we have a limitation
for the smail parameter which is connected with §

©.1) <y,
where w,=V22aD=1[2¢K.
The inequalities (3.15) involve the conditions

(6.2) WY, WSV,

where y,=V, #,,/D and l//s Vo t.1/D. : :
The inequalities (6.1) and (6.2) may be verified numerically only at the very
end of the optimization process after determining Yaropt O Ygopt A0d Fopax.
Collecting Egs. (6.1) and (6.2) gives ﬁnaHy the general condition of validity
of the soluiion

(6.3) WS Y =100 {0, s W}

7. NUMERICAL EXAMPLES

We assume the following data: D=0.6 m, 4=0.0001 m?, /=0.5m, m=80 kg,

m,=1000 kg, f=30°, two values of P,,,=5000 N and 10000 N (), three values
of a=1, 1.5 and 2. We have six different sets of data ; the difference is in the values
of the most controversial data: the prescribed force Proax Which can be exerted on
a human body and (indirectly) the average plastic capacity P of the front part of
the car body. The numerical results are gathered in Table 1, including a perfectly
rigid crash (yw=0). All the results (except the constant force model} are obtained
for Wmax in order to determine extremal effects due to the plastic crushing of the
car body. The values of y,,,, are given in Table 2. As we could expect, the condition
(6.1} is the sharpest so that yyw=y; the values of y, and y, are greater thin
that of y, at about a whole range of magnitude. For the constant force model

(') Taken after Ref. [1]
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it is necessary to limit i with respect to real dimensions of the car body and y=1
is taken as the representative value in this case. The diagrams of force P (¢), velocity
¥ (¢) and dispalcement & (¢) L of m towards the attachments versus time ¢ are shown
in Figs. 6,7, 8 and 9 for all models under consideration for the following data:
PLx=10000 N, a=2 (P=250000 N)-and y=0.17 (§=0.1 m).

Table 1.
Pn!nxtsooo N ng,,tIO 000 N
W=y W == yiax
=0 2 S -0 |- _
v a=2 | a=1.5 [ a=1 4 Ca=2 ! «==15 ! a=1
Maxwell model
Paropt 07001 0724 0756 0876 0700 ] 0724 | 0756 0.87¢
Eptopt (MNIn?) 273 291 317 414 546 582 633 828
Carop (MNsim?) 10.55 10.53 10.53 10.39 14.92 14.91 14,89 | 14.69 '
Vomas (kmih) . 26.6 27.0 274 27.9° 37.6 38.1 38.7 39.5
' Kelvin-Voigt model
VXopt 0.404 0.401 0.398 0.385 0.404 0.401 0.398 0.385
Egyppe (MNIm?) 38 58 59 60 115 ils 117 121
Cropt (MNs/m?®) - | 549 .5.46 5,44 535 776 7.73 7.7 1.57
VOmax (km/h) 30.6 30.8 31.0 31.7 43.2 435 43.8 44.8 '
purely elastic model
Eo (MN}m?) 83 83 . 83 84 167 167 167 167
Vouex (it 220 22.2 223 226 31.2 31.3 315 320
consiant forcé model P(£)=P,., (%) .

Vomaz (emfh) 312 | 441 441 | 441 | 4.1 | 624 { 624 | 624

(*) Results obtained for y=1 -
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| ! i
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Fig. 4
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Table 2.
Wnrax
o MaxweH Kelvin-Voigt purely elastic | constant force
model model model model
2 0.374 . 0.487 0.253 b 1
1.5 0.514 0.658 0,340 2
0.634 1.033 0.525 o0

[127]
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8. FINAL REMARKS
-

- It appears that the influence of plastic deformation of the car body during a crash -
does not produce an appreciable difference in initial speed ¥y and in optimum
vaiues of material constants for all considered models. A rise in the initial speed
Vo is neglected. Nevertheless we can observe the tendency of changes of C and E
if y increases and the conditions of an impact become closer to reality. For all
models the optimum values of C decrease and optimum values of E increase with
increasing y. The changes are greater for the Maxwell model, since the Kelvin-Voigt
model is closer to absolute optimality (P (t)=const) and less can be gained.

APPENDIX

The resulting equations for stress p, velocity » and strain ¢ in both crash periods:

1st period (Ogv<it®)
Maxwell

D
Kelvin-Voigt

(I1)

2nd period (t=1%). .

pi=u(E ¢, +1),
vi=u (B ¢,+24,+By),
E1=# (E1 P3 +A4+2A1 T);

- pi=u(l; pa+1),
v =u(E ¢s+B:),
ey=u{k, p1+1).
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Maxwell

Ay

[ Aut+BY .
Pa=uF, ”"’TS'I‘C'FEL o1 1,

Ay B:_ 3 . =l‘ *
() vy =UkE, S+QRA+B)CHE v, |,

2

[ A, (A 42) 4 B
Ey==1 2[ - 4A 2 S+(A4“‘2__4_1BD C+E] @3]+2A11’o;
2 A

Kelvin-Voigt

A~ A4,y B! .1
pr=uE, | ——————L S+(1+24, BY) C+E'p. ],

A,
_ 1+.4, B; . . -
(v) vy =uk, HTS"'BL C+E] s},
A+BY
EzzuEz( IAZ S S+ C+E: ‘?1)'

The following notations are introduced in the above relations:
A1='V, AZ:'/I_?ZD Aﬂ;lwzj’,z’ - A4=1—4?2,

Yo Vo
B=—~—1, Bi=—=1%,

E, (v, Y=exp (—y0), Ei=exp(—yt%), E (3 O=exp[—y@E—1¥)],
Sy, D=sin (4, (t—7%)], C (3, 1)=cos [4, (t—1¥)],

A
Py )= -*-——-—Al sin (A, 1) —cos {4, 1),
2

A -
P (y, D)= -A—3 sin (4, 7)—24, cos (4; 1),
2 .

Ay (Ag+2 ,
05 (7, 1) = _——‘(A“—)sin (A ©)—Aq 008 (4, 1),
Z

94 (7, 7) ="‘—'A1 sin (A, ©)—cos (4, 1),
2

L
95 (7, 7)== ——sin (4, 7).
2

The indices M and K are not used in the Appendix, Ther:éforé the parameter
y has to be completed with M in Eqs. (I) and (III) or with K in Egs. (If) and (IV).
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STRESZCZENIE

WPLYW PLASTYCZNEGO ZGNIOTU NADWOZIA NA OPTYMALIZACIE
REOLOGICZNYCH WEASNOSCI SAMOCHODOWYCH PASOW BEZPIECZENSTWA

Zagadnienie opiymalizacji . reologicznych wlasnodci samochodowych pasow bezpieczenstwa
zostalo sformulowane i rozwiazane przez W, Nacupara i J. B. SCHIPMOLDRRA [2] przy silnie
upraszczajacych zaloZeniach. W obecne] pracy problem -optymalizacji przedstawiono w ujecio
bardziei odpowiadajacym realnym warunkem zderzenia samochodu. W szezegllnosci uwzgled-
niony zostal efekt plastycznego zgniotu przedniej czesci nadwozia, Do rozwiazania zastosowano
metode malego parametru za ktory przyjeto wielkosé proporcjonalng do diugosci zgmata.nej czgdel
nadwozia. Przy zalozeniu stalej usredniongj nosnosci plastycznej nadwozia, rozrozmono przypadki
calkowitego lub czeiciowego zgniotu elementow, znajdujacych sig przed pasazerem. Podobnie
jak w pracy [2] okresloae zostaly optymalne wiasnodci lepkosprezyste pasa bezpreczefistwa, maksy-
malizujace dopuszczalng, bezpieczna dla pasazera predkeodé pojazdu -przed zderzeniem.

PeswomMme

BAVAHUWE TNIACTHUECKOI'O COABINEHHA -KV30BA HA ONTHUMAJIM3AITHIO
PEOJION I/ILIECKI/IX CBOKICTB ABTOMOBWJILHLIX HPE,[{OXPAHI/ITEJILHLD(
IoACOB .

Ipobrema onTHMaNA3AUME pEOJ'!OFK'JECKEX CBOMCTE ABTOMOODMIBHEIX TPCHAOXPAHMTEIEHEIX
noscos chopmymmposara ¥ pemena B. HaxGapom m [ B. mmensxepom [2] npn cansHo
YRPOHIZIOUIEX NpefIoNoXeRux, B HacToguell paGoTe npobneMa ONTHMAIEIATIIY NPEICTARIEH
B nomxoxe Goliee OTBEYAIONIHM PEANLHEIM YCIOBWAM CTOJKHOBCHNA aBToMoOmIed. B uwactHOCTH,
yared ahdexT uacTHHecKoro CUABNCHAN Nependell yacT Xy3osa. JIAsa pelneHRs OpEMSHEH METO
Magoro DapaMeTpa, 33 KOTOpPHH UPHHATA BEIHYMAA NPONOPIHOHATGHAS [JIEHE CHABICHHOH
yacTH kysosa, [Ipr OpeironomeEtn NOCTOARROH YCPSONGHHON TmacTHdYecKodl Hecynmel crocob-
HOCTH XY¥30Ba, DasiHUaioTca Ciydal GONHOTO JUTH YACTIYHOLO CIABNCHWA JNEMERTOR, HAXOII-
IMUXCA Nepel, TMacCaxApoM. AManormsHo kax B pabore 2, "OTpe/ieNensl . ONTEMANLHEE BA3KO~
YOpyrue CROHCTBA HPEACXPAHATEIBHOTC 0sica, MAKCAMESHPYIOUHE FOMYyCTEMYIO, 0e301acHyo
OTIS AcCaNmMps, CKOPOCTs aBTOMODHIN nepel] CTONKHOBCHHCM.
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